• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    加強例題變式教學培養(yǎng)學生思維能力

    2019-08-30 09:51吳建文
    考試周刊 2019年67期
    關(guān)鍵詞:變式例題高中數(shù)學

    摘要:高中數(shù)學學習中,需要學生具備基本的數(shù)學思維能力,因為數(shù)學學科本身就是一個探索發(fā)現(xiàn)的學科,很多數(shù)學問題都是在基礎(chǔ)知識點上加以改進或者變換,學生經(jīng)過思維轉(zhuǎn)換求得問題答案,這種將問題的變換稱之為變式。高中數(shù)學學習中有很多典型例題,它們或許在教材中,或許在課堂測驗中,為了使學生對知識點的掌握可以做到舉一反三,提高學生的思維能力,教師經(jīng)常以例題為基礎(chǔ)進行變換題干已知條件或更改問題,來實行例題變式教學。因此,本文介紹幾種例題變式教學的常用方法,以供參考。

    關(guān)鍵詞:高中數(shù)學;例題;變式

    一、 借助“一題多解”,培養(yǎng)學生的發(fā)散性思維能力

    在數(shù)學學習中,很多情況下學生都會遇到同一個問題存在著兩種以上的解題思路和解題方法,如證明類問題或幾何圖形求解問題等,學生基于公式定理的理解,應用于問題中,使用不同的論證手法或者利用不同的已知條件得出相同的結(jié)論。在高中數(shù)學學習中,學生需要鍛煉發(fā)散性思維能力,來應對學習中的多解問題,而教師為了培養(yǎng)學生的發(fā)散性思維能力,可以利用基礎(chǔ)例題或典型例題的講解,將知識點的應用要領(lǐng)教授給學生,再以不同角度分析看待問題,獲取新的解題方法。通過語言引導學生給予解題需要的基本思路,鍛煉培養(yǎng)學生發(fā)散性思維能力,以使學生可以借助一個例題,轉(zhuǎn)換思維方式,探索不同的解題方法。在人教版高中數(shù)學學習中,三角函數(shù)問題是數(shù)學應用題中較為常見的題型,“一題多解”在三角函數(shù)類型題中普遍存在。

    二、 借助“一題多變”,培養(yǎng)學生靈活的思維能力

    在高中數(shù)學中,教師為了在有限的例題中,培養(yǎng)學生思維的靈活性,可以通過改變例題題干的已知條件,或者變換題目類型,但萬變不離其宗的是例題的實質(zhì)。通過引導學生在不同角度,不同思路下,依照題目內(nèi)容努力探索,求得解題方案,這有助于學生思維靈活性的養(yǎng)成,避免學生在數(shù)學學習中出現(xiàn)知識僵化的現(xiàn)象?!耙活}多變”的教學方法,在高中數(shù)學的函數(shù)方程問題中常會用到,函數(shù)解析式在高中數(shù)學練習中經(jīng)常應用的到,在剛開始學習時,學生很容易在解析式的推導和坐標圖像上混淆。究其根本,學生對知識掌握得不夠靈活,應加強相關(guān)函數(shù)解析式的應用訓練,使學生能夠?qū)⒑瘮?shù)解析式的特點和象限圖像等基礎(chǔ)知識加以鞏固,提高學生在數(shù)學學習中的應用能力。在人教版高中數(shù)學學習中,常見的函數(shù)問題多是求解函數(shù)的定義域,或者是相關(guān)未知數(shù)的取值范圍。

    例如,已知函數(shù)f(x)=mx2+8x+4定義域為R,求解函數(shù)中m的取值范圍。

    解:依照題意我們可知,mx2+8x+4≥0在定義域R上,恒成立。

    因此,m>0且Δ≤0,由此可得m≥4。

    ①根據(jù)已知例題,變換題干函數(shù)解析式,有f(x)=log3mx2+8x+4定義域為R,求解函數(shù)中m的取值范圍。

    解:依照題意我們可知,mx2+8x+4>0在定義域R上,恒成立。

    因此,m>0且Δ<0,由此可得m>4。

    ②根據(jù)已知例題,變換題干函數(shù)解析式和已知量,有 f(x)=log3mx2+8x+4的值域為R,求解函數(shù)中m的取值范圍。

    解:設(shè)t=mx2+8x+4,則有t需要可以取到所有實數(shù)均大于0,

    因此,當m=0時,t可以取到的實數(shù)均大于0;

    當m≠0時,m>0且Δ≥0,0

    ③根據(jù)已知例題,變換題干函數(shù)解析式和問題,有f(x)=log3mx2+8x+nx2+1的定義域為R,值域為[0,2],求m,n的值。

    解:根據(jù)題意,假設(shè)y=mx2+8x+nx2+1∈[1,9],可得(y-m)x2+8x+(y-n)=0。

    當y≠m的時候,Δ≥0即y2-(m+n)y+mn-16≤0,

    因此,在1和9為方程的解時,y2-(m+n)y+mn-16=0有兩個實數(shù)解,

    所以m=n=5,

    當y=m時,x=n-m8=0,因為x∈R,滿足題意,所以m=n=5。

    通過示例我們可以了解到,函數(shù)的解題方法大同小異,無論多么復雜的函數(shù)解析式,只要學生在學習時掌握函數(shù)的基本形式,了解函數(shù)的特點,那么很容易就可以找出函數(shù)應用問題的解題規(guī)律和思路。

    三、 借助“一式變用”,培養(yǎng)學生思維的深刻性

    在高中數(shù)學中,學生學習累積到很多公式,除三角函數(shù)的相關(guān)公式數(shù)量最多,還有很多像橢圓、雙曲線、拋物線等的相關(guān)公式應用,教師借助“一式變用”的方法,培養(yǎng)學生思維能力,使學生對公式能夠有更為深入的應用和認識?;A(chǔ)公式的學習時,需要學生掌握公式的推導過程,這有利于學生發(fā)現(xiàn)數(shù)學特征,通過自身推導體驗可以加深對公式的印象,使學生在應用的時候避免出現(xiàn)錯誤。在了解公式推導后,學生需要在教師的幫助下理解公式的變換,使公式的潛在功能能夠被學生全面掌握。高中數(shù)學學習中,學生也會學到很多重要的公式,為了使學生對公式的學習融會貫通,教師在教學中可以借助例題變換公式,幫助學生開發(fā)數(shù)學潛能,培養(yǎng)思維深刻性。在人教版高中數(shù)學教學中,常有定理,概念變式。

    例如,在平面中同定點N1N2的距離和始終等于一個常數(shù)a(a>|N1N2|),則該點的軌跡為什么?

    答:橢圓。

    變式后可以為:在平面中同定點N1N2的距離差始終等于一個常數(shù)a(a<|N1N2|),則該點的軌跡為什么?

    答:雙曲線。

    教師根據(jù)變式教學法,使學生更容易理解雙曲線同橢圓軌跡之間的區(qū)別和聯(lián)系,加深了學生對概念的理解和認識。除此之外,“一式變用”還可以應用在定理公式中,以及練習題中,它們的作用都是為了加深學生對相關(guān)知識的印象。

    四、 結(jié)語

    在高中數(shù)學中,學生需要全方位的掌握數(shù)學基礎(chǔ)知識,這樣才能夠做到數(shù)學練習時可以舉一反三,運用自如,為此培養(yǎng)學生的數(shù)學思維能力,是極其有必要的。教師利用例題變式的方法加強學生數(shù)學思維養(yǎng)成,不僅僅對學生高中數(shù)學知識的學習有重要幫助,更是對學生今后在探索新知的能力上有重要意義。

    參考文獻:

    [1]田軍,郭婷婷.小學數(shù)學課堂發(fā)展思維能力的策略研究[J].華夏教師,2017(20):74.

    [2]湯運紅.小學數(shù)學教學中學生邏輯思維能力培養(yǎng)初探[J].中小學教學研究,2017(7):45-46+64.

    作者簡介:

    吳建文,福建省福鼎市,福建省福鼎市第一中學。

    猜你喜歡
    變式例題高中數(shù)學
    一道拓廣探索題的變式
    由一道簡單例題所引發(fā)的思考
    聚焦正、余弦定理的變式在高考中的應用
    由一道簡單例題所引發(fā)的思考
    課后習題的變式練習與拓展應用
    向量中一道例題的推廣及應用
    問題引路,變式拓展
    問渠哪得清如許 為有源頭活水來
    數(shù)學歸納法在高中數(shù)學教學中的應用研究
    商洛市| 松阳县| 洛南县| 临泉县| 定南县| 日土县| 上思县| 白沙| 岚皋县| 嘉祥县| 常宁市| 舟曲县| 磐安县| 通化市| 克什克腾旗| 嘉祥县| 虞城县| 囊谦县| 五河县| 璧山县| 南雄市| 瑞丽市| 安西县| 喀喇| 宜丰县| 嘉义市| 濮阳市| 神木县| 普格县| 临澧县| 合江县| 通州区| 六安市| 加查县| 米泉市| 永昌县| 罗定市| 大方县| 刚察县| 古蔺县| 连山|