宋昱 周京敏
摘 要 心力衰竭是大多數(shù)心臟疾病的終末期轉(zhuǎn)歸。近年來(lái)的基礎(chǔ)和臨床研究顯示,腸道菌群組成及其代謝產(chǎn)物的改變與慢性心力衰竭的發(fā)生、發(fā)展相關(guān)。因此,目前正在進(jìn)行針對(duì)腸道菌群的干預(yù)措施的研究,包括調(diào)節(jié)飲食、給予益生菌或抗生素治療、進(jìn)行糞便菌群移植、使用能減少氧化三甲胺產(chǎn)生的藥物等,以考察它們對(duì)心力衰竭不良預(yù)后的改善作用。
關(guān)鍵詞 心力衰竭 腸道菌群 腸道菌群代謝產(chǎn)物 氧化三甲胺
中圖分類號(hào):R541.6; R363.21 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-1533(2019)15-0011-05
Relationship between gut microbiota and its metabolites and heart failure
SONG Yu1, 2, ZHOU Jingmin1, 2*
(1. Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; 2. Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China)
ABSTRACT Heart failure is the end-stage of cardiovascular disease. Recent basic and clinical studies have shown that changes in intestinal flora composition and metabolites are associated with the occurrence and development of chronic heart failure. Therefore, interventions for intestinal flora are currently being studied, including dietary regulation, probiotic or antibiotic treatment, fecal flora transplantation, and the drugs that reduce trimethylamine-N-oxide production so as to investigate their improvement effects on the poor prognosis of heart failure.
KEy WORDS heart failure; gut microbiota; gut microbiota metabolites; trimethylamine-N-oxide
心力衰竭是大多數(shù)心臟疾病的終末期轉(zhuǎn)歸,腸道菌群已被認(rèn)為與心血管疾病、尤其是心力衰竭的發(fā)生和發(fā)展有密切關(guān)聯(lián)。既往研究認(rèn)為,心力衰竭患者由于心輸出量不足和外周循環(huán)血流的重新分配,導(dǎo)致其胃腸道組織血流灌注不足、腸黏膜缺血、毛細(xì)血管擴(kuò)張、腸壁水腫及通透性增加,進(jìn)而引起腸道菌群發(fā)生位移,腸道內(nèi)的多種細(xì)菌和毒素通過(guò)受損的小腸黏膜屏障進(jìn)入血液循環(huán),誘發(fā)系統(tǒng)性的炎癥反應(yīng)和免疫反應(yīng),這與心力衰竭進(jìn)展、患者營(yíng)養(yǎng)不良及疾病晚期出現(xiàn)的惡病質(zhì)等不良預(yù)后密切相關(guān)[1]。近年來(lái),隨著微生物代謝組學(xué)和宏基因組學(xué)的發(fā)展,腸道菌群組成及其代謝產(chǎn)物的改變與心力衰竭的關(guān)聯(lián)得到了更深入的揭示。這些改變對(duì)宿主心血管系統(tǒng)的影響方式是多種多樣的,既關(guān)系到宿主對(duì)疾病的易感性、預(yù)后風(fēng)險(xiǎn),又涉及到心肌和血管的炎癥、纖維化、功能失調(diào)等。本文概要介紹近年來(lái)有關(guān)腸道菌群及其代謝產(chǎn)物與心力衰竭關(guān)聯(lián)的基礎(chǔ)和臨床研究進(jìn)展。
1 腸道菌群組成改變與心力衰竭
健康人體的腸道中存在著數(shù)以萬(wàn)億計(jì)的微生物,其中絕大多數(shù)可被歸類為厚壁菌門和擬桿菌門[2]。在生理狀態(tài)下,這些細(xì)菌參與維持人體眾多的生物學(xué)功能,包括宿主代謝、神經(jīng)發(fā)育、能量平衡、免疫調(diào)節(jié)、維生素的合成和降解以及維持腸道黏膜屏障的正常功能[3-4]。近年宏基因組學(xué)研究發(fā)現(xiàn),健康人群的腸道菌群組成可分為以下3種優(yōu)勢(shì)菌群類型,即擬桿菌型、普氏菌型和瘤胃球菌型[2],而飲食、環(huán)境暴露、藥物和疾病均可導(dǎo)致腸道菌群組成發(fā)生改變。
德國(guó)學(xué)者通過(guò)16S rRNA高通量測(cè)序技術(shù)檢測(cè)心力衰竭患者的排泄物后發(fā)現(xiàn),與健康人群相比,心力衰竭患者腸道菌群的多樣性顯著減少,同時(shí)腸道中的布勞特菌屬、柯林斯菌屬、紅蝽?xiàng)U菌科、丹毒絲菌科和瘤胃球菌科等菌群的豐度顯著降低,而腸桿菌科菌群的豐度卻增高[5]。日本學(xué)者也通過(guò)此技術(shù)發(fā)現(xiàn),心力衰竭患者直腸中真桿菌屬和Dorea longicatena屬(一種梭菌科)菌群的豐度很低,且與年輕患者相比,高齡患者腸道菌群中的擬桿菌門菌群占比降低而變形菌門菌群占比增高[6]。Pasini等[7]的研究亦發(fā)現(xiàn),在心力衰竭患者的糞便中,彎曲桿菌、志賀菌、沙門菌和耶爾森菌等致病性菌群的豐度較健康人群大大增高,且這種差異在嚴(yán)重和輕中度心功能不全患者間同樣存在。這些研究結(jié)果表明,在心力衰竭的病程中始終伴有腸道菌群失衡的現(xiàn)象,腸道菌群組成改變或許參與了心力衰竭的進(jìn)展。
2 腸道菌群代謝產(chǎn)物與心力衰竭
近年來(lái),腸道菌群代謝產(chǎn)物對(duì)心血管疾病的影響受到關(guān)注。這些代謝產(chǎn)物包括:①腸道菌群代謝含膽堿類食物后產(chǎn)生的氧化三甲胺;②短鏈脂肪酸;③膽汁酸;④硫化氫、氫和甲烷等小分子氣體等。
2.1 氧化三甲胺
氧化三甲胺是食物中的膽堿、磷脂酰膽堿和L-肉毒堿等經(jīng)腸道菌群酵解為三甲胺,后者進(jìn)入腸-肝循環(huán)并在肝臟黃素單加氧酶-3的催化作用下產(chǎn)生的。既往研究發(fā)現(xiàn),在生理狀態(tài)下,氧化三甲胺參與維持細(xì)胞的滲透壓平衡[8],且還能防止蛋白質(zhì)的錯(cuò)誤折疊。氧化三甲胺對(duì)心血管疾病的影響已得到廣泛研究。臨床研究表明,高血漿氧化三甲胺水平預(yù)示急性冠脈綜合征、糖尿病和慢性腎臟病患者發(fā)生不良預(yù)后的風(fēng)險(xiǎn)高,且這種高風(fēng)險(xiǎn)獨(dú)立于傳統(tǒng)的心血管危險(xiǎn)因素[9-11]。Tang等[12]進(jìn)行的一項(xiàng)共納入720例穩(wěn)定性心力衰竭患者的隊(duì)列研究發(fā)現(xiàn),心力衰竭患者的空腹血漿氧化三甲胺水平顯著高于健康對(duì)照者(分別為5.0和3.5 μmol/L, P<0.001),且血漿氧化三甲胺水平高的患者的血漿腦利鈉肽水平也可能更高(相關(guān)系數(shù)=0.23,P<0.01)。隨訪5年后還發(fā)現(xiàn),血漿氧化三甲胺水平高的患者的全因死亡風(fēng)險(xiǎn)為氧化三甲胺水平低的患者的3.42倍(風(fēng)險(xiǎn)比=3.42, 95% CI: 2.24 ~ 5.23; P<0.001),且此風(fēng)險(xiǎn)經(jīng)傳統(tǒng)危險(xiǎn)因素及腦利鈉肽、估算的腎小球?yàn)V過(guò)率等校正后仍達(dá)1.75倍(風(fēng)險(xiǎn)比=1.75, 95% CI: 1.07 ~ 2.86; P<0.05)。另一項(xiàng)關(guān)于氧化三甲胺與慢性心力衰竭關(guān)聯(lián)的隊(duì)列研究發(fā)現(xiàn),心功能越差的心力衰竭患者的血漿氧化三甲胺水平越高,且缺血性心力衰竭患者的血漿氧化三甲胺水平高于穩(wěn)定性冠心病和非缺血性心力衰竭患者[13]。Cox風(fēng)險(xiǎn)比例模型分析發(fā)現(xiàn),約50%的高血漿氧化三甲胺水平心力衰竭患者在5.2年的隨訪期中發(fā)生了死亡或心臟移植等不良預(yù)后事件(風(fēng)險(xiǎn)比=2.24, 95% CI: 1.28 ~ 3.92; P<0.005)。最近一項(xiàng)對(duì)急性心力衰竭患者的研究也發(fā)現(xiàn),高血漿氧化三甲胺水平(>5.6 μmol/L)患者1年內(nèi)發(fā)生不良預(yù)后事件的風(fēng)險(xiǎn)高于低血漿氧化三甲胺水平(<5.6 μmol/L)患者(比值比=1.61, 95% CI: 1.17 ~ 2.20; P=0.004),且血漿氧化三甲胺水平可作為一種獨(dú)立預(yù)測(cè)因子預(yù)測(cè)患者1年內(nèi)發(fā)生全因死亡或再住院的風(fēng)險(xiǎn)[14]。
關(guān)于氧化三甲胺對(duì)心力衰竭影響的機(jī)制也正趨明確。體外研究顯示,給予氧化三甲胺刺激后,內(nèi)皮細(xì)胞的增殖、遷移能力均受損,細(xì)胞衰老現(xiàn)象加重;氧化三甲胺可通過(guò)刺激內(nèi)皮細(xì)胞分泌NLRP3炎癥小體,激活絲裂原活化的蛋白激酶-核因子κB信號(hào)傳導(dǎo)通路,促進(jìn)白細(xì)胞介素-6、α-腫瘤壞死因子等炎性因子的分泌,并誘導(dǎo)巨噬細(xì)胞黏附于內(nèi)皮細(xì)胞上等,由此加重血管的炎癥反應(yīng)[15-18]。內(nèi)皮功能的紊亂會(huì)導(dǎo)致重要舒血管因子如一氧化氮的釋放減少、血管阻力增加,這是心力衰竭發(fā)生的重要病理學(xué)機(jī)制之一[19]。氧化三甲胺還可通過(guò)影響細(xì)胞內(nèi)的鈣調(diào)控而使心肌收縮功能受損,并出現(xiàn)糖原和脂褐素沉積等代謝失調(diào)的典型表現(xiàn)[20]。動(dòng)物模型研究觀察到,膽堿或氧化三甲胺喂養(yǎng)會(huì)加重主動(dòng)脈縮窄術(shù)后大鼠的心功能不全,且與正常飲食喂養(yǎng)的主動(dòng)脈縮窄術(shù)后大鼠相比,這些大鼠的左心室射血分?jǐn)?shù)(left ventricular ejection fractions, LVEF)更低,而血漿腦利鈉肽水平更高,心肌纖維化程度更嚴(yán)重[21]。氧化三甲胺還可促進(jìn)心肌分泌α-腫瘤壞死因子、白細(xì)胞介素-1β和白細(xì)胞介素-10等炎性因子,并能減弱運(yùn)動(dòng)相關(guān)的心肌保護(hù)作用[22-23]。不過(guò),盡管關(guān)于氧化三甲胺的研究越來(lái)越多,但迄今尚無(wú)其受體的研究報(bào)告。因此,找到氧化三甲胺的受體是未來(lái)腸道菌群相關(guān)研究的一個(gè)重要方向。
2.2 短鏈脂肪酸和膽汁酸
短鏈脂肪酸主要由食物中的纖維素、抗性淀粉和低聚糖等碳水化合物經(jīng)腸道菌群酵解所產(chǎn)生,除可直接作為腸黏膜細(xì)胞的能量來(lái)源外,近年研究還發(fā)現(xiàn)能抑制腸道的炎癥反應(yīng)[24-25]。既往研究顯示,短鏈脂肪酸可通過(guò)與G蛋白偶聯(lián)受體作用來(lái)影響腎素的分泌和血壓調(diào)控,而自發(fā)性高血壓大鼠模型存在腸道菌群組成改變現(xiàn)象,尤其是產(chǎn)短鏈脂肪酸的菌群占比降低[26-27]。另有研究顯示,短鏈脂肪酸還可提高胰島素的敏感性,調(diào)節(jié)脂肪和肌肉的能量代謝,在糖尿病、肥胖的發(fā)展過(guò)程中起著重要作用[28],而控制好高血壓、糖尿病、肥胖這三大高危因素,心力衰竭的發(fā)生風(fēng)險(xiǎn)將大大降低。
膽固醇在肝臟被代謝為膽汁酸,后者會(huì)經(jīng)腸-肝循環(huán)進(jìn)入腸道,通過(guò)減少特定菌群的數(shù)量來(lái)改變腸道菌群的組成[29]。膽汁酸的受體為法尼醇X受體和G蛋白偶聯(lián)受體-5,它們?cè)谡{(diào)控脂肪酸氧化、抑制炎性因子分泌方面起著重要作用[30]。關(guān)于膽汁酸對(duì)心力衰竭影響的研究較少。一項(xiàng)研究顯示,慢性心力衰竭患者血漿中的初級(jí)膽汁酸水平降低,而某些次級(jí)膽汁酸水平升高[31]。有些膽汁酸已被證實(shí)能降低心肌收縮力,即具有心肌毒性作用[32]。
2.3 硫化氫、氫和甲烷
人體內(nèi)的硫化氫由腸道中的硫酸鹽還原菌和厭氧菌群所產(chǎn)生。近年研究發(fā)現(xiàn),硫化氫參與調(diào)控循環(huán)系統(tǒng)的多種生理功能。對(duì)高血壓大鼠模型,給予硫化氫干預(yù)可降低大鼠的平均動(dòng)脈壓和心率[33]。對(duì)心力衰竭小鼠模型的研究發(fā)現(xiàn),心力衰竭小鼠血液中的硫化氫水平顯著低于非心力衰竭小鼠,但給予外源性硫化氫治療則可通過(guò)激活內(nèi)皮型一氧化氮合酶-一氧化氮信號(hào)傳導(dǎo)通路而減輕氧化應(yīng)激和線粒體功能紊亂,并誘導(dǎo)血管內(nèi)皮生長(zhǎng)因子、成纖維細(xì)胞生長(zhǎng)因子的分泌來(lái)促進(jìn)血管新生,減輕心肌纖維化,具有心功能保護(hù)作用[34-35]。Zhou等[36]進(jìn)行的體外研究發(fā)現(xiàn),硫化氫可通過(guò)激活血管內(nèi)皮生長(zhǎng)因子受體-2-哺乳動(dòng)物雷帕霉素靶蛋白信號(hào)傳導(dǎo)通路來(lái)促進(jìn)血管新生。
氫是腸道內(nèi)的主要?dú)怏w組分,主要來(lái)源于食物的酵解,而人體內(nèi)的甲烷來(lái)源于腸道中的產(chǎn)甲烷菌,其可利用氫作為供電子體來(lái)還原二氧化碳并產(chǎn)生甲烷。呼氣試驗(yàn)發(fā)現(xiàn),30% ~ 60%的健康人體會(huì)產(chǎn)生甲烷。既往研究認(rèn)為,呼氣試驗(yàn)測(cè)得的氫和甲烷的豐度與便秘、腹瀉和腸易激綜合征等消化道疾病相關(guān),并可用來(lái)判斷患者是否存在小腸細(xì)菌過(guò)度生長(zhǎng)(small intestinal bacterial overgrowth, SIBO)現(xiàn)象[37-38]。一項(xiàng)最新研究顯示,SIBO與慢性心力衰竭患者的不良預(yù)后相關(guān),且伴有SIBO的心力衰竭患者的血清白細(xì)胞介素-1β、白細(xì)胞介素-10和α-腫瘤壞死因子等炎性因子水平也顯著增高,表明心力衰竭患者的SIBO可能與炎癥激活相關(guān)[39]。有研究顯示,體內(nèi)產(chǎn)甲烷菌增多與糖尿病、肥胖的發(fā)生和發(fā)展相關(guān)[40];但另有研究報(bào)告,甲烷可減輕缺血再灌注動(dòng)物模型的氧化應(yīng)激和炎癥反應(yīng)[41]。也有研究顯示,氫可通過(guò)減輕內(nèi)質(zhì)網(wǎng)應(yīng)激、減少細(xì)胞自噬等機(jī)制對(duì)藥物損傷和缺血再灌注的心肌產(chǎn)生保護(hù)作用[42]??偟膩?lái)說(shuō),關(guān)于硫化氫、氫和甲烷對(duì)心力衰竭的影響,還有待進(jìn)行更多的基礎(chǔ)和臨床研究來(lái)予以明確。
3 腸道菌群組成及其代謝產(chǎn)物的檢測(cè)方法
目前主要通過(guò)采集糞便來(lái)檢測(cè)心力衰竭患者的腸道菌群組成,即先提取糞便溶液上清液中的RNA或DNA,然后應(yīng)用以聚合酶鏈?zhǔn)椒磻?yīng)為基礎(chǔ)的微生物組學(xué)技術(shù)、特別是16S rRNA/DNA測(cè)序和宏基因組學(xué)測(cè)序技術(shù)進(jìn)行檢測(cè)。16S rRNA/DNA在微生物中有很高的保守性和特異性,通過(guò)16S rRNA/DNA測(cè)序可簡(jiǎn)便、快速地了解樣本中菌群組成的差異和多樣性情況[43],而心力衰竭患者往往存在腸道菌群多樣性減少、有害菌群豐度增高的現(xiàn)象[5, 7]。宏基因組學(xué)測(cè)序是一種先提取環(huán)境中所有微生物的DNA、然后進(jìn)行高通量測(cè)序和生物信息學(xué)分析的測(cè)序方法,對(duì)了解微生物群落組成及其代謝功能、發(fā)現(xiàn)新的微生物種屬和基因具有重要價(jià)值。一項(xiàng)研究提示,聯(lián)合應(yīng)用微生物組學(xué)和代謝組學(xué)技術(shù)分析有助于更深入地了解心血管疾病的病理學(xué)機(jī)制[44]。Cui等[45]應(yīng)用宏基因組學(xué)和代謝組學(xué)技術(shù)分析、比較了慢性心力衰竭患者與健康對(duì)照者糞便和血漿中的菌群及其代謝產(chǎn)物組成,發(fā)現(xiàn)心力衰竭患者糞便中的普拉梭菌減少而活潑瘤胃球菌增多、保護(hù)性代謝產(chǎn)物丁酸鹽減少而有害性代謝產(chǎn)物氧化三甲胺增多,這些改變與心力衰竭患者的腸道菌群失衡有關(guān)。
SIBO是指遠(yuǎn)端腸道內(nèi)的菌群移位進(jìn)入小腸,導(dǎo)致小腸內(nèi)的厭氧菌過(guò)度生長(zhǎng)、菌群組成發(fā)生改變,臨床表現(xiàn)主要包括腹痛、腹脹和腹瀉或便秘等。SIBO診斷的金標(biāo)準(zhǔn)是在內(nèi)鏡下吸取空腸近段的小腸液進(jìn)行細(xì)菌培養(yǎng),以菌落計(jì)數(shù)>1×105 CFU/ml為SIBO陽(yáng)性,但這是一種有創(chuàng)檢查。近年來(lái),檢測(cè)氫和甲烷的呼氣試驗(yàn)以其無(wú)創(chuàng)、簡(jiǎn)便的特點(diǎn),開(kāi)始在臨床上被用于SIBO診斷[46]。根據(jù)最新研究結(jié)果,在進(jìn)行檢測(cè)氫的呼氣試驗(yàn)中,若患者空腹氫豐度基礎(chǔ)值≥0.002%或90 min內(nèi)氫豐度較基礎(chǔ)值升高≥0.002個(gè)百分點(diǎn),判斷試驗(yàn)結(jié)果為陽(yáng)性;在進(jìn)行檢測(cè)甲烷的呼氣試驗(yàn)中,若任意檢測(cè)時(shí)間點(diǎn)患者的甲烷豐度≥0.001%,判斷試驗(yàn)結(jié)果為陽(yáng)性。患者的檢測(cè)氫或甲烷的呼氣試驗(yàn)結(jié)果為陽(yáng)性,即可診斷其為SIBO陽(yáng)性。呼氣試驗(yàn)可用于診斷SIBO和腸道菌群失衡,臨床應(yīng)用漸趨廣泛[46-47]。
4 針對(duì)腸道菌群的干預(yù)措施
越來(lái)越多的研究顯示,改變腸道菌群組成及其代謝模式有助于降低心力衰竭患者發(fā)生不良預(yù)后的風(fēng)險(xiǎn)。不過(guò),由于腸道菌群的多樣性和個(gè)體差異,針對(duì)腸道菌群進(jìn)行有效干預(yù)實(shí)際非常困難,具體措施可主要分為如下兩個(gè)方面:
1)通過(guò)飲食干預(yù),抗生素、益生菌治療或糞便菌群移植來(lái)改變腸道菌群組成 飲食是人體的最大環(huán)境暴露因素,短時(shí)間內(nèi)的飲食結(jié)構(gòu)改變即能影響腸道菌群組成及其代謝模式。Marques等[48]的研究發(fā)現(xiàn),給予富含纖維的飲食并補(bǔ)充乙酸鹽可改善心力衰竭大鼠模型腸道內(nèi)的菌群組成,使之產(chǎn)乙酸菌群增加,同時(shí)心肌肥大和纖維化程度減輕、血壓降低,心功能獲得改善??股刂委熆芍苯痈淖兡c道菌群組成,但因可能存在對(duì)腸道菌群的非特異性影響,臨床應(yīng)用受到限制。一項(xiàng)動(dòng)物研究發(fā)現(xiàn),萬(wàn)古霉素治療后的大鼠的心肌梗死面積較小[49]。與抗生素治療相比,適當(dāng)服用益生菌可僅增加特定菌群的數(shù)量而改變腸道菌群組成,進(jìn)而對(duì)宿主產(chǎn)生有益影響。一項(xiàng)隨機(jī)、對(duì)照臨床研究顯示,與安慰劑組患者相比,慢性收縮性心力衰竭患者服用布拉酵母治療3個(gè)月后,LVEF等心功能指標(biāo)值獲得顯著改善,且血清高敏C-反應(yīng)蛋白、膽固醇和尿酸等水平也均有不同程度的降低[50]。對(duì)心力衰竭大鼠模型的研究亦發(fā)現(xiàn),給予鼠李糖乳桿菌GR-1干預(yù)可顯著改善LVEF、減輕心肌肥大程度[51]。這些研究結(jié)果均顯示,益生菌有輔助治療心力衰竭的潛力,但能否改善患者的遠(yuǎn)期預(yù)后,尚需得到更多臨床研究的確認(rèn)。糞便菌群移植可恢復(fù)腸道菌群的平衡及其功能,已被用于肥胖和一些腸道疾病的治療。在心力衰竭治療方面,若移植產(chǎn)氧化三甲胺能力低的腸道菌群來(lái)改變心力衰竭患者腸道菌群的組成,就可降低其體內(nèi)的氧化三甲胺水平,進(jìn)而改善患者的預(yù)后。不過(guò),該方法存在內(nèi)毒素和感染轉(zhuǎn)移風(fēng)險(xiǎn)。對(duì)此,有研究者指出,只移植有益菌群而非簡(jiǎn)單地移植糞便菌群或許更為合理[52]。
2)通過(guò)改變腸道菌群的代謝模式來(lái)減少氧化三甲胺等有害代謝產(chǎn)物的產(chǎn)生 3,3-二甲基-1-丁醇(3,3-dimethyl-1-butanol, DMB)是一種存在于橄欖油、葡萄籽油中的天然化合物,其能特異性地抑制腸道中產(chǎn)三甲胺菌群,從而減少三甲胺產(chǎn)生,降低體內(nèi)氧化三甲胺水平。一項(xiàng)動(dòng)物研究顯示,DMB治療可減輕心力衰竭小鼠的心肌纖維化程度,并有保護(hù)心功能作用[22, 53]。Chen等[54]的研究顯示,葡萄酒中含有的一種抗氧化劑白藜蘆醇能重塑腸道菌群組成,由此減少三甲胺和氧化三甲胺的產(chǎn)生。這或許也可解釋為何習(xí)慣地中海飲食方式(橄欖油、水果、魚(yú)和紅葡萄酒的飲食量較多,而紅肉等富含膽堿、肉堿類食物的攝食量較少)的人群體內(nèi)氧化三甲胺水平和心血管疾病發(fā)病率均較低的現(xiàn)象[55]。
5 結(jié)語(yǔ)
腸道菌群及其代謝產(chǎn)物對(duì)心力衰竭的影響方式主要有兩種:一種是過(guò)去認(rèn)為的心力衰竭會(huì)導(dǎo)致腸道充血、水腫,使得腸壁通透性增加、細(xì)菌內(nèi)毒素等進(jìn)入血流循環(huán),最終引發(fā)系統(tǒng)性的炎癥和免疫反應(yīng);另一種是近年來(lái)發(fā)現(xiàn)的腸道菌群組成及其代謝產(chǎn)物的改變所引發(fā)的系統(tǒng)性炎癥和神經(jīng)激素系統(tǒng)失衡。針對(duì)腸道菌群的心力衰竭治療策略具有一定的研究?jī)r(jià)值。對(duì)腸道菌群及其代謝產(chǎn)物與心力衰竭關(guān)聯(lián)的深入認(rèn)識(shí)可為心力衰竭治療提供更多的思路。
參考文獻(xiàn)
[1] Sandek A, Swidsinski A, Schroedl W, et al. Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia [J]. J Am Coll Cardiol, 2014, 64(11): 1092-1102.
[2] Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body [J]. Nature, 2014, 509(7500): 357-360.
[3] Everard A, Cani PD. Gut microbiota and GLP-1 [J]. Rev Endocr Metab Disord, 2014, 15(3): 189-196.
[4] Power SE, OToole PW, Stanton C, et al. Intestinal microbiota, diet and health [J]. Br J Nutr, 2014, 111(3): 387-402.
[5] Luedde M, Winkler T, Heinsen FA, et al. Heart failure is associated with depletion of core intestinal microbiota [J]. ESC Heart Fail, 2017, 4(3): 282-290.
[6] Kamo T, Akazawa H, Suda W, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure [J/OL]. PLoS One, 2017, 12(3): e0174099 [2019-05-23]. doi: 10.1371/journal.pone.0174099.
[7] Pasini E, Aquilani R, Testa C, et al. Pathogenic gut flora in patients with chronic heart failure [J]. JACC Heart Fail, 2016, 4(3): 220-227.
[8] Yancey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses [J]. J Exp Biol, 2005, 208(Pt 15): 2819-2830.
[9] Li XS, Obeid S, Klingenberg R, et al. Gut microbiotadependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors [J]. Eur Heart J, 2017, 38(11): 814-824.
[10] Dambrova M, Latkovskis G, Kuka J, et al. Diabetes is associated with higher trimethylamine N-oxide plasma levels [J]. Exp Clin Endocrinol Diabetes, 2016, 124(4): 251-256.
[11] Tang WH, Wang Z, Kennedy DJ, et al. Gut microbiotadependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease [J]. Circ Res, 2015, 116(3): 448-455.
[12] Tang WH, Wang Z, Fan Y, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis [J]. J Am Coll Cardiol, 2014, 64(18): 1908-1914.
[13] Tr?seid M, Ueland T, Hov JR, et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure [J]. J Intern Med, 2015, 277(6): 717-726.
[14] Suzuki T, Heaney LM, Bhandari SS, et al. Trimethylamine N-oxide and prognosis in acute heart failure [J]. Heart, 2016, 102(11): 841-848.
[15] Ma G, Pan B, Chen Y, et al. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion [J/OL]. Biosci Rep, 2017, 37(2): BSR20160244 [2019-05-23]. doi: 10.1042/ BSR20160244.
[16] Boini KM, Hussain T, Li PL, et al. Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction [J]. Cell Physiol Biochem, 2017, 44(1): 152-162.
[17] Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB [J/ OL]. J Am Heart Assoc, 2016, 5(2): e002767 [2019-05-23]. doi: 10.1161/JAHA.115.002767.
[18] Ke Y, Li D, Zhao M, et al. Gut flora-dependent metabolite trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress [J]. Free Radic Biol Med, 2018, 116: 88-100.
[19] Marti CN, Gheorghiade M, Kalogeropoulos AP, et al. Endothelial dysfunction, arterial stiffness, and heart failure[J]. J Am Coll Cardiol, 2012, 60(16): 1455-1469.
[20] Savi M, Bocchi L, Bresciani L, et al. Trimethylamine-N-oxide(TMAO)-induced impairment of cardiomyocyte function and the protective role of urolithin B-glucuronide [J/OL]. Molecules, 2018, 23(3): 549 [2019-05-23]. doi: 10.3390/ molecules23030549.
[21] Organ CL, Otsuka H, Bhushan S, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure [J/OL]. Circ Heart Fail, 2016, 9(1): e002314 [2019-05-23]. doi: 10.1161/CIRCHEARTFAILURE.115.002314.
[22] Chen K, Zheng X, Feng M, et al. Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice [J/OL]. Front Physiol, 2017, 8: 139 [2019-05-23]. doi: 10.3389/ fphys.2017.00139.
[23] Zhang H, Meng J, Yu H. Trimethylamine N-oxide supplementation abolishes the cardioprotective effects of voluntary exercise in mice fed a western diet [J/OL]. Front Physiol, 2017, 8: 944 [2019-05-23]. doi: 10.3389/ fphys.2017.00944.
[24] Rodríguez-Cabezas ME, Gálvez J, Camuesco D, et al. Intestinal anti-inflammatory activity of dietary fiber (Plantago ovata seeds) in HLA-B27 transgenic rats [J]. Clin Nutr, 2003, 22(5): 463-471.
[25] Cox MA, Jackson J, Stanton M, et al. Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E2 and cytokines [J]. World J Gastroenterol, 2009, 15(44): 5549-5557.
[26] Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension [J]. Hypertension, 2015, 65(6): 1331-1340.
[27] Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation [J]. Proc Natl Acad Sci U S A, 2013, 110(11): 4410-4415.
[28] Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? [J]. Proc Nutr Soc, 2015, 74(3): 328-336.
[29] Yokota A, Fukiya S, Islam KB, et al. Is bile acid a determinant of the gut microbiota on a high-fat diet? [J]. Gut Microbes, 2012, 3(5): 455-459.
[30] Levi M. Role of bile acid-regulated nuclear receptor FXR and G protein-coupled receptor TGR5 in regulation of cardiorenal syndrome (cardiovascular disease and chronic kidney disease)[J]. Hypertension, 2016, 67(6): 1080-1084.
[31] Mayerhofer CCK, Ueland T, Broch K, et al. Increased secondary/primary bile acid ratio in chronic heart failure [J]. J Card Fail, 2017, 23(9): 666-671.
[32] Zavecz JH, Battarbee HD. The role of lipophilic bile acids in the development of cirrhotic cardiomyopathy [J]. Cardiovasc Toxicol, 2010, 10(2): 117-129.
[33] Tomasova L, Dobrowolski L, Jurkowska H, et al. Intracolonic hydrogen sulfide lowers blood pressure in rats [J]. Nitric Oxide, 2016, 60: 50-58.
[34] Kondo K, Bhushan S, King AL, et al. H2S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase [J]. Circulation, 2013, 127(10): 1116-1127.
[35] Polhemus D, Kondo K, Bhushan S, et al. Hydrogen sulfide attenuates cardiac dysfunction after heart failure via induction of angiogenesis [J]. Circ Heart Fail, 2013, 6(5): 1077-1086.
[36] Zhou Y, Li XH, Zhang CC, et al. Hydrogen sulfide promotes angiogenesis by downregulating miR-640 via the VEGFR2/ mTOR pathway [J]. Am J Physiol Cell Physiol, 2016, 310(4): C305-C317.
[37] Chatterjee S, Park S, Low K, et al. The degree of breath methane production in IBS correlates with the severity of constipation [J]. Am J Gastroenterol, 2007, 102(4): 837-841.
[38] Ding XW, Liu YX, Fang XC, et al. The relationship between small intestinal bacterial overgrowth and irritable bowel syndrome [J]. Eur Rev Med Pharmacol Sci, 2017, 21(22): 5191-5196.
[39] Mollar A, Villanueva MP, Nú?ez E, et al. Hydrogen- and methane-based breath testing and outcomes in patients with heart failure [J]. J Card Fail, 2019, 25(5): 319-327.
[40] Mathur R, Amichai M, Chua KS, et al. Methane and hydrogen positivity on breath test is associated with greater body mass index and body fat [J]. J Clin Endocrinol Metab, 2013, 98(4): E698-E702.
[41] Boros M, Ghyczy M, érces D, et al. The anti-inflammatory effects of methane [J]. Crit Care Med, 2012, 40(4): 1269-1278.
[42] Gao Y, Yang H, Chi J, et al. Hydrogen gas attenuates myocardial ischemia reperfusion injury independent of postconditioning in rats by attenuating endoplasmic reticulum stress-induced autophagy [J]. Cell Physiol Biochem, 2017, 43(4): 1503-1514.
[43] Zhang J, Ding X, Guan R, et al. Evaluation of different 16S rRNA gene V regions for exploring bacterial diversity in a eutrophic freshwater lake [J]. Sci Total Environ, 2018, 618: 1254-1267.
[44] Ryan PM, London LE, Bjorndahl TC, et al. Microbiome and metabolome modifying effects of several cardiovascular disease interventions in apo-E-/- mice [J/OL]. Microbiome, 2017, 5(1): 30 [2019-05-23]. doi: 10.1186/s40168-017-0246-x.
[45] Cui X, Ye L, Li J, et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients [J/OL]. Sci Rep, 2018, 8(1): 635 [2019-05-23]. doi: 10.1038/s41598-017-18756-2.
[46] Rezaie A, Buresi M, Lembo A, et al. Hydrogen and methanebased breath testing in gastrointestinal disorders: the North American consensus [J]. Am J Gastroenterol, 2017, 112(5): 775-784.
[47] Lee KM, Paik CN, Chung WC, et al. Breath methane positivity is more common and higher in patients with objectively proven delayed transit constipation [J]. Eur J Gastroenterol Hepatol, 2013, 25(6): 726-732.
[48] Marques FZ, Nelson E, Chu PY, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice [J]. Circulation, 2017, 135(10): 964-977.
[49] Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats [J]. FASEB J, 2012, 26(4): 1727-1735.
[50] Costanza AC, Moscavitch SD, Faria Neto HC, et al. Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double-blind, placebo-controlled pilot trial [J]. Int J Cardiol, 2015, 179: 348-350.
[51] Gan XT, Ettinger G, Huang CX, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat [J]. Circ Heart Fail, 2014, 7(3): 491-499.
[52] Wymore Brand M, Wannemuehler MJ, Phillips GJ, et al. The altered Schaedler flora: continued applications of a defined murine microbial community [J]. ILAR J, 2015, 56(2): 169-178.
[53] Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis [J]. Cell, 2015, 163(7): 1585-1595.
[54] Chen ML, Yi L, Zhang Y, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota [J/OL]. mBio, 2016, 7(2): e02210-15 [2019-05-23]. doi: 10.1128/mBio.02210-15.
[55] De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome [J]. Gut, 2016, 65(11): 1812-1821.