王 英,管延萱,馮佳欣,魏 來(lái),宋知霖
考慮無(wú)形磨損的拖拉機(jī)殘值系數(shù)預(yù)測(cè)模型
王 英,管延萱,馮佳欣,魏 來(lái),宋知霖
(東北農(nóng)業(yè)大學(xué)工程學(xué)院,哈爾濱 150030)
針對(duì)當(dāng)前隨著農(nóng)機(jī)設(shè)備更新速度加快,無(wú)形磨損對(duì)農(nóng)機(jī)折舊影響加重的問(wèn)題,該文在傳統(tǒng)拖拉機(jī)殘值系數(shù)預(yù)測(cè)模型的基礎(chǔ)上引入無(wú)形磨損系數(shù),構(gòu)建了考慮無(wú)形磨損的拖拉機(jī)殘值系數(shù)預(yù)測(cè)模型。以來(lái)自于農(nóng)機(jī)服務(wù)中心農(nóng)機(jī)及農(nóng)具拍賣(mài)結(jié)果的25臺(tái)拖拉機(jī)拍賣(mài)數(shù)據(jù)為研究樣本,以機(jī)齡、年平均工作時(shí)長(zhǎng)、無(wú)形磨損系數(shù)為變量參數(shù),分析其價(jià)值變化規(guī)律;同時(shí),為了進(jìn)一步綜合對(duì)比改進(jìn)模型與原模型的殘值系數(shù)預(yù)測(cè)精度,引入基于幾何學(xué)的“弗雷歇距離”度量法。結(jié)果表明,改進(jìn)模型與原模型相比,預(yù)測(cè)偏差較小,預(yù)測(cè)精度大幅度提高,達(dá)到24.9%及以上,能夠顯著地提高拖拉機(jī)殘值預(yù)測(cè)準(zhǔn)確度,該研究為折舊成本的計(jì)算和農(nóng)機(jī)設(shè)備的更新決策提供了科學(xué)、準(zhǔn)確的決策依據(jù)。
農(nóng)業(yè)機(jī)械;模型;磨損;拖拉機(jī);殘值系數(shù);弗雷歇距離
在農(nóng)業(yè)機(jī)械化生產(chǎn)中,折舊是設(shè)備使用過(guò)程中由于機(jī)器磨損、技術(shù)落后、使用時(shí)間等原因造成的價(jià)值損耗,在農(nóng)業(yè)機(jī)器作業(yè)成本中占有很大比重。科學(xué)合理的折舊應(yīng)以正確估計(jì)機(jī)器設(shè)備的殘值為基礎(chǔ),才能保證成本計(jì)算的準(zhǔn)確性和農(nóng)機(jī)系統(tǒng)優(yōu)化決策的科學(xué)性。
關(guān)于農(nóng)機(jī)折舊的理論研究一直較少,更多的集中在資產(chǎn)重估[1-3]和折舊方法方面[4-6]。目前國(guó)內(nèi)外折舊方法主要包括直線法、年數(shù)總和法、定值遞減法[7]、余額遞減法、雙倍余額遞減法[8]等,經(jīng)過(guò)綜合研究表明動(dòng)態(tài)余額遞減法是目前最能反映機(jī)器價(jià)值變化規(guī)律的折舊模型[9-10]。但是不同農(nóng)業(yè)機(jī)器的實(shí)際價(jià)值轉(zhuǎn)移規(guī)律具有很大的差異性,具體用哪一種折舊方法和采取多少折舊比例來(lái)計(jì)算某一種農(nóng)業(yè)機(jī)器的折舊成本,一直是困擾管理工作者的難點(diǎn),也直接影響折舊額的科學(xué)性和合理性[11-13]。農(nóng)機(jī)折舊成本計(jì)算的要素包括殘值和折舊年限,若建立殘值系數(shù)模型,則能夠更加科學(xué)地估計(jì)不同機(jī)齡、不同類型的農(nóng)業(yè)機(jī)器折舊成本[14-17]?,F(xiàn)有的ASABE(American Society of Agricultural and Biological Engineers)農(nóng)機(jī)通用殘值系數(shù)模型是以公開(kāi)拍賣(mài)的機(jī)器數(shù)據(jù)為基礎(chǔ),通過(guò)回歸分析方法建立了12種不同農(nóng)機(jī)的殘值函數(shù)表達(dá)式[18-19]。但是由于該模型的基礎(chǔ)數(shù)據(jù)來(lái)自于美國(guó)生產(chǎn)實(shí)踐,而農(nóng)業(yè)機(jī)器的殘值與其制造水平、作業(yè)條件、維修保養(yǎng)等諸多因素有關(guān),因此該模型并不適用于中國(guó)實(shí)際情況,建模思想可以學(xué)習(xí),但模型不能照搬[20]。小型拖拉機(jī)的殘值預(yù)測(cè)模型是國(guó)內(nèi)較早建立的殘值模型,但是忽略了不同拖拉機(jī)年平均工作時(shí)間的差異性和不同年份資金的時(shí)間價(jià)值,忽略了無(wú)形磨損的影響,因此模型精度不高[21-23]。
一直以來(lái),對(duì)于農(nóng)機(jī)殘值的研究大多考慮的是有形磨損因素,但是隨著科技進(jìn)步,勞動(dòng)生產(chǎn)率提高,無(wú)形磨損速度也隨之加快。因此,農(nóng)機(jī)殘值的預(yù)測(cè)需要將有形磨損和無(wú)形磨損有機(jī)結(jié)合。本文將對(duì)2種磨損類型進(jìn)行量化分析,并以此為基礎(chǔ),建立拖拉機(jī)殘值系數(shù)預(yù)測(cè)模型。
有形磨損亦稱物理磨損,是指設(shè)備在使用或閑置期間發(fā)生的物理變化或化學(xué)侵蝕,可分為2種類型:第1種有形磨損是指設(shè)備在使用過(guò)程中產(chǎn)生的損耗,如因摩擦、振動(dòng)、疲勞等導(dǎo)致的損耗、意外損耗、故障維修;第2種有形磨損是設(shè)備在閑置過(guò)程中受環(huán)境影響造成的損耗,如:氧化生銹、腐蝕、老化等。這2類有形磨損無(wú)疑直接導(dǎo)致了設(shè)備性能減弱、精度降低,同時(shí)提高了作業(yè)及維修成本,從而間接導(dǎo)致設(shè)備的使用價(jià)值大幅降低。
一直以來(lái),對(duì)于農(nóng)機(jī)裝備磨損程度評(píng)價(jià)主要考慮的是工作量、燃油消耗、維修費(fèi)用等因素。因此,對(duì)于某一機(jī)齡的某種機(jī)器的磨損程度評(píng)價(jià)對(duì)應(yīng)的是一個(gè)多元指標(biāo)集,但是最終都?xì)w結(jié)于機(jī)器本身殘值的降低。現(xiàn)有的殘值預(yù)測(cè)模型均只考慮了有形磨損的影響,因此對(duì)于有形磨損量化的研究就是對(duì)殘值系數(shù)模型的研究。
美國(guó)ASABE通過(guò)大量試驗(yàn)給出了農(nóng)機(jī)通用殘值系數(shù)模型,即
式中RV為農(nóng)業(yè)機(jī)器第年的殘值系數(shù),即為折現(xiàn)后農(nóng)業(yè)機(jī)器第年的殘值與其原值之比;1、2、3為ASABE殘值系數(shù)模型的系數(shù),取值如表1所示;為農(nóng)業(yè)機(jī)器的預(yù)計(jì)使用年限,a;為設(shè)備年平均作業(yè)時(shí)長(zhǎng),h。
表1 ASABE殘值模型系數(shù)
ASABE模型的建立是基于美國(guó)的農(nóng)業(yè)現(xiàn)狀和氣象數(shù)據(jù),由于地理環(huán)境、經(jīng)濟(jì)水平、人文基礎(chǔ)以及農(nóng)業(yè)生產(chǎn)的差異性導(dǎo)致了中美兩國(guó)農(nóng)業(yè)發(fā)展有很大不同,因此適用于美國(guó)的很多技術(shù)參數(shù)在中國(guó)環(huán)境條件下會(huì)發(fā)生較大改變。
文獻(xiàn)[24]以江蘇省大豐市上海農(nóng)場(chǎng)的81臺(tái)大中型拖拉機(jī)公開(kāi)拍賣(mài)數(shù)據(jù)為基礎(chǔ),主要考慮機(jī)器的機(jī)齡和年平均作業(yè)時(shí)長(zhǎng)兩大因素,對(duì)ASABE農(nóng)機(jī)通用殘值系數(shù)模型進(jìn)行改進(jìn),對(duì)自變量和因變量進(jìn)行不同的Box-Cox變換,得到了范圍更廣的6種不同類型的殘值系數(shù)函數(shù)形式,并通過(guò)回歸分析和數(shù)據(jù)檢驗(yàn),優(yōu)選了適合國(guó)內(nèi)大中型拖拉機(jī)的殘值預(yù)測(cè)模型,即雙平方根殘值模型
式中為拖拉機(jī)殘值系數(shù);1為機(jī)齡,a;2為年平均作業(yè)時(shí)長(zhǎng),h。
前期研究發(fā)現(xiàn),當(dāng)拖拉機(jī)機(jī)齡超過(guò)4 a時(shí),該模型對(duì)于殘值系數(shù)預(yù)測(cè)的精度大幅降低,主要原因是隨著拖拉機(jī)使用時(shí)間的增長(zhǎng),機(jī)器殘值受無(wú)形磨損,即技術(shù)進(jìn)步的影響逐漸增強(qiáng)[25]。
因此,在當(dāng)前主要研究有形磨損對(duì)拖拉機(jī)殘值影響的基礎(chǔ)上,本文將進(jìn)一步研究無(wú)形磨損對(duì)拖拉機(jī)殘值的影響,對(duì)上述模型進(jìn)行改進(jìn)。
無(wú)形磨損又稱經(jīng)濟(jì)磨損,是指設(shè)備由于科學(xué)技術(shù)進(jìn)步或市場(chǎng)需求變化而引起的價(jià)值貶值,不是因設(shè)備使用或自然力作用導(dǎo)致的,而是技術(shù)進(jìn)步的結(jié)果。無(wú)形磨損可分為2種類型:第1種無(wú)形磨損是隨著技術(shù)進(jìn)步和社會(huì)勞動(dòng)生產(chǎn)率水平的提高,同類設(shè)備的再生產(chǎn)價(jià)值降低,導(dǎo)致原設(shè)備相應(yīng)貶值;第2種無(wú)形磨損是由于科技進(jìn)步和技術(shù)創(chuàng)新,農(nóng)機(jī)制造企業(yè)生產(chǎn)出更加完善高效的設(shè)備,相比較之下原設(shè)備技術(shù)性能逐漸落后,經(jīng)濟(jì)效益降低[26-27]。
由技術(shù)進(jìn)步所導(dǎo)致的無(wú)形磨損縮短了設(shè)備最佳使用壽命,已成為驅(qū)動(dòng)設(shè)備更新的重要影響因素[28-29]。近些年,一些學(xué)者通過(guò)假設(shè)技術(shù)進(jìn)步速率已知或呈指數(shù)分布,構(gòu)建了設(shè)備更新決策模型,探討考慮無(wú)形磨損情況下設(shè)備更新周期的變化[30-32]。技術(shù)進(jìn)步或無(wú)形磨損主要表現(xiàn)為原機(jī)器設(shè)備的價(jià)值貶值,運(yùn)行與維修費(fèi)用的增加和經(jīng)濟(jì)效益的下降[33-35],因此,關(guān)于無(wú)形磨損及其嚴(yán)重程度則主要考慮經(jīng)濟(jì)上是否合理。針對(duì)1.3節(jié)的2種無(wú)形磨損情況,分別進(jìn)行量化。
1)勞動(dòng)生產(chǎn)率提高導(dǎo)致的無(wú)形磨損量化模型為
式中α1為第1種無(wú)形磨損程度;0為機(jī)器原始價(jià)值,元;1為機(jī)器目前價(jià)值,元。
2)高效設(shè)備出現(xiàn)導(dǎo)致的無(wú)形磨損量化模型為
式中為α2第2種無(wú)形磨損程度;C為新機(jī)器單位作業(yè)成本,元;0為原機(jī)器單位作業(yè)成本,元。
因此,無(wú)形磨損綜合程度α為
大中型拖拉機(jī)殘值與諸多因素有關(guān),如使用年限、作業(yè)時(shí)長(zhǎng)、交易手段及經(jīng)濟(jì)效益等。因此,在不降低模型計(jì)算精度的前提下,為方便計(jì)算應(yīng)篩選出主要變量。依據(jù)文獻(xiàn)[20,36-37]的研究,本文將選擇機(jī)齡、年平均作業(yè)時(shí)長(zhǎng)和無(wú)形磨損程度作為主要變量進(jìn)行研究,與此同時(shí),考慮資金的時(shí)間價(jià)值。殘值系數(shù)的本質(zhì)含義和函數(shù)形式如式(6)、式(7)所示。
拖拉機(jī)殘值系數(shù)預(yù)測(cè)模型建模假設(shè)如下:
1)殘值系數(shù)及其相關(guān)變量之間相互獨(dú)立;
2)模型的自變量為機(jī)齡、年平均工作時(shí)長(zhǎng)和無(wú)形磨損程度;
3)通過(guò)公開(kāi)拍賣(mài)方式得到的農(nóng)機(jī)設(shè)備數(shù)據(jù)可以體現(xiàn)其真實(shí)價(jià)值變化規(guī)律。
試驗(yàn)數(shù)據(jù)來(lái)自于農(nóng)機(jī)服務(wù)中心農(nóng)機(jī)及農(nóng)具拍賣(mài)結(jié)果公示,相比二手交易市場(chǎng)復(fù)雜的交易環(huán)境,通過(guò)公開(kāi)拍賣(mài)方式得到的農(nóng)機(jī)設(shè)備數(shù)據(jù)能夠更真實(shí)地表示當(dāng)時(shí)條件下的拖拉機(jī)真實(shí)價(jià)值。為了計(jì)算準(zhǔn)確性,引入折現(xiàn)系數(shù)。折現(xiàn)系數(shù)是貨幣單位復(fù)利值的倒數(shù),將不同年份的現(xiàn)金流量通過(guò)折現(xiàn)系數(shù)得到需要的客觀現(xiàn)值。為排除貨幣時(shí)間價(jià)值的影響,將樣本數(shù)據(jù)中不同年份機(jī)器設(shè)備的購(gòu)入價(jià)與賣(mài)出價(jià)均折現(xiàn)到同一時(shí)間點(diǎn)。本文選取樣本數(shù)據(jù)中機(jī)器買(mǎi)入時(shí)間最早的時(shí)間節(jié)點(diǎn),即2010年3月,則通過(guò)折現(xiàn)系數(shù)將所有農(nóng)機(jī)購(gòu)入和賣(mài)出金額均折現(xiàn)到2010年3月。由于每年銀行利率可能會(huì)進(jìn)行多次調(diào)整,則年利率按照平均年利率計(jì)算,各年平均年利率見(jiàn)表2,即可得到表3中機(jī)器設(shè)備購(gòu)入年和賣(mài)出年的資金折現(xiàn)系數(shù);并按照式(6)可計(jì)算出各機(jī)器設(shè)備的殘值系數(shù)。
表2 銀行不同年份平均年利率
注:數(shù)據(jù)來(lái)源中國(guó)統(tǒng)計(jì)摘要人民幣一年期存貸款利率。Note: The data source is from China statistical abstract CNY one-year deposit and loan interest rate.
樣本數(shù)據(jù)如表3所示,其中,觀察樣本共有25臺(tái)輪式拖拉機(jī);機(jī)齡以賣(mài)出時(shí)間與購(gòu)買(mǎi)時(shí)間的實(shí)際差值來(lái)計(jì)算;拖拉機(jī)的年平均作業(yè)時(shí)長(zhǎng)則以拍賣(mài)時(shí)上報(bào)的總工作時(shí)長(zhǎng)與機(jī)齡之比來(lái)計(jì)算[38]。從表3中可知,25個(gè)輪式拖拉機(jī)的機(jī)齡4~8 a,年平均工作時(shí)長(zhǎng)232~720 h不等。
表3 研究樣本基本數(shù)據(jù)
注:數(shù)據(jù)來(lái)源農(nóng)機(jī)服務(wù)中心農(nóng)機(jī)及農(nóng)具拍賣(mài)結(jié)果公示。
Note: The data source is from the announcement of the auction results of agricultural machinery and farm tools in the Agricultural Machinery Service Center.
通常計(jì)算設(shè)備折舊是采用預(yù)估折舊費(fèi)用的方式,計(jì)算方法是設(shè)備原值乘以殘值系數(shù)。國(guó)內(nèi)外諸多學(xué)者通過(guò)大量的數(shù)據(jù)研究得到機(jī)器殘值系數(shù)的變化趨勢(shì)是隨著機(jī)器年平均作業(yè)時(shí)長(zhǎng)和機(jī)齡的增加而下降。文獻(xiàn)[24]通過(guò)回歸分析、殘差分析得到了相對(duì)準(zhǔn)確的拖拉機(jī)殘值系數(shù)預(yù)測(cè)模型,如式(2)所示,并用于預(yù)測(cè)中國(guó)大中型拖拉機(jī)的殘值,且預(yù)測(cè)精度較高。但該模型存在的問(wèn)題是對(duì)機(jī)齡3~4 a的拖拉機(jī)殘值系數(shù)預(yù)測(cè)精度較高,當(dāng)拖拉機(jī)使用機(jī)齡超過(guò)4 a,模型預(yù)測(cè)精度明顯降低,主要原因是隨著拖拉機(jī)使用時(shí)間的增長(zhǎng),其價(jià)值受無(wú)形磨損的影響逐漸增強(qiáng)。因此,為了提高拖拉機(jī)殘值系數(shù)的預(yù)測(cè)精度,應(yīng)在現(xiàn)有預(yù)測(cè)模型基礎(chǔ)上,考慮無(wú)形磨損對(duì)拖拉機(jī)殘值的影響。
假設(shè)現(xiàn)有的拖拉機(jī)殘值系數(shù)預(yù)測(cè)模型與無(wú)形磨損系數(shù)相乘,模型的預(yù)測(cè)精度會(huì)得到提高,則改進(jìn)的拖拉機(jī)殘值系數(shù)預(yù)測(cè)模型如式(8)所示。
式中為拖拉機(jī)殘值系數(shù);1為機(jī)齡,a;2為年平均作業(yè)時(shí)長(zhǎng),h。
下面將通過(guò)樣本數(shù)據(jù)來(lái)驗(yàn)證上述假設(shè):首先,利用式(5)計(jì)算表3中25臺(tái)拖拉機(jī)樣本的無(wú)形磨損綜合程度;然后,通過(guò)式(2)和式(8)分別計(jì)算原有模型和改進(jìn)模型的殘值系數(shù)預(yù)測(cè)值;最后,將原有模型和改進(jìn)模型的殘值系數(shù)預(yù)測(cè)值與殘值系數(shù)的實(shí)際值進(jìn)行比較,具體結(jié)果如表4所示。
表4 改進(jìn)模型與原模型預(yù)測(cè)結(jié)果對(duì)比
注:表中機(jī)器原始價(jià)值=機(jī)器買(mǎi)入價(jià)格×買(mǎi)入時(shí)間折現(xiàn)系數(shù);機(jī)器目前價(jià)值=機(jī)器拍賣(mài)價(jià)格×賣(mài)出時(shí)間折現(xiàn)系數(shù);原模型預(yù)測(cè)偏差D=︱1-0︱×100;改進(jìn)模型預(yù)測(cè)偏差D=︱2-0︱×100;改進(jìn)模型精度提高比率=(D-D)×100/D;“-”表示改進(jìn)模型精度沒(méi)有提高。
Note: Primitive value of machine=Buying price of machine×Discount coefficient of buying time; Current value of machine=Auction price of machine×Discount coefficient of buying time; Prediction bias of original modelD=︱1-0︱×100;Prediction bias of improved modelD=︱2-0︱×100; Increase ratio of precision for improved model=(D-D)×100/D; “-” denotes no increase of precision for improved model.
根據(jù)表4,對(duì)于1~20號(hào)機(jī)型(除13和14號(hào)機(jī)型外),使用改進(jìn)模型計(jì)算得到的殘值系數(shù)更接近于實(shí)際殘值系數(shù),同原模型相比,其預(yù)測(cè)偏差較小,預(yù)測(cè)精度得到大幅度提高(達(dá)到27%以上);而對(duì)于21~25號(hào)機(jī)型,原模型殘值系數(shù)預(yù)測(cè)值與實(shí)際殘值系數(shù)更為接近,改進(jìn)模型的預(yù)測(cè)偏差較大,預(yù)測(cè)效果不理想。這是由于21~25號(hào)機(jī)型的機(jī)齡為4 a以內(nèi),1~20號(hào)機(jī)型的機(jī)齡均在5 a以上,由此可見(jiàn),農(nóng)機(jī)在使用初期,由于技術(shù)變化不大,其受無(wú)形磨損影響較小;但是隨著農(nóng)機(jī)機(jī)齡的增長(zhǎng),科學(xué)技術(shù)不斷發(fā)展和進(jìn)步,一方面設(shè)備制造工藝的改進(jìn)和社會(huì)勞動(dòng)生產(chǎn)率的提高使同類設(shè)備的再生產(chǎn)價(jià)值降低,另一方面技術(shù)更先進(jìn)、性能更完善、生產(chǎn)效率更高、原材料和能源消耗更低的新型設(shè)備將會(huì)出現(xiàn),則無(wú)形磨損對(duì)農(nóng)機(jī)殘值的影響會(huì)逐漸體現(xiàn),并日益增強(qiáng)。因此,對(duì)于使用年限相對(duì)較長(zhǎng)的農(nóng)機(jī)殘值預(yù)測(cè),必須考慮技術(shù)進(jìn)步導(dǎo)致的無(wú)形磨損帶來(lái)的影響。
為了進(jìn)一步綜合對(duì)比原模型與改進(jìn)模型的殘值系數(shù)預(yù)測(cè)精度,引入基于幾何學(xué)的“弗雷歇距離”度量法,根據(jù)基于弗雷歇距離定義的相似度函數(shù),分別計(jì)算原模型和改進(jìn)模型曲線與實(shí)際殘值系數(shù)曲線的相似度,相似度最大的曲線所對(duì)應(yīng)的模型即為最優(yōu)。該方法無(wú)需大量的訓(xùn)練樣本,且具有較高的準(zhǔn)確率和識(shí)別度[39]。
式中為上的度量函數(shù);為變量,且∈[0,1]。
根據(jù)弗雷歇距離的思想,采用弗雷歇距離算法來(lái)刻畫(huà)2條曲線之間的距離,即弗雷歇距離,具體操作如下:
4)分別計(jì)算和上各樣本點(diǎn)到上各樣本點(diǎn)的距離,得到距離矩陣D、D
式中d為曲線上的第個(gè)樣本點(diǎn)到曲線上第個(gè)樣本點(diǎn)的距離,計(jì)算公式如下
6)將距離矩陣D和D中小于或等于各自min的元素設(shè)為1,大于min的元素設(shè)為0,即可得到2個(gè)二值矩陣。
根據(jù)以上步驟,通過(guò)Matlab編程實(shí)現(xiàn)計(jì)算過(guò)程,比較曲線和與的弗雷歇距離,即計(jì)算原模型曲線、改進(jìn)模型曲線與實(shí)際殘值系數(shù)曲線的相似度,弗雷歇距離越小,相似度越大,所對(duì)應(yīng)的模型即為最優(yōu)。計(jì)算結(jié)果如表5所示。
表5 殘值系數(shù)預(yù)測(cè)模型曲線相似度計(jì)算結(jié)果
通過(guò)弗雷歇距離可以得到2條曲線點(diǎn)集之間的距離,距離越小,說(shuō)明2條曲線之間的相似程度越高。由表5可知,與原模型相比,改進(jìn)模型的殘值系數(shù)預(yù)測(cè)曲線與實(shí)際殘值系數(shù)曲線的弗雷歇距離更小,說(shuō)明改進(jìn)模型的殘值系數(shù)預(yù)測(cè)值與實(shí)際殘值系數(shù)的相似程度更大,即預(yù)測(cè)的準(zhǔn)確度更高。
根據(jù)弗雷歇距離的意義,改進(jìn)模型相對(duì)于原模型預(yù)測(cè)精度的提高程度可通過(guò)弗雷歇距離的降低程度來(lái)表示,即
將表5中相應(yīng)數(shù)據(jù)帶入式(20)得:改進(jìn)模型相對(duì)于原模型的預(yù)測(cè)精度提高了24.9%。
通過(guò)改進(jìn)模型驗(yàn)證和弗雷歇距離度量法驗(yàn)證,表明改進(jìn)模型具有更高的預(yù)測(cè)精度和預(yù)測(cè)準(zhǔn)確度,因此,可用改進(jìn)模型來(lái)預(yù)測(cè)拖拉機(jī)的殘值,以得到更為滿意的預(yù)測(cè)結(jié)果。
1)對(duì)于由于勞動(dòng)生產(chǎn)率提高和科技進(jìn)步導(dǎo)致的2種無(wú)形磨損,分別建立了量化模型,模型簡(jiǎn)便易操作,推廣性強(qiáng),不僅可用于成本效益分析,同時(shí)可以拓展到農(nóng)機(jī)設(shè)備更新決策研究。
2)隨著農(nóng)機(jī)機(jī)齡的增長(zhǎng),科學(xué)技術(shù)不斷發(fā)展和進(jìn)步,無(wú)形磨損對(duì)農(nóng)機(jī)殘值的影響逐漸增強(qiáng),農(nóng)機(jī)殘值系數(shù)預(yù)測(cè)必須考慮無(wú)形磨損的影響。
3)以美國(guó)ASABE殘值系數(shù)模型、機(jī)齡和年平均作業(yè)時(shí)間雙平方根模型為基礎(chǔ),引入無(wú)形磨損系數(shù),采集來(lái)自于農(nóng)機(jī)服務(wù)中心及農(nóng)具拍賣(mài)結(jié)果的25臺(tái)輪式拖拉機(jī)拍賣(mài)數(shù)據(jù)作為研究樣本,對(duì)已有的殘值系數(shù)預(yù)測(cè)模型進(jìn)行了改進(jìn)。結(jié)果顯示,同原模型相比,改進(jìn)模型得到的殘值系數(shù)預(yù)測(cè)值更接近殘值系數(shù)的實(shí)際值,其預(yù)測(cè)偏差較小,預(yù)測(cè)精度得到了大幅度提高,達(dá)到27%以上。
4)根據(jù)基于弗雷歇距離定義的相似度函數(shù),綜合評(píng)價(jià)原模型與改進(jìn)模型對(duì)殘值系數(shù)的預(yù)測(cè)精度。結(jié)果表明,改進(jìn)模型具有較高的預(yù)測(cè)精度,能夠更好地提高拖拉機(jī)殘值預(yù)測(cè)的準(zhǔn)確度。
本文研究仍存在不足之處,由于市場(chǎng)上經(jīng)過(guò)公開(kāi)拍賣(mài)的農(nóng)機(jī)數(shù)據(jù)較少,不同機(jī)齡的樣本數(shù)量有限,該項(xiàng)因素可能會(huì)影響模型的精度。
[1] Liapis K J, Kantianis D D. Depreciation methods and life-cycle costing (LCC) methodology[J]. Proedia Economics and Finance, 2015, 19: 314-324.
[2] Kupper H U, Pedell B. Which asset valuation and depreciation method should be used for regulated utilities? An analytical and simulation-based comparison[J]. Utilities Policy, 2016, 40: 88-103.
[3] 唐恒書(shū),劉俊秀,程余圣鴻. 固定資產(chǎn)折舊模式與企業(yè)價(jià)值研究[J]. 會(huì)計(jì)之友,2018(20):112-114. Tang Hengshu, Liu Junxiu, Cheng Yushenghong. Research on depreciation model and enterprise value of fixed assets[J]. Friends of Accounting, 2018(20): 112-114. (in Chinese with English abstract)
[4] Keil J. Depreciated depreciation methods? Alternatives to sraffa’s take on fixed capital[J]. Review of Political Economy, 2016, 28(4): 566-589.
[5] 王奕嬌,喬金友,任國(guó)強(qiáng),等. 農(nóng)業(yè)機(jī)器折舊方法研究[J]. 農(nóng)機(jī)化研究,2016,38(7):129-132. Wang Yijiao, Qiao Jinyou, Ren Guoqiang, et al. The reasearch on depreciation methods of agricultural machinery[J]. Journal of Agricultural Mechanization Research, 2016, 38(7): 129-132. (in Chinese with English abstract)
[6] Jennergren L P. A note on the linear and annuity class of depreciation methods[J]. International Journal of Production Economics, 2018, 204: 123-134.
[7] 董國(guó)榮. 一種新的農(nóng)機(jī)折舊計(jì)算方法—定值遞減法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2000,31(4):120-121. Dong Guorong. A new method for calculating depreciation of agricultural machinery——the method of definite value decreasing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2000, 31(4): 120-121. (in Chinese with English abstract)
[8] 王福林. 農(nóng)業(yè)機(jī)器折舊中的雙倍余額遞減法改進(jìn)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2003,34(4):66-67. Wang Fulin. Improvement of double diminishing method for farm machine depreciation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(4): 66-67. (in Chinese with English abstract)
[9] 朱亞?wèn)|. 黃海農(nóng)場(chǎng)農(nóng)業(yè)機(jī)器選型與配備的研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2009. Zhu Yadong. Study on Selection and Allocation of Agricultural Machinery in Huanghai State Farm[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese with English abstract)
[10] 湯二征,何瑞銀. 大中型拖拉機(jī)折舊方法選擇的研究[J]. 江蘇農(nóng)機(jī)化,2010(1):32-34. Tang Erzheng, He Ruiyin. Study on depreciation method selection of large and medium-sized tractors[J]. Jiangsu Agricultural Mechanization, 2010(1): 32-34. (in Chinese with English abstract)
[11] Wilson P. Estimating tractor depreciation: the impact of choice of functional form[J]. Journal of Farm Management, 2010, 13(12): 799-818.
[12] 王奕嬌,喬金友,任國(guó)強(qiáng),等. 農(nóng)業(yè)機(jī)器折舊決策支持系統(tǒng)的研究與設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2016,38(1):106-108. Wang Yijiao, Qiao Jinyou, Ren Guoqiang, et al. The research and design on decision support system for agricultural machinery depreciation[J]. Journal of Agricultural Mechanization Research, 2016, 38(1): 106-108. (in Chinese with English abstract)
[13] 張馨璐,張義. 企業(yè)固定資產(chǎn)折舊方法對(duì)企業(yè)財(cái)務(wù)影響[J]. 商場(chǎng)現(xiàn)代化,2016(7):190-191. Zhang Xinlu, Zhang Yi. Study on the influence of depreciation method of fixed assets on enterprise finance[J]. Market Modern, 2016(7): 190-191. (in Chinese with English abstract)
[14] Dumler T J, Burton R O, Kastens T L. Predicting farm tractor values through alternative depreciation methods[J]. Review of Agricultural Economics, 2003, 25(2): 506-522.
[15] Guadalajara-Olmeda N, Fenollosa-Ribera M L. Valuation models of agricultural machinery in southern Europe. An analysis of real depreciation[J]. Agrociencia, 2010, 44(3): 381-391.
[16] Smolyak S A. Models for estimating depreciation in plants, machinery, and equipment: Analysis and proposals[J]. Journal of Property Tax Assessment and Administration, 2012, 9(3): 47-73.
[17] Sahu A K, Narang H K, Sahu A K, et al. Machine economic life estimation based on depreciation-replacement model[J]. Cogent Engineering, 2016, 3(1): 1-15.
[18] Cross T L, Perry G M. Remaining value functions for farm equipment[J]. Applied Engineering in Agriculture, 1996, 12(5): 547-553.
[19] Agricultural Machinery Management Data: ASAE standards D497.5[S]. St. Joseph, Mich: ASABE, 2006.
[20] 何瑞銀,王耀華,馬培剛,等. 大中型拖拉機(jī)殘值模型的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(5):131-135. He Ruiyin, Wang Yaohua, Ma Peigang, et al. Model for remaining value function of the large and medium-sized tractors in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(5): 131-135. (in Chinese with English abstract)
[21] Hansen L R, Lee H. Estimating farm tractor depreciation: tax implications[J]. Canadian Journal of Agricultural Economics/Revue Canadienne Dagroeconomie, 1991, 39(3): 463-479.
[22] 吳建民. 小型拖拉機(jī)最佳更新期的動(dòng)態(tài)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),1998,14(2):78-81. Wu Jianmin. The dynamic study on optimum renewal opportunity of the small tractors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1998, 14(2): 78-81. (in Chinese with English abstract)
[23] Bobby Himawan. Analisis Perhitungan Cost Pengelolaan Sampah Dan Pelaporan Keuangan[D]. Yogyakarta: Universitas Gadjah Mada, 2018.
[24] 何瑞銀. 農(nóng)業(yè)機(jī)器系統(tǒng)優(yōu)化模型與水稻種植區(qū)典型系統(tǒng)評(píng)價(jià)的研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2008. He Ruiyin. Study on the Optimization Model of Farm Machinery System and the Evaluation of Typical Systems in Paddy Regions[D]. Nanjing: Nanjing Agricultural University, 2008. (in Chinese with English abstract)
[25] 吳媞,劉鵬飛,張小龍. 拖拉機(jī)經(jīng)濟(jì)性虛擬綜合測(cè)試系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(3):117-123. Wu Ti, Liu Pengfei, Zhang Xiaolong. Design and field test of integrated virtual test system for tractor economy performance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 117-123. (in Chinese with English abstract)
[26] 劉義樂(lè),伍書(shū)劍,徐宗昌. 無(wú)形磨損對(duì)產(chǎn)品技術(shù)壽命的影響[J]. 中國(guó)船修,1995(5):37-39. Liu Yile, Wu Shujian, Xu Zongchang. The influence on product technical life span of invisible wear and tear[J]. China Shiprepair, 1995(5): 37-39. (in Chinese with English abstract)
[27] 謝斌,武仲斌,毛恩榮. 農(nóng)業(yè)拖拉機(jī)關(guān)鍵技術(shù)發(fā)展現(xiàn)狀與展望[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(8):1-17. Xie Bin, Wu Zhongbin, Mao Enrong. Development and prospect of key technologies on agricultural tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 1-17. (in Chinese with English abstract)
[28] Schochetman I E, Smith R L. Infinite horizon optimality criteria for equipment replacement under technological change[J]. Operations Research Letters, 2007, 35(4): 485-492.
[29] Emmanuel D, Esra B I. Optimizing capital investments under technological change and deterioration: A case study on MRI machine replacement[J]. Engineering Economist, 2017, 62(2): 105-131.
[30] Hritonenko N, Yatsenko Y. The dynamics of asset lifetime under technological change[J]. Operations Research Letters, 2008, 36(5): 565-568.
[31] Motamedi N, Peyghami R, Hadizadeh M. A mixed integer nonlinear programming model for the optimal repair-replacement in the firm[J]. Mathematical Social Sciences, 2013, 66: 366-370.
[32] Yatsenko Y, Hritonenko N. Machine replacement under evolving deterministic and stochastic costs[J]. International Journal of Production Economics, 2017, 193: 491-501.
[33] 王英,方淑芬,呂文元. 技術(shù)進(jìn)步條件下設(shè)備經(jīng)濟(jì)壽命分析[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2007,38(2):85-88. Wang Ying, Fang Shufen, Lv Wenyuan. Analysisi on economic life of equipment under technological progress[J]. Journal of Northeast Agricultural University, 2007, 38(2): 85-88. (in Chinese with English abstract)
[34] Hritonenko N, Yatsenko Y. Economic life replacement under improving technology[J]. International Journal of Production Economics, 2011, 33: 596-602.
[35] Yatsenko Y, Hritonenko N. Algorithms for asset replacement under limited technological forecast[J]. International Journal of Production Economics, 2015, 160: 26-33.
[36] 常征. 水稻產(chǎn)區(qū)農(nóng)業(yè)機(jī)械優(yōu)化配備及產(chǎn)業(yè)化經(jīng)營(yíng)模式研究[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2003. Chang Zheng. Study on Optimization and Equipment and Industry Management Model of Agricultural Machinery in Paddy Region[D]. Harbin: Northeast Agricultural University, 2003. (in Chinese with English abstract)
[37] 李中才. 農(nóng)業(yè)機(jī)器系統(tǒng)狀態(tài)仿真及更新決策的研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2005. Li Zhongcai. Study on the State Transfer Simulating and Replacement Decision of Agricultural Machinery System[D]. Harbin: Northeast Agricultural University, 2005. (in Chinese with English abstract)
[38] 王福林,石光輝,王吉權(quán). 拖拉機(jī)技術(shù)經(jīng)濟(jì)指標(biāo)的獲取與處理方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(6):76-78. Wang Fulin, Shi Guanghui, Wang Jiquan. Study on the method of getting and dealing with some technical and economic indexes of tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(6): 76-78. (in Chinese with English abstract)
[39] 黃世澤,陳威,張帆,等. 基于弗雷歇距離的道岔故障診斷方法[J]. 同濟(jì)大學(xué)學(xué)報(bào):自然科學(xué)版,2018,46(12):1690-1695. Huang Shize, Chen Wei, Zhang Fan, et al. Method of turnout fault diagnosis based on fréchet distance[J]. Journal of Tongji University: Natural Science, 2018, 46(12): 1690-1695. (in Chinese with English abstract)
Prediction model of tractor residual value coefficient considering factor of invisible wear
Wang Ying, Guan Yanxuan, Feng Jiaxin, Wei Lai, Song Zhilin
(,,150030,)
Depreciation takes up a large proportion in the total activity cost of agricultural machinery. As the update speed of agricultural machinery was gradually accelerating, the impact of the invisible wears was strengthened by technological progress on agricultural machinery depreciation. Aiming to this problem, two types of invisible wears, which were caused by increased labor productivity and the emergency of more advanced machines, were analyzed and quantified respectively, and based on which, the comprehensive invisible wear degree was given in this paper. According to the traditional ASABE (American Society of Agricultural and Biological Engineers) residual value coefficient prediction model of tractors, considering the invisible wear factor, an improved prediction model of the residual value coefficient for tractors was established. Based on the auction data of 25 wheeled tractors collected from the agricultural machinery and tools auction results in the agricultural machinery service center, the age, the average annual working hours and the comprehensive degree of the invisible wears were used as the main independent variables to construct the improved model of the tractor residual value coefficient prediction and to analyze the law of the tractor value change. In addition, in order to increase the calculation accuracy, the discount coefficient was introduced to consider the time value of the capital. The results showed when the tractor age was above five years, the prediction value of the improved model was closer to the real residual value coefficient, and compared with the original model, the improved model was with less prediction deviation and higher prediction precision that was improved by more than 27%; but when the tractor age was within four years, the prediction deviation for the improved model was bigger than the original model, and the prediction result of the improved model was not satisfactory. The main reasons causing the results were that the effect of the invisible wears on the tractor was very small due to smaller technological progress in its early working period, but with the increasing of the tractor age and the development of science and technology, on one hand, the reproduction value of the same type of tractor would go down because of the improvement of manufacturing process and the increase of social labor productivity; on the other hand, the new type of machines, which were with more advanced technology, better performance, higher productivity and lower consumptions of raw materials and energy, would occur, so the effect of the invisible wears on the tractor residual value would intensified gradually, which also demonstrated that when predicting the residual value of agricultural machinery used for a relatively long period of time, the influence of the invisible wears must be considered. At the same time, the method of the geometry-based “Fréchet distance” metric was applied to further comprehensively compare and evaluate the prediction accuracies of the original model and the improved model. The results showed that compared with the original model, the improved model was with the higher prediction precision that was improved by 24.9%, and was able to significantly improve the accuracy of residual value prediction of tractors. The research of this paper can provide scientific and accurate decision-making basis for the calculation of depreciation cost and the determination of replacement time of agricultural machinery.
agricultural machinery; model; wear; tractors; residual value coefficient; Fréchet distance
10.11975/j.issn.1002-6819.2019.17.008
S232
A
1002-6819(2019)-17-0058-08
2019-05-20
2019-07-06
十三五科技部國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目“黑龍江半濕潤(rùn)區(qū)粳稻全程機(jī)械化豐產(chǎn)增效技術(shù)體系集成與示范”(2018YFD0300105-6)
王英,博士,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機(jī)械化生產(chǎn)與管理研究。Email:angelbabywan@163.com
王 英,管延萱,馮佳欣,魏 來(lái),宋知霖. 考慮無(wú)形磨損的拖拉機(jī)殘值系數(shù)預(yù)測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(17):58-65. doi:10.11975/j.issn.1002-6819.2019.17.008 http://www.tcsae.org
Wang Ying, Guan Yanxuan, Feng Jiaxin, Wei Lai, Song Zhilin. Prediction model of tractor residual value coefficient considering factor of invisible wear[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 58-65. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.17.008 http://www.tcsae.org
中國(guó)農(nóng)業(yè)工程學(xué)會(huì)會(huì)員:王英(E040500008M)