• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication and Property of Yb:CaF2 Laser Ceramics from Co-precipitated Nanopowders

    2019-12-28 01:28:14WEIJiaBeiTOCIGuidoPIRRIAngelaPATRIZIBarbaraFENGYaGangVANNINIMatteoLIJiang
    無機(jī)材料學(xué)報 2019年12期

    WEI Jia-Bei,TOCI Guido,PIRRI Angela,PATRIZI Barbara,FENG Ya-Gang,VANNINI Matteo,LI Jiang

    (1.Key Laboratory of Transparent Opto-Functional Inorganic Materials,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China;2.Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;3.Istituto Nazionale di Ottica,Consiglio Nazionale delle Ricerche,CNR-INO,50019 Sesto Fiorentino (Fi),Italy;4.Istituto di Fisica Applicata “Carrara”,Consiglio Nazionale delle Ricerche,CNR-IFAC,50019 Sesto Fiorentino (Fi),Italy;5.Istituto Nazionale di Ottica,Consiglio Nazionale delle Ricerche,CNR-INO,56124 Pisa(Pi),Italy)

    Abstract:Transparent ytterbium doped calcium fluoride ceramics (Yb:CaF2) were successfully fabricated by vacuum sintering and hot pressing post-treatment from coprecipitated powders.In-line transmittance of 5at% Yb:CaF2 transparent ceramics fabricated by pre-sintering at 600 ℃ for 1 h and hot pressing post-treatment at 700 ℃ for 2 h,reaches 92.0% at the wavelength of 1200 nm.Microstructure,spectroscopic characteristics and laser performance of the ceramics were measured and discussed.The sample shows a homogeneous microstructure with average grain size of 360 nm.Furthermore,the absorption cross section at 977 nm and the emission cross section at the 1030 nm of the ceramics are calculated to 0.39×10-20 cm2 and 0.26×10-20 cm2,respectively.Finally,the laser behavior was tested,finding a maximum output power of 0.9 W while the highest slope efficiency was 23.6%.

    Key words:Yb:CaF2;co-precipitation synthesis;two-step sintering;laser ceramics;optical property

    In recent years,solid state lasers have been widely used in many fields,such as inertial confinement fusion,medical science and manufacturing.The gain medium is an important part of the laser system.The common materials used as gain media include glass,transparent ceramics and single crystals.Polycrystalline transparent ceramics have attracted considerable attention over the last few years.Compared with traditional optical glass,transparent ceramics show obvious superiorities on mechanical and thermal property.Generally transparent ceramics exhibit advantages over single crystals in many aspects,such as lower cost in preparation,higher homogeneity of the dopant and larger size[1-4].Many kinds of transparent ceramics have been studied and great achievements have already been acquired,such as YAG[5-9],sesquioxides[10-15],and fluorides[16-18].In the case of fluoride ceramics,the current progress of the researches and development fall behind oxide ceramic materials,although the first laser ceramics,Dy:CaF2,were fabricated by Hatch,et alin 1964[19].

    Fluoride crystalline hosts,such as CaF2and its Sr and Ba based isomorphs (i.e.SrF2and BaF2) possess excellent property such as broad range of transmittance,lower phonon energy and low refraction index than garnets and sesquioxides;in these hosts Yb3+features a very broad absorption and emission bands (useful for the generation and amplification of ultrashort laser pulses) and long fluorescence lifetime that ensures efficient energy storage for the laser operation[20-21].In addition,Yb:CaF2has a negative thermo-optical coefficient which is suitable for the high output power in lasers due to mitigation of the thermal lens effect[22-23].Due to these characteristics,crystalline CaF2is a widely used host for efficient Yb doped[20,24-27]and Nd doped materials for laser applications[28].

    The success of crystalline CaF2as laser host has stimulated the development of ceramics with the same composition for laser applications,in particular with Yb3+doping[18,21-22].

    A large number of scientific literatures have been published on Yb:CaF2transparent ceramics and some progresses have been made.Basiev,et al[17,29-30]successfully fabricated Yb:CaF2laser ceramics with high optical quality by the hot forming method and reported the laser operation.But this hot forming method needs corresponding single crystal as the starting material and therefore it does not have the general advantages of ceramics preparation,such as short sintering time and low fabrication cost.Mortier,et al[18,31-33]has investigated the fabrication of Yb:CaF2transparent ceramics by sintering under vacuum atmosphere combined with the hot pressing method and the reported laser oscillation.Li,et al[34]prepared Yb:CaF2by vacuum hot pressing and spark plasma sintering respectively.In 2015,Aballea,et al[35-36]reported the fabrication of Yb:CaF2transparent ceramics by sintering at moderate temperature in air and without any pressure assistance;moreover they demonstrated the laser operation of nano-powder based Yb:CaF2ceramics.In 2017,Kitajima,et al[37]studied Yb,La:CaF2transparent ceramics sintered by hot isostatic pressing (HIP) method.They reported the laser operation of the Yb3+- doped CaF2-LaF2ceramics with a maximum output power of 4.36 W and a maximum slope efficiency of 69.5%.

    In this study we report on the fabrication,spectroscopic investigation and laser behavior of a 5at%Yb:CaF2transparent ceramic obtained by vacuum sintering and hot pressing post-treatment.The nano-powders were synthesized by the co-precipitation method.Then the FT-IR spectrum,phase composition and morphology of these powders were measured.The microstructure and in-line transmittance of the samples were investigated.Meanwhile,the fundamental spectroscopic characteristics of 5at% Yb:CaF2transparent ceramics were systematically studied.Finally,we test the laser characteristic of the sample finding encouraging results.

    1 Experimental

    5at% Yb:CaF2nano-scale powders were synthesized by the co-precipitation method.Commercially available chemical reagent included hydrated calcium nitrate(99.90%,Sinopharm Chemical Reagent Co.,Ltd.,Shanghai,China),hydrated potassium fluoride (99.90%,Sinopharm Chemical Reagent Co.,Ltd.,Shanghai,China),Ytterbium oxide (99.99%,Alfa Aesar,USA).Ca(NO3)2solution and KF solution were prepared by dissolving hydrated calcium nitrate and hydrated potassium fluoride in deionized water,respectively.The Yb(NO3)3solution was obtained by dissolving Yb2O3powders in nitric acid at 80 ℃.Then the solutions were filtered to remove the undissolved particles and impurities with 0.3 μm aperture size filter paper.The solution of potassium fluoride was added to the mixed solution of calcium nitrate and yttrium nitrate using a peristaltic pump under magnetic stirring.Next,the obtained solution was aged for 12 h at room temperature.The suspension was washed and centrifuged with deionized water for several times.Subsequently,the washed suspension was dried at 70 ℃ for 48 h in an oven,and the dried powders were sieved through a 74-μm screen.Finally,5at% Yb:CaF2nanopowders were obtained.

    The synthesized nano-powders were dry-pressed in a 34 mm diameter die at 20 MPa,followed by cold isostatic pressing (CIP) at 250 MPa.The green body was sintered under vacuum at 600 ℃ for 1 h.Then,the presintered sample was hot pressed at 700 ℃ with 30 MPa pressure under vacuum.The obtained Yb:CaF2ceramic sample was polished into 1.5 mm for the further characterizations.

    The phase of the powders was determined by X-ray diffraction (XRD,Model D/max2200 PC,Rigaku,Japan)in the range of 2θbetween 10° and 80° using nickelfiltered Cu-Kα radiation.Fourier transform infrared spectroscopy (FT-IR) was performed on an infrared spectrometer (FT-IR,Bruker VERTEX 70 spectrophotometer,Ettlingen,Germany) using the standard KBr method in the range of 4000-400 cm-1.The specific surface area (SBET) of the powders was performed by Norcross ASAP 2010 Micromeritics with N2as the absorption gas at 77 K.The morphologies of powders and microstructures of the fracture surfaces of ceramics were observed by a scanning electron microscope (FESEM,SU8220,Hitachi,Japan).The absorption intensity and in-line transmittance of the transparent ceramics were measured by a UV-VIS-NIR spectrophotometer (Model Cray-5000,Varian,CA,USA).The emission spectrum excited by a 915 nm laser beam was measured by a low temperature absorption spectrometer (FLS980,Edinburgh Instruments,Edinburgh,UK) at room temperature.The decay curve of the ceramics was measured using a pulsed Ti:Sapphire laser at 900 nm for excitation,using the so-called pinhole method for the correction of the radiation trapping effects[38-39].The laser emission of 5at% Yb:CaF2transparent ceramics was tested in an end pumped cavity,using a fiber coupled diode laser as pumping source.

    2 Results and discussion

    Fig.1 shows the FT-IR spectrum of 5at% Yb:CaF2powders.The wide absorption band around 3420 cm-1is related to the stretching vibrations of OH-group.The band around 1644 cm-1corresponds to H-O-H bending mode.Nevertheless,the hygroscopic property of matrix material KBr must be taken into consideration when analyzing the information provided by OH-and H-O-H vibration band during the measurements,which affects the test results.The absorption peak at 2364 cm-1is caused by the adsorption of CO2in the air and provides no information as a consequence.The absorption peak at 1383 cm-1is due to NO3-elongation mode.An effective washing process can decrease absorbed nitrate content and impurity ions like K+ions in the powders.The residual nitrates and absorbed water in the powders are decomposed during pre-sintering process.

    Fig.2 shows the XRD pattern of 5at% Yb:CaF2powders.It can be seen that all diffraction peaks of the powders are well matched with those of the cubic CaF2phase(PDF# 35-0816) and no secondary phase can be detected.Meanwhile,all the peaks of the powders shift to a lower angle,which reveals that the lattice parameter increases.This occurs because Yb3+enters into the CaF2structure by substituting for a Ca2+and creating an extra F-for charge compensation;as a consequence,the charge repulsion between F-ions increases the lattice parameter.The grain size (DXRD) of the powders can be calculated by the Scherrer equation:

    whereβis the full width at half-maximum (FWHM) of a diffraction peak at Bragg angleθandλis the wavelength of CuKα radiation used in the measurements.The calculated average grain size of 5at% Yb:CaF2powders is 32 nm.

    Fig.3(a) shows the SEM micrograph of 5at% Yb:CaF2powders.It appears that the powders are well-distributed and slightly agglomerated.The shape of the small particles is close to cubic.The average particle size (DBET) is 45 nm,which is calculated from the following formula

    Fig.1 FT-IR spectrum of 5at% Yb:CaF2 powders

    Fig.2 XRD pattern of 5at% Yb:CaF2 powders

    Fig.3 SEM micrographs of 5at% Yb:CaF2 powders (a) and the fracture surface of 5at% Yb:CaF2 ceramics (b)

    where (ρ=3.473 g/cm3) is the theoretical density of the powders calculated from their lattice parameters.SBETis the specific surface area determined by BET measurement.Meanwhile,it can be found that the size of 5at%Yb:CaF2powders calculated by BET method is larger than the value calculated by the Scherrer equation,indicating the existence of weak agglomerates,which can be observed from SEM micrograph of the powders.

    Fig.3(b) shows the SEM micrograph of the fracture surface of 5at% Yb:CaF2transparent ceramics fabricated by vacuum pre-sintering at 600 ℃ for 1 h and hot pressing at 700 ℃ for 2 h.It reveals that the ceramics have an homogeneous structure and the average grain size is about 360 nm.The fracture mode is mainly transgranular.Moreover,it can be observed that some residual pores exist at the grain boundaries.It is known that these residual pores cause scattering loss in the transparent ceramics,which can decrease their optical quality.The work in future will focus on the complete elimination of the residual pores by HIP post-treatment.

    The in-line transmittance and the photograph of 5at%Yb:CaF2transparent ceramics are shown in Fig.4.As it can be seen in the inset of Fig.5,the size of ceramics is 16 mm×6.8 mm while the thickness is 1.5 mm.At a visual inspection,ceramics have good transparency and the letters on the underlying paper can be clearly recognized.

    According to Krell[40],without scattering or absorption losses,the theoretical maximum of transmission is 100%minus reflection on both surfaces of a window.At normal incidence,the reflectionR1on one surface is governed by the refractive indexnas:

    Fig.4 The in-line transmittance and the photograph of 5at%Yb:CaF2 transparent ceramics

    Fig.5 Absorption coefficient and emission spectra of 5at%Yb:CaF2 transparent ceramics at room temperature

    And the total reflection loss (including multiple reflection) is:

    Thus,the theoretical limit is:

    It is well known that the refractive index of CaF2single crystal decreases as the wavelength increases.At 1200 nm,the un-doped CaF2single crystal has a refractive index of 1.4277[41].Based on the above equation,the theoretical transmittance of CaF2single crystal is 93.97%at 1200 nm.The transmittance of 5at% Yb:CaF2transparent ceramics we have prepared reaches 92.0%,which is very close to the theoretical value.However,at the wavelength of 400 nm,the transmittance is 74.3%.The transmittance in visible range decreases rapidly,which can be attributed to the residual nanoscale pores in the ceramics.

    The room temperature absorption coefficient and emission spectrum of 5at% Yb:CaF2transparent ceramics are shown in Fig.5.The pump source used to excite the sample to measure the emission spectrum is a fibercoupled laser diode (LD) with center wavelength at 915 nm.It can be seen that the spectrum has broad absorption band.There are two main strong absorption peaks at 925 and 977 nm,corresponding to the transition from the ground state2F7/2to the excited state2F5/2of Yb3+ions.The absorption coefficient is calculated by the following equations:

    WhereTis the transmittance of the ceramics,αandbare the absorption coefficient and the thickness of the sample,respectively.At 977 nm,the absorption coefficient is 4.8 cm-1,which is suitable for pumping by high powder InGaAs laser diodes.The emission spectrum has a broad emission band,ranging from 960 nm to 1040 nm.The main emission peaks that can be seen are near 977,1010,1030 nm,which can be attributed to2F5/2→2F7/2transition of Yb3+ions.

    Fig.6 (a) shows the absorption cross section spectrum of 5at% Yb:CaF2transparent ceramics at room temperature.The absorption cross sectionσabscan be calculated by the following formula:

    Fig.6 Absorption cross section spectrum (a) and emission cross section spectrum (b) of 5at% Yb:CaF2 transparent ceramics at room temperature

    Whereαis the absorption coefficient calculated above;Nis the number of the doping ions per unit volume.The absorption cross section at 977 nm is calculated to 0.39×10-20cm2.

    The Fuchtbauer-Ladenburg equation was used to calculate the emission cross section,with the expression of the Eq.(9).

    Wherecis light speed:3.0×108m/s;λis wavelength;nis the refractive index;τradis upper level radiation lifetime:2.4 ms[42];I(λ) is fluorescence intensity at a certain wavelength in the fluorescence spectrum.The emission cross section spectrum of 5at% Yb:CaF2transparent ceramics is showed in Fig.6(b).The value of the emission cross section at the 1030 nm is 0.26 ×10-20cm2.

    The gain cross section of 5at% Yb:CaF2transparent ceramics was calculated by the formula:

    Whereβis particle inversion number.The gain cross section with differentβare reported in Fig.7.It can be observed that the gain cross-section curves show wide and flat shapes,which are very helpful to realize broadband tuning and ultra-short pulse laser output.

    For the measurement of the upper laser level lifetime,the sample was excited using a pulsed Ti:Sapphire laser emitting at 900 nm with a pulse duration of about 100 ns FWHM.To correct for radiation trapping effects,the fluorescence was excited and detected through a small pinhole placed in contact with the surface of the sample,following the method outlined in Ref.[38-39].Several pinholes with diameters from 1.1 mm to 200 μm were used,and the lifetime of the detected fluorescence was calculated by fitting the temporal decay with a single exponential function (Eq.(11)).

    Fig.7 The calculated gain cross section of 5at% Yb:CaF2 ceramics

    Fig.8 The fluorescence decay curve of 5at% Yb:CaF2 transparent ceramics at room temperature.The time constant τ of the fitting curve is 1.974 ms

    Fig.9 Experimental set-up

    WhereIandI0are the fluorescence intensities at the timetand 0.

    The actual lifetime was calculated as the extrapolation to null pinhole diameter of the decay times obtained with the different pinholes[38-39].The resulting value of the upper level lifetime was 1.95 ms.

    Fig.8 shows the room temperature fluorescence decay curve of 5at% Yb:CaF2transparent ceramics obtained with a pinhole with 200 μm diameter.The small deviation from a pure single exponential decay is due to radiation trapping effects[39].

    Finally,we tested the laser emission property of the sample.It was tested using the laser cavity layout shown in Fig.9.The cavity is end pumped.The sample used in the experiments had a thickness of 1.5 mm and it was welded by a sheet of indium on a copper heat-sink and cooled by water at 19 ℃.The sample was pumped by a fiber-coupled laser-diode which emits at 929.4 nm with a Gaussian pump intensity distribution in the region of the focal plane (i.e.waist radius around 65 μm at 1/e2,measured with a CCD camera),numerical aperture of the pump beam 0.22.The other elements of the cavity are EM:End-Mirror,dichroic (high transmission for the pump wavelength,high reflection for the laser wavelength);FM:Folding-Mirror (spherical,ROC 100 mm);OC:Flat Output Coupler mirror;M1 and M2:Power Meters,DM:Dichroic Mirror.The distance between EM and FM was 60 mm,while the distance between FM and OC was 270 mm.

    The sample was pumped in Quasi-CW mode (QCW),with rectangular pump pulses at 10 Hz of repetition rate with a Duty Factor of DF=20%,in order to limit the thermal load into the sample.As the samples had different thickness and thus different absorption,the maximum incident pump power was adjusted to have about the same pump absorption for both samples.The sample absorbed about 14% of the incident pump,under lasing conditions.The maximum absorbed pump power was about 5 W for the sample (peak value during the pump on period),corresponding to about 38 W of incident pump power for the sample (peak values under the pump on period).

    Several OC mirrors were used,with different values of transmission (fromToc=2% toToc=12%),to find the optimal output coupling transmission.

    The lasing wavelength was measured by means of a grating spectrometer equipped with a multichannel detector head,with a resolution of about 0.4 nm.

    The graph of Fig.10 shows the output power as a function of the absorbed pump power for the sample under test.The actual value of the absorbed pump power was assessed under lasing conditions,by means of the auxiliary power meter M2 shown in Fig.9.The reported values of the pump and of the output power correspond to the value during the “on” period of the pump.For the sample,and in all the output coupling conditions the free running lasing wavelength is about 1028.5 nm.In QCW pumping conditions the maximum output power is 0.9 W,corresponding to an optical to optical efficiencyηO=17.6%,obtained with a value ofToc=7.2%.The maximum value of the slope efficiency isηS=23.6% obtained withToc=12.4%.The main parameters of the laser emission are reported in Table 1.

    Fig.10 Laser output power vs.incident pump power for different values of the output coupler mirror transmission Toc

    Table 1 Main laser emission parameters with slope efficiency being calculated with respect to the absorbed pump power

    3 Conclusion

    In this work,5at% Yb:CaF2transparent ceramics were successfully fabricated by vacuum sintering at 600 ℃ for 1 h and hot pressing post-treatment at 700 ℃ for 2 h from powders synthesized by the co-precipitation method.An effective washing process is necessary to remove some impurity ions in the powders.The used powders are pure cubic phase without secondary phase.The grain size of the powders is calculated to be 32 nm and the powders are agglomerated slightly.5at% Yb:CaF2transparent ceramics have the homogeneous microstructure and the average grain size is about 360 nm.The in-line transmittance of the sample with the thickness of 1.5 mm reaches 92.0% at the wavelength of 1200 nm,which is close to the theoretical value.Furthermore,5at%Yb:CaF2transparent ceramics have broad absorption and emission band.The strongest absorption and emission peaks are both at 977 nm.Meanwhile,the absorption cross section at 977 nm and the emission cross section at the 1030 nm of the ceramics are 0.39×10-20and 0.26×10-20cm2,respectively.The lifetime of the5F5/2level of the Yb3+is 1.95 ms.In the laser experiment,the maximum slope efficiency of 23.6% and the maximum output power of 0.9 W under QCW pump conditions were obtained from the ceramics.

    亚洲九九香蕉| 免费无遮挡裸体视频| 国产精品 国内视频| 男女视频在线观看网站免费 | 亚洲av美国av| 亚洲性夜色夜夜综合| 狠狠狠狠99中文字幕| 久久精品成人免费网站| bbb黄色大片| 老司机午夜十八禁免费视频| 国产av一区在线观看免费| 黄片播放在线免费| 啦啦啦韩国在线观看视频| 99精品在免费线老司机午夜| 欧美性长视频在线观看| 亚洲一区中文字幕在线| 久久精品91蜜桃| 色在线成人网| 深夜精品福利| 51午夜福利影视在线观看| tocl精华| 国产真实乱freesex| 国产极品粉嫩免费观看在线| 人妻久久中文字幕网| 最新美女视频免费是黄的| 一区二区三区国产精品乱码| 窝窝影院91人妻| 亚洲国产中文字幕在线视频| 亚洲五月婷婷丁香| 日韩三级视频一区二区三区| 色播在线永久视频| 好男人在线观看高清免费视频 | 免费电影在线观看免费观看| 亚洲国产毛片av蜜桃av| 50天的宝宝边吃奶边哭怎么回事| 免费看十八禁软件| 久久国产精品男人的天堂亚洲| 欧美久久黑人一区二区| 国产成人精品无人区| 国产91精品成人一区二区三区| 久久99热这里只有精品18| 香蕉av资源在线| 国产成年人精品一区二区| 国产精品一区二区三区四区久久 | 国产欧美日韩一区二区精品| 很黄的视频免费| 国产97色在线日韩免费| 特大巨黑吊av在线直播 | 国产午夜精品久久久久久| 亚洲色图 男人天堂 中文字幕| 高清在线国产一区| av免费在线观看网站| 久久精品夜夜夜夜夜久久蜜豆 | 国产精华一区二区三区| 国产在线精品亚洲第一网站| 不卡一级毛片| 19禁男女啪啪无遮挡网站| 一本一本综合久久| 久久青草综合色| 妹子高潮喷水视频| 视频区欧美日本亚洲| 别揉我奶头~嗯~啊~动态视频| 国产在线精品亚洲第一网站| 少妇粗大呻吟视频| 成人亚洲精品一区在线观看| 桃色一区二区三区在线观看| 在线十欧美十亚洲十日本专区| 久久久国产欧美日韩av| 免费女性裸体啪啪无遮挡网站| e午夜精品久久久久久久| 午夜日韩欧美国产| 男女午夜视频在线观看| 免费女性裸体啪啪无遮挡网站| 性欧美人与动物交配| 国产1区2区3区精品| 亚洲最大成人中文| 国产精品免费视频内射| 又黄又爽又免费观看的视频| 国产成+人综合+亚洲专区| 香蕉久久夜色| 18禁黄网站禁片免费观看直播| 日本免费a在线| 首页视频小说图片口味搜索| 女性被躁到高潮视频| 久久国产精品男人的天堂亚洲| 国产成人精品久久二区二区91| 欧美一级毛片孕妇| 老司机在亚洲福利影院| 一区福利在线观看| 99riav亚洲国产免费| 天堂影院成人在线观看| 不卡一级毛片| 亚洲人成77777在线视频| 久久久精品国产亚洲av高清涩受| 色播在线永久视频| av天堂在线播放| 午夜福利免费观看在线| e午夜精品久久久久久久| 亚洲专区字幕在线| 男女做爰动态图高潮gif福利片| 麻豆av在线久日| 久久人妻av系列| 动漫黄色视频在线观看| 亚洲精品国产精品久久久不卡| tocl精华| 中文资源天堂在线| 黄色片一级片一级黄色片| 成人欧美大片| 一级a爱片免费观看的视频| 午夜亚洲福利在线播放| 欧美日韩亚洲综合一区二区三区_| 中文字幕高清在线视频| 韩国av一区二区三区四区| 国产精品1区2区在线观看.| 不卡一级毛片| 美女大奶头视频| 久久中文看片网| 日韩三级视频一区二区三区| 大型av网站在线播放| 日韩高清综合在线| 欧美乱妇无乱码| 久久久精品国产亚洲av高清涩受| 午夜福利在线观看吧| 国产一区二区三区在线臀色熟女| 国产一区在线观看成人免费| 色哟哟哟哟哟哟| 亚洲自偷自拍图片 自拍| 变态另类成人亚洲欧美熟女| 亚洲欧美日韩无卡精品| 嫩草影院精品99| 18美女黄网站色大片免费观看| 非洲黑人性xxxx精品又粗又长| 久久久久精品国产欧美久久久| 成人精品一区二区免费| 日本成人三级电影网站| av中文乱码字幕在线| 久久99热这里只有精品18| 免费高清在线观看日韩| 日本一区二区免费在线视频| 久久久久久久久中文| 18禁黄网站禁片免费观看直播| 最近最新免费中文字幕在线| 国产成人精品久久二区二区免费| 国产蜜桃级精品一区二区三区| tocl精华| 不卡av一区二区三区| 亚洲片人在线观看| 亚洲成人久久爱视频| 中文字幕精品免费在线观看视频| 色综合亚洲欧美另类图片| 国产欧美日韩一区二区精品| 搡老熟女国产l中国老女人| 日韩 欧美 亚洲 中文字幕| 1024视频免费在线观看| 亚洲av中文字字幕乱码综合 | 久久久国产成人免费| 国产熟女xx| 男人舔女人下体高潮全视频| 操出白浆在线播放| 日韩国内少妇激情av| 国产av一区二区精品久久| 真人一进一出gif抽搐免费| 欧美乱码精品一区二区三区| 两个人免费观看高清视频| 午夜免费激情av| 中文字幕av电影在线播放| 国产男靠女视频免费网站| 亚洲国产欧美一区二区综合| 日日摸夜夜添夜夜添小说| 欧美av亚洲av综合av国产av| 一本久久中文字幕| 国产免费男女视频| 国产欧美日韩一区二区三| 久久香蕉激情| 欧美激情久久久久久爽电影| 久久久久久大精品| 首页视频小说图片口味搜索| 999精品在线视频| 日韩视频一区二区在线观看| 国产片内射在线| 伊人久久大香线蕉亚洲五| 欧美在线一区亚洲| 丁香六月欧美| 久久精品aⅴ一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品啪啪一区二区三区| 女生性感内裤真人,穿戴方法视频| 国产v大片淫在线免费观看| 国产亚洲精品久久久久久毛片| videosex国产| 国产aⅴ精品一区二区三区波| 亚洲专区中文字幕在线| 久久精品成人免费网站| 国产亚洲精品av在线| 丰满的人妻完整版| 国产麻豆成人av免费视频| 曰老女人黄片| 欧美日韩中文字幕国产精品一区二区三区| 精品久久久久久成人av| 国产精品久久久久久亚洲av鲁大| av超薄肉色丝袜交足视频| 久久国产亚洲av麻豆专区| www日本黄色视频网| 最近在线观看免费完整版| 亚洲最大成人中文| 国产一区二区三区在线臀色熟女| 亚洲人成网站高清观看| 美女免费视频网站| 免费在线观看亚洲国产| 日韩中文字幕欧美一区二区| 男女之事视频高清在线观看| 中文字幕高清在线视频| 美女高潮喷水抽搐中文字幕| 午夜福利成人在线免费观看| 91字幕亚洲| 少妇裸体淫交视频免费看高清 | 欧美日本视频| 19禁男女啪啪无遮挡网站| 精品久久久久久成人av| 国产三级在线视频| 欧美日韩福利视频一区二区| 黄色成人免费大全| 精品国产乱码久久久久久男人| 中文在线观看免费www的网站 | 久久中文字幕人妻熟女| 中文在线观看免费www的网站 | 极品教师在线免费播放| 午夜激情福利司机影院| 国内精品久久久久精免费| 91在线观看av| 999精品在线视频| 国产黄a三级三级三级人| 99精品久久久久人妻精品| 免费一级毛片在线播放高清视频| www.自偷自拍.com| 久久中文字幕一级| 精品日产1卡2卡| 亚洲av五月六月丁香网| 婷婷六月久久综合丁香| 中国美女看黄片| 欧美久久黑人一区二区| 午夜福利成人在线免费观看| 日韩国内少妇激情av| 男女下面进入的视频免费午夜 | xxx96com| 18禁观看日本| 女生性感内裤真人,穿戴方法视频| 亚洲成av人片免费观看| 久久热在线av| 成人国产综合亚洲| 两个人免费观看高清视频| 国产成人影院久久av| 欧美成狂野欧美在线观看| 日韩大尺度精品在线看网址| 亚洲电影在线观看av| 亚洲av日韩精品久久久久久密| 人人妻人人澡人人看| 精品久久久久久久人妻蜜臀av| 又紧又爽又黄一区二区| 国产免费av片在线观看野外av| a级毛片在线看网站| 亚洲av电影不卡..在线观看| 亚洲自偷自拍图片 自拍| 午夜激情av网站| 午夜福利在线在线| 色综合站精品国产| 精品一区二区三区四区五区乱码| 国产激情久久老熟女| 国产熟女xx| 亚洲专区国产一区二区| 神马国产精品三级电影在线观看 | 亚洲精品国产精品久久久不卡| 成人18禁在线播放| 国产又色又爽无遮挡免费看| 亚洲成国产人片在线观看| 一进一出抽搐gif免费好疼| 国产精品 国内视频| av电影中文网址| 十八禁网站免费在线| 99热这里只有精品一区 | 好看av亚洲va欧美ⅴa在| 亚洲精品美女久久久久99蜜臀| 亚洲国产中文字幕在线视频| 国产真人三级小视频在线观看| 在线观看日韩欧美| 精品一区二区三区视频在线观看免费| 亚洲精华国产精华精| 一本大道久久a久久精品| 亚洲中文av在线| 精品久久久久久久久久久久久 | 国内精品久久久久久久电影| 悠悠久久av| 久久久久国内视频| 侵犯人妻中文字幕一二三四区| 51午夜福利影视在线观看| 热re99久久国产66热| 天堂动漫精品| 亚洲国产精品久久男人天堂| 亚洲片人在线观看| 色av中文字幕| 成人三级黄色视频| 少妇的丰满在线观看| 伊人久久大香线蕉亚洲五| 成年人黄色毛片网站| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情 高清一区二区三区| 国产成人一区二区三区免费视频网站| 超碰成人久久| 啦啦啦 在线观看视频| 在线观看日韩欧美| 少妇熟女aⅴ在线视频| 日韩欧美一区二区三区在线观看| 青草久久国产| 免费一级毛片在线播放高清视频| 妹子高潮喷水视频| 国产一区二区激情短视频| 免费在线观看黄色视频的| 亚洲av中文字字幕乱码综合 | 老司机午夜十八禁免费视频| 不卡av一区二区三区| 国产蜜桃级精品一区二区三区| 成人手机av| 一区二区三区国产精品乱码| 亚洲国产精品sss在线观看| 啪啪无遮挡十八禁网站| 久久人妻av系列| 国产精品98久久久久久宅男小说| 老汉色av国产亚洲站长工具| 国产区一区二久久| 成年版毛片免费区| 国产一区二区在线av高清观看| 日韩欧美国产在线观看| 在线永久观看黄色视频| 日韩欧美在线二视频| 精品国产一区二区三区四区第35| 国产亚洲欧美精品永久| 国产又色又爽无遮挡免费看| 亚洲精品国产一区二区精华液| 国产精品久久久av美女十八| 国产v大片淫在线免费观看| 欧美日本亚洲视频在线播放| 欧美色欧美亚洲另类二区| 久久久久久九九精品二区国产 | 黄片播放在线免费| 欧美黄色片欧美黄色片| 亚洲欧美日韩高清在线视频| 亚洲久久久国产精品| 欧美中文综合在线视频| 欧美日韩黄片免| 国产黄a三级三级三级人| 人妻久久中文字幕网| 亚洲精品一卡2卡三卡4卡5卡| 91麻豆精品激情在线观看国产| 成人手机av| 日韩大尺度精品在线看网址| 亚洲 国产 在线| 日韩欧美免费精品| 中文字幕最新亚洲高清| 自线自在国产av| 搡老妇女老女人老熟妇| 国产精品久久电影中文字幕| 妹子高潮喷水视频| 精品久久久久久久毛片微露脸| 91麻豆av在线| 国产午夜福利久久久久久| 久久中文字幕一级| 一本精品99久久精品77| 嫩草影视91久久| 国产成人精品久久二区二区91| 午夜免费鲁丝| 久久国产精品男人的天堂亚洲| 午夜精品在线福利| 一本大道久久a久久精品| 国产一区二区三区在线臀色熟女| 香蕉久久夜色| 两个人视频免费观看高清| 一本大道久久a久久精品| 欧美日韩乱码在线| 老熟妇乱子伦视频在线观看| 啪啪无遮挡十八禁网站| 欧美成人午夜精品| 1024手机看黄色片| 男人舔奶头视频| 国产成人av教育| 久久欧美精品欧美久久欧美| 97超级碰碰碰精品色视频在线观看| 女人高潮潮喷娇喘18禁视频| 十分钟在线观看高清视频www| av天堂在线播放| 18禁黄网站禁片午夜丰满| 亚洲精品国产一区二区精华液| avwww免费| 日本在线视频免费播放| 国产精品免费一区二区三区在线| 免费观看精品视频网站| 亚洲男人天堂网一区| 91麻豆av在线| 91字幕亚洲| 亚洲av熟女| 在线播放国产精品三级| 国产亚洲精品久久久久久毛片| 哪里可以看免费的av片| 性欧美人与动物交配| 中文亚洲av片在线观看爽| 香蕉丝袜av| 亚洲欧洲精品一区二区精品久久久| 欧美亚洲日本最大视频资源| 国产亚洲精品久久久久5区| 九色国产91popny在线| 好男人电影高清在线观看| av超薄肉色丝袜交足视频| 成人欧美大片| 久久精品国产清高在天天线| x7x7x7水蜜桃| 欧美成人午夜精品| 国内毛片毛片毛片毛片毛片| 国产成人av激情在线播放| 丁香欧美五月| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇一区二区三区视频日本电影| 亚洲av第一区精品v没综合| 久久久久久久久中文| 在线天堂中文资源库| 国产成人精品久久二区二区免费| 久久中文字幕一级| 午夜激情av网站| 十八禁人妻一区二区| 欧美亚洲日本最大视频资源| 免费在线观看亚洲国产| 日韩 欧美 亚洲 中文字幕| 国产精品影院久久| 免费在线观看成人毛片| 91成人精品电影| 桃色一区二区三区在线观看| 中文字幕人成人乱码亚洲影| 级片在线观看| 亚洲男人天堂网一区| 成人欧美大片| 久久中文字幕人妻熟女| 婷婷亚洲欧美| 桃红色精品国产亚洲av| 日本免费一区二区三区高清不卡| 免费在线观看亚洲国产| 99re在线观看精品视频| 正在播放国产对白刺激| 亚洲熟妇熟女久久| 香蕉久久夜色| 国产精品 国内视频| 精品国产亚洲在线| 国产精品美女特级片免费视频播放器 | 国产野战对白在线观看| 国产精品亚洲av一区麻豆| avwww免费| 久久热在线av| 久久久久久大精品| 国产免费男女视频| 欧美成人一区二区免费高清观看 | 一级黄色大片毛片| 香蕉国产在线看| 老熟妇仑乱视频hdxx| 国产97色在线日韩免费| 欧美黑人精品巨大| 亚洲欧美日韩高清在线视频| 国产精品自产拍在线观看55亚洲| 成人国产综合亚洲| 亚洲成av人片免费观看| 亚洲精品在线观看二区| 亚洲男人的天堂狠狠| 1024香蕉在线观看| 久久 成人 亚洲| 黄频高清免费视频| 久久香蕉精品热| 亚洲成人久久爱视频| 亚洲国产精品sss在线观看| 在线播放国产精品三级| 国产一区二区激情短视频| 无限看片的www在线观看| 国产精品久久久久久人妻精品电影| 国产亚洲av高清不卡| 久99久视频精品免费| 亚洲国产精品sss在线观看| 伦理电影免费视频| 国产精品九九99| 99国产精品一区二区三区| 又大又爽又粗| 韩国精品一区二区三区| 国产精品久久电影中文字幕| 国产欧美日韩精品亚洲av| 好看av亚洲va欧美ⅴa在| 中亚洲国语对白在线视频| 国产一区二区三区视频了| 无人区码免费观看不卡| 在线观看一区二区三区| 一级毛片女人18水好多| 性色av乱码一区二区三区2| 变态另类成人亚洲欧美熟女| 可以在线观看的亚洲视频| 巨乳人妻的诱惑在线观看| 两个人看的免费小视频| 露出奶头的视频| 成年版毛片免费区| 精品熟女少妇八av免费久了| 美女午夜性视频免费| 国产又黄又爽又无遮挡在线| videosex国产| 国产精品一区二区精品视频观看| 精品熟女少妇八av免费久了| 国产一区在线观看成人免费| 人妻丰满熟妇av一区二区三区| 丝袜美腿诱惑在线| 午夜两性在线视频| 97超级碰碰碰精品色视频在线观看| 午夜福利一区二区在线看| 丁香六月欧美| av视频在线观看入口| 久久精品91蜜桃| 国产亚洲欧美98| 一进一出好大好爽视频| 国产亚洲精品av在线| 中国美女看黄片| 日韩欧美国产一区二区入口| www.精华液| 国产精品九九99| 日韩精品中文字幕看吧| 中文字幕人妻熟女乱码| av欧美777| 国产精品野战在线观看| 大型av网站在线播放| 成人av一区二区三区在线看| 成熟少妇高潮喷水视频| 国产一区二区在线av高清观看| 国产精品国产高清国产av| 99精品久久久久人妻精品| 亚洲国产看品久久| 一级毛片女人18水好多| 69av精品久久久久久| ponron亚洲| 欧美另类亚洲清纯唯美| 成人免费观看视频高清| 亚洲精品一卡2卡三卡4卡5卡| 黄色片一级片一级黄色片| 午夜a级毛片| 中文字幕av电影在线播放| 啪啪无遮挡十八禁网站| 自线自在国产av| 黄色丝袜av网址大全| 久久久精品欧美日韩精品| 国产视频一区二区在线看| 桃色一区二区三区在线观看| 亚洲av美国av| 好看av亚洲va欧美ⅴa在| 日日干狠狠操夜夜爽| 精品福利观看| 麻豆成人午夜福利视频| 欧美在线黄色| 啦啦啦观看免费观看视频高清| 成人午夜高清在线视频 | 精品午夜福利视频在线观看一区| 亚洲激情在线av| 人人澡人人妻人| 国产高清激情床上av| 国产人伦9x9x在线观看| 午夜视频精品福利| 嫩草影视91久久| 久久九九热精品免费| 亚洲精品国产区一区二| 久久香蕉激情| 99国产极品粉嫩在线观看| 非洲黑人性xxxx精品又粗又长| 一级a爱片免费观看的视频| 成人亚洲精品av一区二区| 国产欧美日韩一区二区三| 久久午夜综合久久蜜桃| 久久久水蜜桃国产精品网| 9191精品国产免费久久| 69av精品久久久久久| www日本在线高清视频| 亚洲aⅴ乱码一区二区在线播放 | 又黄又爽又免费观看的视频| 母亲3免费完整高清在线观看| 婷婷精品国产亚洲av| 一进一出抽搐gif免费好疼| 久久久国产成人免费| 日韩精品青青久久久久久| 婷婷丁香在线五月| 国产一卡二卡三卡精品| 成人欧美大片| 免费看美女性在线毛片视频| 在线观看免费视频日本深夜| 99精品久久久久人妻精品| 亚洲国产毛片av蜜桃av| 日韩欧美国产在线观看| 国产精品爽爽va在线观看网站 | 1024香蕉在线观看| 精品第一国产精品| 一个人免费在线观看的高清视频| 天天一区二区日本电影三级| 国产精品久久视频播放| 亚洲全国av大片| 成人国语在线视频| 久久天堂一区二区三区四区| 精品一区二区三区av网在线观看| 天天添夜夜摸| 国产精品1区2区在线观看.| 可以在线观看的亚洲视频| 亚洲国产看品久久| 国产在线精品亚洲第一网站| 天天添夜夜摸| 亚洲欧美精品综合一区二区三区| av福利片在线| 日韩 欧美 亚洲 中文字幕| 国产激情久久老熟女| 亚洲第一青青草原| 亚洲国产欧美网| 麻豆av在线久日|