• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      圓周運動中的速度極值分析

      2019-04-24 01:44:34黃麗英
      考試周刊 2019年38期
      關(guān)鍵詞:圓周運動向心力

      摘 要:圓周運動知識在高中物理的考查中極為頻繁,而當中的變速圓周運動往往讓學生頭疼不已,變速圓周運動常與牛頓第二定律、復(fù)合場、能量等知識點結(jié)合出現(xiàn)在各種試題中。本文嘗試從受力特征來分析圓周運動中的極值問題。

      關(guān)鍵詞:圓周運動;最大速度;最小速度;向心力;徑向合力

      筆者發(fā)現(xiàn)在3-1的《導(dǎo)與學》中有這樣的一道題目:

      固定在光滑絕緣水平面上的a,b兩點,分別放置有兩個正點電荷Q1=Q和Q2=4Q,a、b兩點相距L,且a,b兩點正好位于水平放置的光滑絕緣半圓細管兩個端點的出口處,如圖所示。

      (1)現(xiàn)將另一正點電荷靠近a處,沿a、b連線上靜止釋放,求它在ab連線上運動過程中達到最大速度時的位置離a點的距離。

      (2)若把該點電荷放于絕緣管內(nèi)靠近a點處由靜止釋放,已知它在管內(nèi)運動過程中速度為最大時的位置在P處。試求出圖中Pa和ab連線的夾角θ。

      解:

      (1)設(shè)正點電荷電量為q,當速度達到最大時,滿足該電荷所受合力為零,即

      kQ1qx2=kQ2q(L-x)2

      解得x=L3

      (2)對做圓周運動的點電荷,當庫侖力的合力沿OP方向時,它在P點處速度最大,即此時滿足

      F2F1=k4Qq(2Rsinθ)2kQq(2Rcosθ)2=4cos2θsin2θ

      tanθ=34

      即得θ=arctan34

      兩小題都是考查速度的最大值位置。其中第(1)小題考查的是直線運動的最大值,即加速度為零,合力為零的位置。而第(2)小題很多學生看了答案也不明白為什么P點速度最大值是兩個力的合力方向沿著OP也就是半徑方向。這就必須涉及曲線運動的極值問題。

      在分析第(2)小題時,可以先復(fù)習曲線運動產(chǎn)生的條件,提出徑向合力和切向合力的作用效果分別是改變速度的方向和速度的大小。所以勻速圓周運動只有徑向合力,而輕繩模型中的小球(除最高點和最低點外)既有徑向合力又有切向合力,速度的大小和方向同時改變。然后再對本題中的帶點小球進行受力分析,即小球由于放置水平面,重力和支持力相互抵消,小球在兩個庫侖力和徑向彈力的作用下做圓周運動,結(jié)合初始運動狀態(tài)不難發(fā)現(xiàn),當合力只沿著半徑方向時,切向合力為零,速度將達到極值。

      本題還可以繼續(xù)拓展為復(fù)合場的最高點和最低點極值問題以及輕繩模型中脫離軌道的高度。

      如圖所示,豎直平面內(nèi)有一半徑為r的絕緣細圓環(huán),一水平勻強電場與圓環(huán)平面平行,場強為E。環(huán)上套有一電量為+q、質(zhì)量為m的小球,忽略一切摩擦力。電場力大小等于重力,重力加速度為g,若小球能完成完整的圓周運動,則

      (1)小球經(jīng)水平直徑左端A點時的速度大小是多少?

      (2)當小球運動到圓環(huán)的最低點B點時,速度又是多少?此時圓環(huán)對小球的作用力是多少?

      解:

      (1)在小球從C點到A點的過程中,由動能定理可得

      mgrsin45°-qE(r-rcos45°)=12mv2A-0

      計算得出vA=2(2-1)gr

      (2)在小球從C點到B點的過程中,由動能定理可得

      mg(r+rsin45°)+qErcos45°=12mv2B-0

      計算得出vB=2(2+1)gr

      在B點時,由牛頓第二定律可得

      N-mg=mv2Br,

      計算得出N=(22+3)mg

      本題考查的是復(fù)合場中的豎直面內(nèi)圓周運動,屬于輕桿模型,涉及動能定理和牛頓第二定律。

      如果對小球受力分析,先找到小球的平衡點,即圖中D點,為小球能靜止的點。本題學生也可以將勻強電場和重力場等效為與X軸成45度的斜向下的復(fù)合場。D點為等效最低點,而C點就相應(yīng)為等效最高點。這兩點的特征就是只有徑向合力,切向合力為零,必然為速度的極值點。

      對于曲線運動的速度極值問題,此類相似問題還有如下題型:

      如圖所示,半徑為R的3/4圓弧形光滑軌道放置于豎直平面內(nèi),A端與圓心O等高,AD為水平面,在O的正上方的B點為光滑軌道的最高點,在A點正上方某處由靜止釋放一小球,自由下落至A點時,進入圓軌道,且通過B點時受到軌道的彈力為mg(設(shè)忽略過A點進入圓軌道時的機械能損失),最后落到水平面C點處.求:

      (1)釋放點距A點的豎直高度h和落點C到A點的水平距離x。

      (2)若將小球由h=R處靜止釋放,請問小球能否通過最高點B點,若不能通過,請求出脫離圓軌道的位置E與O的連線與豎直方向夾角的正弦值。

      解:

      (1)小球通過最高點B點時,由牛頓第二定律,有:

      mg+FN=mv2BR

      又FN=mg

      計算得出:VB=2gB

      設(shè)釋放點到A點高度為h,小球從釋放到運動至B點的過程中,

      根據(jù)動能定理,有:mg(h-R)=12mv2B

      計算得出:h=2R,

      由平拋規(guī)律:R=12gt2

      x=vBt,

      聯(lián)立計算得出x=2R,所以C點距A點距離:

      Δx=2R-R=R

      (2)小球到達B點時最小速度

      若能到達最高點應(yīng)滿足mgR=12mv2+mgR,

      顯然不可能成立,即不能到達最高點。

      設(shè)到最高點E的速度為vE,

      E與O的連線與豎直方向夾角θ,由動能定理有:

      mgR(1-cosθ)=12mv2B ①,

      在E點脫離軌道時有:mgcosθ=mv2ER ②

      聯(lián)立①②計算得出:cosθ=23

      所以sinθ=53

      該題是綜合考查了牛頓第二定律、豎直面圓周運動及平拋的知識點。(1)題的關(guān)鍵是小球在B點時列出牛頓第二定律方程,再結(jié)合動能定理和平拋規(guī)律即可求解.比較常規(guī)容易。(2)題的關(guān)鍵是能否判定出為過山車模型,設(shè)小球能到達最高點,根據(jù)牛頓第二定律求出到達最高點的最小速度為

      gR,與動能定理矛盾,說明不能到達最高點。這個問題相對常規(guī),一般學生問題不大。難點在于脫離軌道的位置。此時設(shè)出E與O點連線的夾角,再受力分析,根據(jù)動能定理和脫離軌道時徑向合力提供向心力兩個方程聯(lián)解求出。

      三道題雖然所處背景不同,但是都涉及曲線運動的極值問題。而徑向合力提供向心力,只改變速度的方向,切向合力改變速度的大小,這一原理都是學生理解這三道題的關(guān)鍵。

      參考文獻:

      [1]謝保國.2006年高考理綜模擬試題二[J].上海蔬菜,2002(1):36-37.

      [2]張永興.電磁學復(fù)習綜合訓(xùn)練題[J].高中生之友,2006(7):27-30.

      [3]劉建成.關(guān)于2003年高考物理試卷的分析[J].物理教師,2003(11):54-56.

      [4]周玲李耀武.三種場中的圓周運動[J].當代電視,2011(10):41-4.

      作者簡介:黃麗英,福建省石獅市,福建石獅第八中學。

      猜你喜歡
      圓周運動向心力
      凝聚僑胞向心力 譜寫時代新篇章
      華人時刊(2023年15期)2023-09-27 09:05:24
      馬向明:雙“星”交匯,打造灣區(qū)最強向心力!
      合村不是一味“攤大餅”——合力為要:凝聚向心力量
      當代陜西(2021年5期)2021-05-21 07:56:22
      為譜寫新篇章提供強大“向心力”——黨的十九大以來陜西省精神文明建設(shè)綜述
      當代陜西(2021年1期)2021-02-01 07:17:42
      物理復(fù)習課六步驟“P—G—R”教學模式課堂初探
      考試周刊(2016年102期)2017-01-17 04:29:56
      透過高考把握《生活中的圓周運動》 教學
      考試周刊(2016年76期)2016-10-09 08:16:59
      生活中的圓周運動問題歸類解析
      向心力要點精講
      《圓周運動》的教學及磨課體會
      巧用廢舊筆芯演示圓周運動的速度方向
      贵溪市| 顺平县| 巴里| 扶余县| 理塘县| 奉化市| 北碚区| 扎兰屯市| 萍乡市| 兴海县| 寿光市| 太白县| 华安县| 吉林市| 油尖旺区| 门头沟区| 环江| 阿克苏市| 齐河县| 拉萨市| 湾仔区| 天全县| 齐齐哈尔市| 贵港市| 突泉县| 龙南县| 建宁县| 木兰县| 长沙县| 安平县| 东至县| 确山县| 平南县| 双牌县| 原平市| 鄂托克旗| 浦江县| 稷山县| 翁牛特旗| 洪雅县| 尼勒克县|