• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      中美兩國醫(yī)保預(yù)算影響分析研究文獻(xiàn)的質(zhì)量評估

      2019-10-20 05:25:18柳鵬程顧佳慧白銘鈺董雅琦林佳兒林夕涵吳文思彭楠邵蓉姚文兵
      中國藥房 2019年12期
      關(guān)鍵詞:醫(yī)療費用質(zhì)量評估文獻(xiàn)研究

      柳鵬程 顧佳慧 白銘鈺 董雅琦 林佳兒 林夕涵 吳文思 彭楠 邵蓉 姚文兵

      摘 要 目的:為我國醫(yī)保預(yù)算影響分析(BIA)研究的開展提供經(jīng)驗借鑒。方法:在PubMed、ProQuest、中國知網(wǎng)、萬方和中國生物醫(yī)學(xué)文獻(xiàn)服務(wù)系統(tǒng)等數(shù)據(jù)庫中檢索建庫至今的中美兩國關(guān)于醫(yī)保BIA研究的相關(guān)文獻(xiàn),對其基本信息、分析結(jié)果和數(shù)據(jù)來源等內(nèi)容進(jìn)行歸納和整理,并基于模型設(shè)計、研究角度、治療成本、參考情景、目標(biāo)人群、研究時限及貼現(xiàn)/通貨膨脹、敏感性分析這7個關(guān)鍵要素對納入文獻(xiàn)進(jìn)行描述性分析。結(jié)果:本研究共納入72篇文獻(xiàn),其中中國研究24項(33.33%),美國地區(qū)研究48項(66.67%);適應(yīng)證為慢性病的相關(guān)研究有45項(62.50%),急性病的相關(guān)研究有21項(37.50%);研究方法上,單獨使用BIA的有49項(68.06%),聯(lián)用BIA和藥物經(jīng)濟(jì)學(xué)評價的有23項(31.94%);模型設(shè)計方面,有 50項(69.44%)研究采用了成本計算模型;研究角度方面,有60項(83.33%)研究基于醫(yī)保部門研究視角;治療成本的計算中,有69項(95.84%)研究包含了藥品費用;參考情景方面,有61項(84.72%)研究對比了以藥物為主的不同治療組合的經(jīng)濟(jì)性;目標(biāo)人群方面,僅有31項(43.06%)研究采用了真實世界數(shù)據(jù);研究時限及貼現(xiàn)/通貨膨脹方面,有14項(19.44%)研究使用治療療程或住院時長表示研究時限,19項(26.39%)研究使用了貼現(xiàn)率或通貨膨脹率調(diào)整成本;敏感性分析方面,有62項(86.11%)研究做了敏感性分析,其中 49項(68.06%)研究采用了單因素敏感性分析。結(jié)論:中美兩國醫(yī)保BIA研究文獻(xiàn)尚存在數(shù)據(jù)使用不合理、成本范圍涵蓋不全和敏感性分析因變量變化范圍不合理等局限。建議BIA研究應(yīng)規(guī)范數(shù)據(jù)來源,提高預(yù)算證據(jù)質(zhì)量;合理評估市場規(guī)模,提高預(yù)測真實性;科學(xué)設(shè)置變量和變化范圍,提升結(jié)果穩(wěn)健性;建立BIA研究范式或評級標(biāo)準(zhǔn),科學(xué)指導(dǎo)BIA研究。

      關(guān)鍵詞 醫(yī)保預(yù)算影響分析;醫(yī)療費用;中國;美國;文獻(xiàn)研究;質(zhì)量評估;藥物經(jīng)濟(jì)學(xué)

      Quality Evaluation of the Literatures about Medical Insurance Budget Impact Analysis in China and the United States

      LIU Pengcheng,GU Jiahui,BAI Mingyu,DONG Yaqi,LIN Jiaer,LIN Xihan,WU Wensi,PENG Nan,SHAO Rong,YAO Wenbing(National Center for Pharmaceutical Policy and Pharmaceutical Industry Economy, China Pharmaceutical University, Nanjing 211198, China)

      ABSTRACT OBJECTIVE: To provide experience and reference for the study of medical insurance budget impact analysis (BIA) in China. METHODS: Retrieved from PubMed, ProQuest, CNKI, Wanfang database and CBM, related literatures about medical insurance BIA research in China and the United States were collected since the establishment of the database. The basic information, analysis results and data sources were summarized and sorted out, and descriptive analysis of the included literature was carried out on basis of seven key elements such as model design, research perspective, treatment cost, reference scenario, target population, research time limit and discount/inflation, sensitivity analysis. RESULTS: A total of 72 literatures were included in this study, involving 24 (33.33%) studies in China, 48 (66.67%) studies in the United States; the indications of 45 studies were chronic diseases (62.50%), and those of 21 studies were acute diseases (37.50%). Among the research methods, 49 studies (68.06%) used BIA alone and 23 studies (31.94%) adopted BIA combined with pharmaceutical economics. In terms of model design, 50 studies (69.44%) adopted cost calculation models. In terms of research perspective, 60 studies (81.94%) were based on the perspective of medical insurance department research. In the calculation of treatment cost, 69 studies (95.84%) included drug cost. In terms of reference scenarios, 61 studies (84.72%) compared the economics of different drug-based treatment groups. For target population, only 31 (43.06%) studies used real world data. In terms of research duration and discount/inflation, 14 studies (19.44%) used treatment or length of hospitalization to indicate research duration, and 19 studies (26.39%) used discount rate or inflation rate to adjust costs. As for sensitivity analysis, 62 studies (86.11%) conducted sensitivity analysis, of which 49 (68.06%) used single factor sensitivity analysis. CONCLUSIONS: There are still some limitations in medical insurance BIA research literature in China and the United States, such as unreasonable use of data, incomplete coverage of the cost, and unreasonable setting of sensitivity analysis variables. It is recommended that BIA research should standardize data sources to improve the quality of budget evidence quality, reasonably evaluate market size to improve the authenticity of prediction, scientifically set variables and their scope of change to improve the stability of results, establish BIA research paradigms or evaluating standards so as to guide BIA research scientifically.

      KEYWORDS Medical insurance budget impact analysis; Medical costs; China; United States; Literature research; Quality evaluation; Pharmacoeconomics

      21世紀(jì)以來,隨著社會年齡結(jié)構(gòu)的變化,我國老齡化趨勢進(jìn)一步加深,2017 年我國60周歲及以上老年人口已高達(dá)2.41億,占總?cè)丝诘?7.3%[1]。同時,經(jīng)濟(jì)的快速發(fā)展、醫(yī)療技術(shù)水平的不斷提升,又進(jìn)一步推高了群眾對于醫(yī)藥衛(wèi)生資源的需求,使得個人醫(yī)療費用支出和國家醫(yī)?;鸲济媾R極大壓力。因此,探索評估藥物經(jīng)濟(jì)性的正確方式,以遏制醫(yī)藥費用的快速增長,對保障人民的用藥需求具有重要意義。

      當(dāng)前,國際社會主要使用藥物經(jīng)濟(jì)學(xué)評價(Pharmaceutical economics,PE)和醫(yī)保預(yù)算影響分析(Budget impact analysis,BIA)來評估藥物的經(jīng)濟(jì)性。PE評價的結(jié)果通常指向個體藥物或治療方案間成本-效益的比較;而BIA是從預(yù)算持有人角度出發(fā),在有限醫(yī)療資源約束的前提下,分析將一種健康干預(yù)措施納入或排除在某一醫(yī)療系統(tǒng)所產(chǎn)生的經(jīng)濟(jì)后果[2]。相對而言,BIA可用于預(yù)測一種治療方案的變化對醫(yī)療總費用的影響,對于保障有限預(yù)算的可支付性和長期穩(wěn)定性起著重要作用,因此越來越受到各國衛(wèi)生決策部門的重視。

      我國醫(yī)保BIA研究起步較晚,研究質(zhì)量參差不齊。而美國作為全球較早開展預(yù)算影響評估的國家之一,其研究數(shù)量與質(zhì)量均位于全球前列。因此,本研究選擇中美兩國醫(yī)保BIA的相關(guān)研究文獻(xiàn)進(jìn)行質(zhì)量評估,分析其文獻(xiàn)研究的規(guī)范性,為我國醫(yī)保BIA研究提供經(jīng)驗借鑒。

      1 資料與方法

      1.1 資料來源與納排標(biāo)準(zhǔn)

      檢索PubMed、ProQuest、中國知網(wǎng)、萬方和中國生物醫(yī)學(xué)文獻(xiàn)服務(wù)系統(tǒng)等數(shù)據(jù)庫中中美兩國的醫(yī)保BIA相關(guān)文獻(xiàn)。中文關(guān)鍵詞為“醫(yī)保”“預(yù)算影響分析“預(yù)算影響模型”,英文關(guān)鍵詞為“Medical insurance”“Budget impact analysis”“Budget impact model”。

      納入標(biāo)準(zhǔn):(1)發(fā)表時間為建庫至2018年5月;(2)語種為中文和英文。排除標(biāo)準(zhǔn):(1)學(xué)位論文、會議文獻(xiàn);(2)綜述;(3)投稿通知、報紙;(4)無法獲取的文獻(xiàn);(5)重復(fù)發(fā)表的文獻(xiàn);(6)非中英文文獻(xiàn);(7)非中美醫(yī)藥領(lǐng)域的研究。

      1.2 資料提取

      對納入文獻(xiàn)的基本信息、分析結(jié)果和數(shù)據(jù)來源等內(nèi)容進(jìn)行歸納和整理,并基于BIA關(guān)鍵要素對文獻(xiàn)質(zhì)量進(jìn)行描述性分析。提取資料內(nèi)容主要包括納入研究的基本信息、BIA相關(guān)信息、BIA 數(shù)據(jù)來源、研究局限性等。資料提取內(nèi)容要點詳見表1。

      1.3 文獻(xiàn)質(zhì)量評估要點

      科學(xué)設(shè)計BIA分析框架是評估醫(yī)?;疬\(yùn)營穩(wěn)定性的基本前提?;趪H藥物經(jīng)濟(jì)學(xué)與結(jié)果研究協(xié)會(International Society for Pharmacoeconomics and Outcomes Research,ISPOR)和加拿大、美國、愛爾蘭等國家或地區(qū)[3-12]現(xiàn)有的BIA指南和其他已公開發(fā)布的方法學(xué)研究,本課題組歸納總結(jié)了BIA設(shè)計中的7個關(guān)鍵要素,即使用分析框架來研究BIA時,必須考慮以下7個因素:模型設(shè)計、研究角度、治療成本、參考情景、目標(biāo)人群、研究時限及貼現(xiàn)/通貨膨脹、敏感性分析[12]。

      1.3.1 模型設(shè)計 BIA基本原理是計算某項特定醫(yī)療措施或藥品納入預(yù)算持有人采購計劃前、后的資金支出差額。通過BIA最終結(jié)果的正負(fù)情況可以反映納入某項特定醫(yī)療措施或藥品對預(yù)算持有人具體資金支出的影響,從而可以幫助預(yù)算持有人更好地作出是否納入該項醫(yī)療措施或藥品的決定,以維持有限預(yù)算的平穩(wěn)運(yùn)行,促進(jìn)衛(wèi)生資源合理分配。

      BIA可基于不同疾病特征采用靜態(tài)建?;蛘邉討B(tài)建模的方法。靜態(tài)模型可以是一個編寫在Excel等電子表格中的成本計算模型或者簡單的決策樹模型,適用于病程較短的急性病或者病情不太復(fù)雜的疾病。其中,成本計算模型是BIA類文章的基本模型,也是應(yīng)用最為廣泛的模型。動態(tài)模型可采用Markov模型和離散事件模擬來計算,適用于病情延續(xù)時間長、病情反復(fù)或頻繁變化的慢性疾病的模擬[13]。Markov模型考慮了患者治療方案的選擇變化以及每個疾病狀態(tài)在一定時間內(nèi)的轉(zhuǎn)變概率[14];而離散事件模擬則不需要固定的狀態(tài)和周期,比Markov模型更加靈活,但缺乏與模型相適應(yīng)的數(shù)據(jù)[15]。

      1.3.2 研究角度 BIA研究應(yīng)基于預(yù)算持有人的角度,其最終是為了預(yù)測將某種醫(yī)療措施納入或排除采購計劃對醫(yī)療費用可能的經(jīng)濟(jì)影響[16],從而為調(diào)整藥品目錄和制定實際支付價提供重要參考依據(jù)。預(yù)算持有人包括了醫(yī)?;鸸芾矸胶陀匈Y金約束的醫(yī)療機(jī)構(gòu)等,BIA研究需要靈活地適應(yīng)各個變量的變化,基于具體情形給出科學(xué)合理的預(yù)算估計。

      1.3.3 治療成本 納入BIA的治療成本應(yīng)為從預(yù)算持有人角度出發(fā)的、在預(yù)算報銷范圍內(nèi)的、患者自身產(chǎn)生的直接醫(yī)療費用。其多指在疾病檢查、診斷和治療過程中所產(chǎn)生的費用,包括藥物成本、特定疾病的檢查費用以及因疾病進(jìn)展帶來的手術(shù)、醫(yī)療器械等外科介入的費用;在正常治療情況下產(chǎn)生的不良反應(yīng)和并發(fā)癥等相關(guān)疾病的治療費用也應(yīng)納入其中。治療成本的選取應(yīng)基于不同的研究角度,根據(jù)實際情況具體考量。

      1.3.4 參考情景 BIA通過比較參考情景和新藥情景的支出差額,以評估在研究時限內(nèi)有限預(yù)算的年度增量成本,其內(nèi)容應(yīng)包括參考情景的選取和市場規(guī)模的預(yù)估兩大部分。新藥情景考察的是將某項醫(yī)療措施納入醫(yī)保目錄后對醫(yī)?;鸬挠绊?;參考情景則考量該項醫(yī)療措施未納入醫(yī)保目錄時,使用它的替代療法或互補(bǔ)療法對于醫(yī)?;鸬挠绊?。納入醫(yī)保目錄研究應(yīng)對兩大情景相關(guān)假設(shè)提供清晰的描述,并提供作出這些假設(shè)的依據(jù)。參考情景可通過查詢特定適應(yīng)證的診斷指南或醫(yī)務(wù)人員提供的臨床實際使用情況獲取。兩大情景的市場規(guī)模預(yù)估須參考診療方案當(dāng)前的市場規(guī)模、患者對該方案的依從性以及新藥對于現(xiàn)有藥物的替代或互補(bǔ)效應(yīng)等因素。

      3.1.2 成本衡量涵蓋不全 雖然BIA應(yīng)該只考慮對預(yù)算持有人產(chǎn)生影響的直接醫(yī)療成本,不考慮治療間接成本(如患者與陪護(hù)人員因病不能正常工作)和隱性成本(如患者帶來的痛苦和生活不便),但是在本次納入評估的研究中,部分研究未考慮不良反應(yīng)、并發(fā)癥和其他醫(yī)療服務(wù)費用,如未衡量不良反應(yīng)產(chǎn)生的其他治療費用和用藥劑量的調(diào)整對整體費用的影響,未考慮基礎(chǔ)疾病的治療和預(yù)后所產(chǎn)生的費用;部分研究未測算藥物治療失敗等情形產(chǎn)生的額外治療費用;多數(shù)研究未按照疾病嚴(yán)重程度選擇不同的治療方案,分析結(jié)果缺乏真實性。

      3.1.3 敏感性分析因變量變化范圍設(shè)置不盡合理 部分研究未考慮敏感性分析或敏感性分析計算要素不全;部分研究在實際計算中納入敏感性分析的要素使用統(tǒng)一的變化范圍,無法反映實際情況;多數(shù)研究未指明因變量的變動范圍依據(jù),導(dǎo)致敏感性分析結(jié)果缺乏科學(xué)性,不具說服力。

      3.2 對今后研究的建議

      3.2.1 規(guī)范數(shù)據(jù)來源,提高預(yù)算證據(jù)質(zhì)量 針對本次質(zhì)量評估中出現(xiàn)的數(shù)據(jù)缺乏或替換、簡化假設(shè)和預(yù)測不準(zhǔn)確的問題,建議文獻(xiàn)中所有數(shù)據(jù)均需標(biāo)明明確的數(shù)據(jù)來源,以保持?jǐn)?shù)據(jù)的可追溯性。在計算過程中,應(yīng)優(yōu)先考慮真實世界數(shù)據(jù),同時可參考相似藥物在同一市場或是同一藥物在相似市場的相關(guān)資料;其次,建議使用已公開發(fā)表的文獻(xiàn)資料,以保證不同主體提交的預(yù)測中數(shù)據(jù)結(jié)果的一致性。在上述數(shù)據(jù)不可得的情況下,才可通過德爾菲法、專家訪談和問卷調(diào)查等形式進(jìn)行估算。

      3.2.2 合理評估市場規(guī)模,提高預(yù)測真實性 本次納入的多數(shù)文獻(xiàn)未對研究市場規(guī)模預(yù)測的詳細(xì)方法進(jìn)行說明,降低了評估結(jié)果的科學(xué)性。市場規(guī)模的預(yù)測分為兩大部分:一是對于市場份額的預(yù)估,二是對于市場增長率的預(yù)估。對于市場份額的預(yù)估應(yīng)優(yōu)先通過企業(yè)年終總結(jié)、相關(guān)機(jī)構(gòu)的市場調(diào)查報告或是醫(yī)院及醫(yī)保部門數(shù)據(jù)庫等的資料得出;對于市場增長率的預(yù)估應(yīng)結(jié)合目標(biāo)藥物歷年來的銷售走向和市場需求變化綜合分析[90]。若新藥納入采購計劃對相關(guān)藥物市場規(guī)模無影響或影響甚微,則目標(biāo)人群的估計可以只考慮人口預(yù)測的增長;若引入新藥會對相關(guān)藥物市場規(guī)模產(chǎn)生顯著影響,則市場份額的變化需從人口的預(yù)測增長和新藥預(yù)測的影響兩個方面進(jìn)行考慮。

      3.2.3 科學(xué)設(shè)置變量和變化范圍,提升結(jié)果穩(wěn)健性 BIA結(jié)果的不確定性主要來源于BIA模型框架的設(shè)定和計算過程中參數(shù)值的選取。而模型框架的不確定性取決于新干預(yù)措施的可及性和使用限制導(dǎo)致的預(yù)期治療方案的變化;參數(shù)值的不確定性取決于對當(dāng)前和新的干預(yù)措施預(yù)估的有效性。

      對計算過程中的因變量常采用敏感性分析和情景分析進(jìn)行檢驗。其中,敏感性分析包括單因素敏感性分析、多因素敏感性分析和極值分析。因變量應(yīng)選取對于特定治療方案成本影響較大的因素,如目標(biāo)人群、藥物成本和市場規(guī)模等。不同因變量對于結(jié)果的影響權(quán)重不同,故不建議使用統(tǒng)一的通用范圍,其具體變化范圍應(yīng)通過真實情況、既往文獻(xiàn)或是專家意見等途徑得出,以增強(qiáng)敏感性分析結(jié)果的真實性。

      3.2.4 建立BIA研究范式或評級標(biāo)準(zhǔn),科學(xué)指導(dǎo)BIA研究 我國BIA尚未建立系統(tǒng)化的研究體系,因此獨立的研究機(jī)構(gòu)的建設(shè)和跨學(xué)科背景專業(yè)人員的培養(yǎng)于我國BIA的規(guī)范化開展意義重大。同時,還應(yīng)著手建立結(jié)合我國實際情況的公開的BIA指南和質(zhì)量評價量表,不僅要對本研究中提出的常見7個BIA要素進(jìn)行詳細(xì)規(guī)定,同時還應(yīng)對超說明書用藥、貼現(xiàn)率的取舍等問題作出明確的指示[91],為此類研究提供科學(xué)合理的方法學(xué)指導(dǎo)。

      3.3 本研究的不足之處

      (1)樣本量不足:本研究所選取的BIA文獻(xiàn)基于特定數(shù)據(jù)庫產(chǎn)生,可能存在選擇性偏倚;(2)文獻(xiàn)質(zhì)量評估要點即7個要素是基于部分國家成熟的BIA指南和方法論進(jìn)行選取的,可能無法涵蓋BIA的所有關(guān)鍵要素。

      4 結(jié)語

      BIA是完整的藥物經(jīng)濟(jì)學(xué)評價的重要組成部分,它能評估短期內(nèi)、特定情境下新藥引入后的經(jīng)濟(jì)學(xué)影響,受到?jīng)Q策者的廣泛關(guān)注。因此,為完善我國藥物經(jīng)濟(jì)性評估方法,不僅需從制度上保障BIA方法的實施,鼓勵衛(wèi)生決策者將其作為我國新藥申報、醫(yī)保準(zhǔn)入和藥品價格談判過程中的重要參考資料,彌補(bǔ)傳統(tǒng)藥物經(jīng)濟(jì)學(xué)評價方法缺乏從整體上統(tǒng)籌醫(yī)?;疬\(yùn)行的問題,還需深入推進(jìn)BIA相關(guān)研究,建立公開、規(guī)范化的評價量表,提高BIA在決策參考中的證據(jù)強(qiáng)度。

      參考文獻(xiàn)

      [ 1 ] 民政部. 2017社會服務(wù)發(fā)展統(tǒng)計公報[EB/OL].(2018-08-

      02)[2018-11-30]. http://www.mca.gov.cn/article/sj/tjgb/201808/20180800010446.shtml.

      [ 2 ] 顧佳慧,柳鵬程.淺析藥物經(jīng)濟(jì)學(xué)評價與醫(yī)療保險醫(yī)保預(yù)算影響分析的差異[J].中國藥物經(jīng)濟(jì)學(xué),2018,13(3):40-44.

      [ 3 ] SULLIVAN SD,MAUSKOPF JA,AUGUSTOVSKI F,et al. Budget impact analysis-principles of good practice:report of the ISPOR 2012 Budget Impact Analysis Good Practice Ⅱ Task Force[J]. Value Health,1900,17(1):5- 14.

      [ 4 ] MARSHALL DA,DOUGLAS PR,DRUMMOND MF,et al. Guidelines for sconducting pharmaceutical budget impact analyses for submission to public drug plans in Canada[J]. Pharmacoeconomics,2008,26(6):477-495.

      [ 5 ] GHABRI S,AUTIN E,ANNE-ISABELLE P,et al. The French National Authority for Health (HAS) guidelines for conducting budget impact analyses(BIA)[J]. Pharmacoeconomics,2018,36(4):407-417.

      [ 6 ] NEYT M,CLEEMPUT I,SANDE SV,et al. Belgian gui- delines for budget impact analyses[J]. Acta Clin Belg,2015,70(3):175-180.

      [ 7 ] MAUSKOPF JA,EARNSHAW S,MULLINS CD. Budget impact analysis:review of the state of the art[J]. Expert Rev Pharmacoecon Outcomes Res,2005,5(1):65- 79.

      [ 8 ] LEELAHAVARONG P. Budget impact analysis[J]. J Med Assoc Thai,2014,97(5):65-71.

      [ 9 ] TRUEMAN P,DRUMMOND M,HUTTON J. Developing guidance for budget impact analysis[J]. Pharmacoeconomics,2001,19(6):609-621.

      [10] FALEIROS D R,?LVARES J,ALMEIDA A M,et al.Budget impact analysis of medicines:updated systematic review and implications[J]. Expert Rev Pharm Out,2016,16(2):257-266

      [11] Health Information and Quality Authority. Guidelines for the budget impact analysis of health yechnologies in Ireland[EB/OL].(2018-01-17)[2018-11-30]. https://www.hiqa.ie/sites/default/files/2018-01/HIQA_BIA_Guidelines_

      2018_0.pdf .

      [12] MAUSKOPF J,EARNSHAW S. A methodological review of US budget-impact models for new drugs[J].Pharmacoeconomics,2016,34(11):1111-1131.

      [13] 李洪超.基于文獻(xiàn)的藥物經(jīng)濟(jì)學(xué)評價:方法和挑戰(zhàn)[J].藥學(xué)與臨床研究,2016,24(2):188-191.

      [14] FERREIRA-DA-SILVA AL,RIBEIRO RA,SANTOS VC,et al. Guidelines for budget impact analysis of health technologies in Brazil[J]. Cad Saude Publica,2012,28(7):1223-1238.

      [15] 趙可新,李岑,張睿.模型研究方法在藥物經(jīng)濟(jì)學(xué)中的應(yīng)用概述[J].中國藥師,2015,18(9):1561-1564.

      [16] PENNA P. The academy of managed care pharmacys format for formulary submission[J]. Manag Care Interface,2001,14(6):61-62.

      [17] MARSHALL DA,DOUGLAS PR,DRUMMOND MF,et al. Guidelines for conducting pharmaceutical budget impact analyses for submission to public drug plans in Canada[J]. Pharmacoeconomics,2008,26(6):477-495.

      [18] 付潔,鐘華,吳斌.中國環(huán)境下達(dá)沙替尼在伊馬替尼耐受或不耐受的慢性粒細(xì)胞白血病患者中的醫(yī)保預(yù)算影響分析[J].中國醫(yī)療保險,2016,9(12):56-59.

      [19] 陳斌斌,范長生.注射用紫杉醇(白蛋白結(jié)合型)治療晚期乳腺癌的醫(yī)保預(yù)算影響分析[J].中國醫(yī)療保險,2016,9(12):60-63.

      [20] 趙琨,齊雪然,隋賓艷.終末期腎病腹膜透析醫(yī)保預(yù)算影響分析[J].中國衛(wèi)生經(jīng)濟(jì),2015,34(1):66-69.

      [21] 張崖冰,胡善聯(lián),何江江.重組人Ⅱ型腫瘤壞死因子受體-抗體融合蛋白對醫(yī)保的醫(yī)保預(yù)算影響分析[J].中國衛(wèi)生經(jīng)濟(jì),2017,36(3):56-58.

      [22] 李林國,李林國,楊帆.重組人血小板生成素在中國治療原發(fā)免疫性血小板減少癥的醫(yī)保預(yù)算影響分析[J].中國醫(yī)療保險,2017,10(2):57-62.

      [23] 潘岳松,彭曉霞.重組牛堿性成纖維細(xì)胞生長因子治療眼角膜上皮缺損的藥物經(jīng)濟(jì)學(xué)評價[J].中國藥師,2010,13(7):1002-1005.

      [24] 徐菲,劉國恩,張祥華.度他雄胺治療良性前列腺增生的醫(yī)保預(yù)算影響分析[J].中國衛(wèi)生經(jīng)濟(jì),2015,34(11):62-65.

      [25] 張欲曉,殷瀟,田夢媛.赫賽汀治療HER-2陽性乳腺癌的醫(yī)保預(yù)算影響分析[J].中國衛(wèi)生經(jīng)濟(jì),2016,35(12):63-66.

      [26] 范長生,岳曉萌,吳久鴻.利伐沙班醫(yī)保預(yù)算影響分析[J].中國醫(yī)療保險,2017,10(12):57-63.

      [27] 趙亮,韓晟,史錄文.清開靈等清熱解毒類注射劑的使用預(yù)測及醫(yī)保預(yù)算影響分析[J].中國藥事,2016,30(10):1015-1021.

      [28] 何江江,胡善聯(lián),湯真清.上海市血管緊張素轉(zhuǎn)化酶抑制劑和血管緊張素受體拮抗劑治療原發(fā)性高血壓的經(jīng)濟(jì)學(xué)評價研究[J].中國衛(wèi)生經(jīng)濟(jì),2016,35(7):80-84.

      [29] 楊悅,趙瑞,陳嘉音.注射用重組人尿激酶原治療急性心肌梗死的醫(yī)保預(yù)算影響分析[J].臨床藥物治療雜志,2017,15(5):16-21.

      [30] 邱英鵬,趙琨,齊雪然.阿托西班治療自發(fā)性早產(chǎn)的藥物經(jīng)濟(jì)學(xué)評價[J].中國衛(wèi)生經(jīng)濟(jì),2016,35(9):73-76.

      [31] 劉程宇,謝詩桐,吳晶.達(dá)格列凈治療2型糖尿病的醫(yī)保預(yù)算影響分析[J].中國藥物經(jīng)濟(jì)學(xué),2018,13(3):13-17.

      [32] 楊興華.貝美前列素滴眼液上市后對預(yù)算影響的初步分析[J].中國醫(yī)院用藥評價與分析,2010,10(11):1015- 1018.

      [33] 武軼群,陶立波,呂聰.低劑量重組組織型纖溶酶原激活劑治療急性肺血栓栓塞癥的衛(wèi)生經(jīng)濟(jì)學(xué)評價[J].中華醫(yī)學(xué)雜志,2010,90(2):103-106.

      [34] 潘岳松,彭曉霞.貝復(fù)濟(jì)治療Ⅱ度燒傷的上市后藥物經(jīng)濟(jì)學(xué)評價[J].中國執(zhí)業(yè)藥師,2010,7(3):28-32.

      [35] 官海靜,劉國恩,任曉曉.斑蝥酸鈉維生素B6注射液用于治療癌癥的藥物經(jīng)濟(jì)學(xué)評價[C]//2013中國藥學(xué)大會暨第十三屆中國藥師周論文集,2013:1-12.

      [36] 殷瀟,方欣,胡江藺.舒尼替尼治療轉(zhuǎn)移性腎細(xì)胞癌的醫(yī)保預(yù)算影響分析[J].中國衛(wèi)生經(jīng)濟(jì),2016,35(12):67-69.

      [37] 林其敏,韓晟,管曉東.他氟前列素上市后的醫(yī)保預(yù)算影響分析[J].中國新藥雜志,2015,24(23):2645-2650.

      [38] 宣建偉.替比夫定優(yōu)化療法與恩替卡韋常規(guī)療法對慢性乙型肝炎患者的預(yù)算影響[J].中國藥物經(jīng)濟(jì)學(xué),2016,11(7):13-16.

      [39] 洪妍,劉騰,韓晟.替格瑞洛治療急性冠狀動脈綜合征的醫(yī)保預(yù)算影響分析[J].藥品評價,2017,14(8):18-22.

      [40] 官海靜,范長生,王雅楠.維格列汀治療2型糖尿病醫(yī)保預(yù)算影響分析[J].中國醫(yī)療保險,2016,9(5):56-62.

      [41] 范長生,吳久鴻.依托考昔片治療骨關(guān)節(jié)炎醫(yī)保預(yù)算影響分析[J].中國醫(yī)療保險,2018,11(1):51-55.

      [42] CHANG J,SUNG J. Health plan budget impact analysis for pimecrolimus[J]. J Manag Care Pharm,2005,11(1):66-73.

      [43] YANG HB,CHAUDHARI P,ZHOU ZY,et al. Budget impact analysis of liposomal amphotericin B and amphotericin B lipid complex in the treatment of invasive fungal infections in the United States[J]. Appl Health Econ Hea,2014,12(1):85-93.

      [44] VAKARAMOKO D,GEORGES A,ADUNLIN AJ,et al. Budget impact analysis of everolimus for the treatment of hormone receptor positive,human epidermal growth factor receptor-2(HER-2) negative advanced breast cancer in the United States[J]. J Med Econ,2014,17(4):248- 249.

      [45] KUAN R,HOLT RJ,JOHNSON KE,et al. Budget impact modeling for a single-tablet formulation of ibuprofen and famotidine for prevention of upper gastrointestinal ulcers in patients with osteoarthritis and/or rheumatoid arthritis[J]. Clin Ther,2013,35(3):321-332.

      [46] MANSON SC,BENEDICT,PAN F,et al. Potential economic impact of increasing low dose aspirin usage on CVD in the US[J]. Curr Med Res Opin,2010,26(10):2365-2373.

      [47] OLCHANSKI N,SLAWSKY KA,PLENT S,et al. Economic impact of switching to bivalirudin for a primary percutaneous coronary intervention in a US hospital[J].Hosp Pract,2010,38(4):138-146.

      [48] RUBIN RJ,GLASPY JA,ADAMS JL,et al. Budget impact analysis of darbepoetin alfa every 3 weeks versus epoetin alfa every week for the treatment of chemothe- rapy-induced anaemia from a US payers perspective[J]. J Med Econ,2008,11(2):199-213.

      [49] ZHANG W,HAN Y,F(xiàn)ORT JG,et al. The budget impact of using enteric-coated aspirin 325 mg+immediate-release omeprazole 40 mg to prevent recurrent cardiovascular events[J]. J Med Econ,2017,20(6):592-598.

      [50] CRESPI S,KERRIGAN M,SOOD V. Budget impact ana- lysis of 8 hormonal contraceptive options[J]. Am J Manag Care,2013,19(7):e249-255.

      [51] SKORNICKI M,CLEMENTS KM,OSULLIVAN AK.Budget impact analysis of antiepileptic drugs for lennox-gastaut syndrome[J]. J Manag Care Pharm,2014,20(20):400-406.

      [52] BAJAJ PS,VEENSTRA DL,GOERTZ HP,et al. Targe- ted erlotinib for first-line treatment of advanced non-small cell lung cancer:a budget impact analysis[J]. J Med Econ,2014,17(8):538-546.

      [53] EMOHARE O,LEDONIO CG,HILL BW,et al. Cost sa- vings analysis of intra-wound vancomycin powder in posterior spinal surgery[J]. Spine J,2014,14(11):2710-2715.

      [54] MONTOUCHET C,RUFF L,BALU S. Budget impact of rosuvastatin initiation in high-risk hyperlipidemic patients from a US managed care perspective[J]. J Med Econ,2013,16(7):907-916.

      [55] ZHANG JJ,NELLESEN D,LUDLAM WH,et al. Budget impact of pasireotide LAR for the treatment of acromegaly,a rare endocrine disorder[J]. J Med Econ,2016,19(4):374-385.

      [56] IVANOVA JI,KELKAR S,KING S,et al. Budget impact model of a 5-grass sublingual immunotherapy tablet for the treatment of grass pollen-induced allergic rhinitis[J]. J Med Econ,2015,18(11):909-918.

      [57] SAUNDERS R,LIAN J,KAROLICKI B,et al. The cost- effectiveness and budget impact of stepwise addition of bolus insulin in the treatment of type 2 diabetes:evaluation of the FullSTEP trial[J]. J Med Econ,2014,17(12):827-836.

      [58] MERCHANT S,NOE LL,HOWE A,et al. Budget impact analysis of tapentadol extended release for the treatment of moderate to severe chronic noncancer pain[J]. Clin Ther,2013,35(5):659-672.

      [59] CHIAO E,MEYER K. Cost effectiveness and budget impact of natalizumab in patients with relapsing multiple sclerosis[J]. Curr Med Res Opin,2009,25(6):1445- 1454.

      [60] DANESE MD,REYES C,NORTHRIDGE K,et al. Budget impact model of adding erlotinib to a regimen of gemcitabine for the treatment of locally advanced,nonresectable or metastatic pancreatic cancer[J]. Clin Ther,2008,30(4):775-784.

      [61] LEE LJ,SMOLEN LJ,KLEIN TM,et al. Budget impact analysis of insulin therapies and associated delivery systems[J]. Am J Health Syst Pharm,2012,69(11):958-965.

      [62] PERK S,WIELAGE RC,CAMPBELL NL,et al. Estima- ted budget impact of increased use of mirabegron,a novel treatment for overactive bladder[J]. J Manag Care Spec Pharm,2016,22(9):1072-1086.

      [63] JENSEN IS,LODISE TP,F(xiàn)AN W,et al. Use of oritavancin in acute bacterial skin and skin structure infections patients receiving intravenous antibiotics:a US hospital budget impact analysis[J]. Clin Drug Investig,2016,112(2):157-168.

      [64] JENSEN IS,WU E,F(xiàn)AN W,et al. Use of oritavancin in moderate-to-severe absssi patients requiring iv antibiotics:a US payer budget impact analysis[J]. J Manag Care Spec Pharm,2016,22(6):752.

      [65] CARLTON R,MALLICK R,CAMPBELL C,et al. Eva- luating the expected costs and budget impact of interventional therapies for the treatment of chronic venous disease[J].Am Health Drug Benefits,2015,8(7):366-374.

      [66] PENN MS,YENIKOMSHIAN MA,CUMMINGS AK,et al. The economic impact of implementing a multiple inflammatory biomarker-based approach to identify,treat,and reduce cardiovascular risk[J]. J Med Econ,2015,18(7):483-491.

      [67] MEHTA DA,OLADAPO AO,EPSTEIN JD,et al. A budget impact model of hemophilia bypassing agent prophylaxis relative to recombinant factor Ⅶa on-demand[J]. J Manag Care Spec Pharm,2016,22(2):149.

      [68] LANE W,WEATHERALL J,GUNDGAARD J,et al. Insulin degludec versus insulin glargine U100 for patients with type 1 or type 2 diabetes in the US:a budget impact analysis with rebate tables[J]. J Med Econ,2018,21(2):144-151.

      [69] KEUFFEL E,MCCULLOUGH PA,TODORAN TM,et al.The effect of major adverse renal cardiovascular event(MARCE)incidence,procedure volume and unit cost on the hospital savings resulting from contrast media use in inpatient angioplasty[J]. J Med Econ,2017,21(4):356- 364.

      [70] VEENSTRA DL,GUZAUSKAS GF,VILLA KF,et al.The budget impact and cost-effectiveness of defibrotide for treatment of veno-occlusive disease with multi-organ dysfunction in patients post-hematopoietic stem cell transplant[J]. J Med Econ,2017,20(5):453-463.

      [71] ASCHE CV,KIM M,F(xiàn)ELDMAN SR,et al. Budget impact model in moderate-to-severe psoriasis vulgaris asses- sing effects of calcipotriene and betamethasone dipropionate foam on per-patient standard of care costs[J]. J Med Econ,2017,20(9):1000-1006.

      [72] LAU BD,PINTO BL,THIEMANN DR,et al. Budget impact analysis of conversion from intravenous to oral medication when clinically eligible for oral intake[J]. Clin Ther,2011,33(11):1792-1796.

      [73] CARLSON JJ,WONG WB,VEENSTRA DL,et al. Budget impact of erlotinib for maintenance therapy in advanced non-small cell lung cancer[J]. J Med Econ,2011,14(2):159-166.

      [74] WOODWARD TC,BROWN R,SACCO P,et al. Budget impact model of tobramycin inhalation solution for treatment of Pseudomonas aeruginosa in cystic fibrosis patients[J]. J Med Econ,2010,13(3):492-499.

      [75] AUGUSTO M,GREENE M,TOUYA M,et al. Budget impact analysis of long-acting injectable aripiprazole once- monthly 400 mg in bipolar Ⅰ disorder in the USA[J]. J Comp Eff Res,2018,7(7):627-636.

      [76] MCMULLEN S,BUCKLEY B,HALL E,et al. Budget impact analysis of prolonged half-life recombinant FⅧ therapy for hemophilia in the United States[J]. Value Health,2017,20(1):93-99.

      [77] JOISH VN,F(xiàn)RECH F,LAPUERTA P. Budgetary impact of telotristat ethyl,a novel treatment for patients with carcinoid syndrome diarrhea:a US health plan perspective[J].Clin Ther,2017,39(12):2338-2344.

      [78] BORER JS,KANSAL AR,DORMAN ED,et al. Budget impact of adding ivabradine to standard of care in patients with chronic systolic heart failure in the United States[J]. J Manag Care Spec Pharm,2016,22(9):1064-1071.

      [79] PARK H,RASCATI KL,KEITH MS. Managing oral phosphate binder medication expenditures within the Medicare bundled end-stage renal disease prospective payment system:economic implications for large U.S. dialysis organizations[J]. J Manag Care Spec Pharm,2015,21(6):507- 514.

      [80] JOHNSON SG,GRUNTOWICZ D,CHUA T,et al. Financial analysis of CYP2C19 genotyping in patients recei- ving dual antiplatelet therapy following acute coronary syndrome and percutaneous coronary intervention[J]. J Ma- nag Care Spec Pharm,2015,21(7):552-527.

      [81] PIETZSCH JB,GEISLER BP,GARNER AM,et al. Economic analysis of endovascular interventions for femoropopliteal arterial disease:a systematic review and budget impact model for the United States and Germany[J].Cathet Cardiovasc Intervent,2014,84(4):546-554.

      [82] HO J,ZHANG L,TODOROVA L,et al. Budget impact analysis of ixabepilone used according to FDA approved labeling in treatment-resistant metastatic breast cancer[J]. J Manag Care Pharm,2009,15(6):467-475.

      [83] ROSE DB,NELLESEN D,NEARY MP,et al. Budget impact of everolimus for the treatment of progressive,well-differentiated,non-functional neuroendocrine tumors of gastrointestinal or lung origin that are advanced or metastatic[J]. J Med Econ,2017,20(4):395-404.

      [84] CLARK R,BOZKAYA D,LEVENBERG M,et al. Topical treatment utilization for patients with atopic dermatitis in the United States,and budget impact analysis of crisa- borole ointment,2%[J]. J Med Econ,2018,21(8):770- 777.

      [85] MEARNS ES,LIANG M,LIMONE BL. Economic analysis and budget impact of clostridial collagenase ointment compared with medicinal honey for treatment of pressure ulcers in the US[J]. Clinicoecon Outcomes Res,2017,16(9):485-494.

      [86] RIZZO,JA,RUDMIK L,MALLOW PJ,et al. Budget impact analysis of bioabsorbable drug-eluting sinus implants following endoscopic sinus surgery[J]. J Med Econ,2016,19(9):829-835.

      [87] HESS LM,CINFIO FN,WETMORE S,et al. Enhancing the budget impact model for institutional use:a tool with practical applications for the hospital oncology pharmacy[J]. Hosp Pharm,2016,51(6):452-460.

      [88] GRAHAM J,MAUSKOPF J,KAWAI K,et al. Budget-impact analysis of alternative herpes zoster vaccine strategies:a U.S. HMO perspective[J]. J Manag Care Spec Ph- arm,2016,22(7):872-888.

      [89] ASCHE CV,CLAY E,KHARITONOVA E,et al. Budge- tary impact of the utilization of buprenorphine/naloxone sublingual film and tablet for medicaid in the United States[J]. J Med Econ,2015,18(8):600-611.

      [90] MARSHALL DA,DOUGLAS PR,DRUMMOND MF,et al. Guidelines for conducting pharmaceutical budget impact analyses for submission to public drug plans in Canada[J]. Pharmacoeconomics,2008,26(6):477-495.

      [91] 董雅琦,顧佳慧,柳鵬程.醫(yī)保預(yù)算影響分析國際經(jīng)驗研究及對我國的啟示[J].中國藥房,2018,29(12):1652- 1657.

      (收稿日期:2019-01-21 修回日期:2019-05-15)

      (編輯:孫 冰)

      猜你喜歡
      醫(yī)療費用質(zhì)量評估文獻(xiàn)研究
      基于組合分類算法的源代碼注釋質(zhì)量評估方法
      國內(nèi)外老年人權(quán)益保障文獻(xiàn)研究的學(xué)術(shù)梳理
      中醫(yī)健康教育相關(guān)的護(hù)理研究現(xiàn)狀分析與思考
      南樂《目連戲》文獻(xiàn)研究綜述
      戲劇之家(2016年22期)2016-11-30 18:53:48
      我國中小企業(yè)物流管理現(xiàn)狀及其對策
      城鄉(xiāng)居民醫(yī)療費用的相關(guān)性與回歸分析
      我國醫(yī)療保險中的醫(yī)療道德風(fēng)險問題研究
      商(2016年27期)2016-10-17 04:42:19
      總額預(yù)付制與DRGs相結(jié)合的費用控制機(jī)制探究
      中國市場(2016年24期)2016-07-06 08:55:29
      社會保障卡在醫(yī)療費用即時結(jié)算中的實際應(yīng)用
      商(2016年6期)2016-04-20 10:00:23
      中國上市公司會計信息質(zhì)量研究
      中國市場(2016年5期)2016-03-07 10:04:34
      贵溪市| 康定县| 武川县| 蓝田县| 兴城市| 汕头市| 温州市| 金坛市| 海门市| 营山县| 酒泉市| 昆山市| 三穗县| 绍兴县| 唐海县| 集安市| 鄂伦春自治旗| 陵川县| 木里| 镇康县| 台山市| 丰原市| 邵武市| 吴忠市| 含山县| 南郑县| 南丰县| 神木县| 佳木斯市| 会泽县| 石景山区| 大邑县| 广汉市| 澄迈县| 额敏县| 云林县| 佛学| 呈贡县| 吉首市| 分宜县| 滕州市|