曹俊玲
【摘要】STEM(即:Science、Technology、Engineering、Mathematics)是科學(xué)、技術(shù)、工程、數(shù)學(xué)四門學(xué)科的簡寫。其中S(科學(xué))作為人們認識客觀世界的規(guī)律;而T(技術(shù))和E(工程)則是基于客觀規(guī)律的基礎(chǔ)上之上進行改造,M(數(shù)學(xué))是T(技術(shù))和E(工程)的基礎(chǔ)工具。本文結(jié)合初中數(shù)學(xué)探討STEM教育的實施思路,為更好對于應(yīng)用STEM教育給出參考。
【關(guān)鍵詞】初中 數(shù)學(xué) STEM 教育
【中圖分類號】G633.6 【文獻標(biāo)識碼】A 【文章編號】2095-3089(2018)07-0127-02
日常生活中的大部分問題都需要綜合運用科學(xué)、技術(shù)、工程以及數(shù)學(xué)知識來解決,正是基于這種構(gòu)想美國國家科學(xué)委員會20世紀80年代提出STEM教育。初中數(shù)學(xué)課程中STEM教育,就是以問題為導(dǎo)向,培養(yǎng)學(xué)生綜合數(shù)學(xué)思維,將學(xué)科知識與科學(xué)、工程、技術(shù)概念相融合,從而解決實際問題的能力。
一、初中數(shù)學(xué)課程中的STEM教育初探
(一)注重數(shù)學(xué)思想的掌握
初中數(shù)學(xué)的掌握,不僅應(yīng)從知識結(jié)構(gòu)的本身、學(xué)科內(nèi)容的學(xué)習(xí)過程進行全面了解,同時還應(yīng)重視數(shù)學(xué)思維的培養(yǎng)。數(shù)學(xué)思維的培養(yǎng)包括常見的遷移思維、數(shù)形結(jié)合思維、類比思維以及統(tǒng)計分析思維等。數(shù)形結(jié)合思維多見于方程函數(shù)問題,通過將具體問題轉(zhuǎn)變?yōu)槌R姷臄?shù)學(xué)模型進行求解,變抽象為具體,實現(xiàn)復(fù)雜問題向通用問題的轉(zhuǎn)變;而類比思維多見于,相似問題的求解過程,例如多邊形面積求解,通過對平行四邊形的切割將其轉(zhuǎn)變?yōu)殚L方形問題,實現(xiàn)問題的有效解決;統(tǒng)計分析則是總結(jié)大量的實際量,通過分析得出來的結(jié)論,例如拋硬幣1/2的概率求解就是以大量的統(tǒng)計學(xué)規(guī)律為基礎(chǔ)的。通過數(shù)學(xué)思維的掌握,學(xué)生能夠?qū)W會分析問題,將抽象的、未知的、復(fù)雜問題轉(zhuǎn)變?yōu)橐话阈缘臄?shù)學(xué)問題,從而獲得求解,這是STEM教育中的基本思想。
(二)以數(shù)學(xué)印證科學(xué)
STEM中S(科學(xué))作為客觀事物的基本規(guī)律,是人們認識世界的基礎(chǔ)。數(shù)學(xué)作為印證科學(xué)規(guī)律的基本工具,發(fā)揮了關(guān)鍵性的作用。以初中物理學(xué)中追趕問題速度、時間、距離的關(guān)系,力學(xué)中面積壓強的關(guān)系等為例,正是中學(xué)數(shù)學(xué)中y=ax反比例函數(shù)的應(yīng)用過程。如果學(xué)生對于高中物理的重力加速度問題有所了解,通過數(shù)學(xué)中拋物線就可得到完美的解釋。因此,在初中數(shù)學(xué)學(xué)習(xí)過程中,應(yīng)加強科學(xué)思維的灌輸,以唯物主義價值觀引導(dǎo)數(shù)學(xué)的學(xué)習(xí),而并不像傳統(tǒng)數(shù)學(xué)學(xué)習(xí)過程中相對孤立和單純的進行學(xué)習(xí),從而抽象出數(shù)學(xué)思維,印證科學(xué)觀點,這對于培養(yǎng)學(xué)生嚴密的邏輯思維和科學(xué)的求知觀具有十分重要的意義。
(三)技術(shù)中的數(shù)學(xué)應(yīng)用
技術(shù)通常是解決實際問題的方法,通過數(shù)學(xué)技術(shù)往往能夠得到更好的技術(shù)應(yīng)用。以計算機領(lǐng)域中“算法”設(shè)計的問題為例,基本思路是以空間換時間,衡量一個算法的好壞就是要均衡考量算法中對于存儲空間、運行時間的消耗,將綜合性能比作一個整體的話,時間和空間就是一對反比例函數(shù),過分的占用空間是不利的,而無休止的浪費時間同樣是不可取的,這種平衡用反比例函數(shù)同樣能夠得到完美的解釋,這就是技術(shù)之美、數(shù)學(xué)之美。除此之外,利用計算機技術(shù)表述函數(shù)和方程,可以更加直觀的觀察參數(shù)對于函數(shù)圖像的影響,其背后都是數(shù)學(xué)知識的有效應(yīng)用,在實際的教學(xué)過程中可以借助于一些多媒體技術(shù),展示函數(shù)的變化情況,讓學(xué)生更加直觀的了解數(shù)學(xué)知識在技術(shù)中的應(yīng)用。
(四)工程中的數(shù)學(xué)應(yīng)用
工程問題的求解往往就是數(shù)學(xué)邏輯的轉(zhuǎn)換,數(shù)學(xué)與工程問題有著緊密的聯(lián)系。最為常見的數(shù)學(xué)應(yīng)用——三角形的穩(wěn)定性,在房屋建筑工程領(lǐng)域有著極其廣泛的應(yīng)用,直角三角形中斜線小于兩個直角邊距離之和也是地圖規(guī)劃路徑的工程應(yīng)用實例,當(dāng)然這都是簡單的工程數(shù)學(xué)應(yīng)用。鑒于初中學(xué)生數(shù)學(xué)難度有限,在STEM教育中可以采取相對簡單的工程實例進行講解,將工程問題背后蘊含的數(shù)學(xué)思維進行闡述,讓學(xué)生體會到數(shù)學(xué)的魅力,從而學(xué)會發(fā)現(xiàn)問題、思考問題,并逐漸形成運用數(shù)學(xué)思維解決生活中實際問題的能力,而這正是STEM教育的核心要求。
二、在初中數(shù)學(xué)課程中實施STEM教育建議
就目前而言,我國STEM教育仍處于起步階段,科學(xué)、技術(shù)、工程與數(shù)學(xué)學(xué)科的融合多見于高等院校階段甚至研究生階段,在初中就實施STEM教育極其少見,鑒于此,建議教育主管部門做好頂層設(shè)計,將STEM教育納入到初中階段的數(shù)學(xué)教育過程中來。在此基礎(chǔ)之上,通過加大社會投入,實施STEM項目等方式逐漸培育學(xué)生綜合應(yīng)用能力,以生活實例為背景,構(gòu)建數(shù)學(xué)模型,不斷提升學(xué)生分析問題、思考問題以及解決問題的能力,當(dāng)然初中階段作為簡單數(shù)學(xué)應(yīng)用的學(xué)習(xí)階段,不建議涉及過于復(fù)雜的STEM教育問題,可以循序漸進的進行實施??傊琒TEM教育項目是一項系統(tǒng)性的工程建設(shè),并不是簡單的一紙文件就能得到有效的貫徹實施,需要教育主管部門、教師意識、學(xué)生參與、STEM投入等方面的綜合性投入才能有所獲得教育工程。
三、小結(jié)
綜上所述,STEM教育就是通過整合科學(xué)、技術(shù)、工程以及數(shù)學(xué)教育,來提升學(xué)生分析、解決問題的綜合能力,在初中數(shù)學(xué)課程中實施STEM教育,應(yīng)在數(shù)學(xué)思維的培養(yǎng)、科學(xué)意識運用、技術(shù)和工程中數(shù)學(xué)問題的探究等方面共同入手,不斷提升STEM教育實施的有效性。
參考文獻:
[1]丁紅霞.STEM教育模式下的研究性學(xué)習(xí)教學(xué)探索與實踐[J].好家長,2017(57):56-57.
[2]孫海榮.“STEM”視角下的初中數(shù)學(xué)教學(xué)[J].數(shù)學(xué)教學(xué)通訊,2017(14):45-46.