• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      圓錐曲線上四點(diǎn)共圓解決策略

      2018-08-17 09:35:50陽(yáng)友雄
      關(guān)鍵詞:共圓圓錐曲線

      陽(yáng)友雄

      【摘要】圓錐曲線一直是高考的熱點(diǎn)問(wèn)題,本文針對(duì)圓錐曲線上的四點(diǎn)共圓問(wèn)題提出兩種解決策略,一是利用共圓定理,二是利用曲線系

      【關(guān)鍵詞】圓錐曲線;共圓;曲線系

      一、圓錐曲線上四點(diǎn)共圓定理

      若A,B,C,D為有心圓錐曲線mx2+ny2=1(m≠n)上四個(gè)不同的點(diǎn),且直線AB與CD交于E,AB與CD傾斜角分別為α,β,則A,B,C,D共圓的充要條件是α+β=π.

      證明設(shè)E(x0,y0),則直線AB參數(shù)方程為

      x=x0+tcosα,y=y0+tsinα (t為參數(shù)),代入mx2+ny2=1,

      并整理得(mcos2α+nsin2α)t2+2(mx0cosα+ny0sinα)t+(mx20+ny20-1)=0,

      則EA·EB=|t1t2|=mx20+ny20-1mcos2α+nsin2α,

      同理得EC·ED=mx20+ny20-1mcos2β+nsin2β.

      因?yàn)锳,B,C,D四點(diǎn)共圓的充要條件是EA·EB=EC·ED,

      所以mcos2α+nsin2α=mcos2β+nsin2β,

      即m+(n-m)sin2α=m+(n-m)sin2β.

      因?yàn)閙≠n,所以sin2α=sin2β,又α,β∈[0,π),

      所以sinα=sinβ.

      而直線AB與CD相交,所以α≠β,

      由sinα=sinβα+β=π.

      綜上所述,A,B,C,D四點(diǎn)共圓的充要條件是α+β=π,即AB與CD斜率互為相反數(shù).

      二、圓錐曲線上四點(diǎn)共圓定理的應(yīng)用

      例1(2011年全國(guó)高考卷2理科第21題)已知O為坐標(biāo)原點(diǎn),F(xiàn)為橢圓C:x2+y22=1在y軸正半軸上的焦點(diǎn),過(guò)F且斜率為-2的直線l與C交于A,B兩點(diǎn),P-22,-1關(guān)于O的對(duì)稱(chēng)點(diǎn)為Q,求證:A,P,B,Q四點(diǎn)共圓.

      證明由P點(diǎn)坐標(biāo)可知點(diǎn)P在橢 圓C′上,則點(diǎn)Q也在橢圓C′上.因?yàn)镻,O,Q三點(diǎn)共線,故得PQ的方程為y=2x,又AB的方程為y=-2x+1,兩直線斜率互為相反數(shù),即兩直線傾斜角互補(bǔ),根據(jù)定理可知A,P,B,Q四點(diǎn)共圓.

      例2(2016年高考四川卷文科第20題)已知橢圓x24+y2=1,過(guò)原點(diǎn)O且斜率為12的直線l交橢圓于不同兩點(diǎn)A,B,線段AB中點(diǎn)為M,直線OM與橢圓交于C,D.

      求證:MA·MB=MC·MD.

      證明設(shè)直線l的方程為y=12x+m,代入橢圓方程整理得x2+2mx+(2m2-2)=0,則xA+xB=-2m,因?yàn)镸為線段AB的中點(diǎn),所以xM=xA+xB2=-m,故yM=12m,所以M-m,12m,故直線OM的方程為y=-12x,故直線AB與CD的斜率互為相反數(shù).

      根據(jù)共圓定理得A,B,C,D四點(diǎn)共圓,根據(jù)相交弦定理得MA·MB=MC·MD.

      三、利用曲線系解決圓錐曲線四點(diǎn)共圓問(wèn)題

      我們利用曲線系解決例1中的問(wèn)題

      (2011年全國(guó)高考卷2理科第21題)已知O為坐標(biāo)原點(diǎn),F(xiàn)為橢圓C:x2+y22=1在y軸正半軸上的焦點(diǎn),過(guò)F且斜率為-2的直線l與C交于A,B兩點(diǎn),P-22,-1關(guān)于O的對(duì)稱(chēng)點(diǎn)為Q,求證:A,P,B,Q四點(diǎn)共圓.

      證明首先易得直線PQ的方程為y=2x,又直線AB的方程為y=-2x+1,所以直線AB與PQ可合并為(2x+y-1)(2x-y)=0,又橢圓方程為2x2+y2-2=0,

      故過(guò)A,P,B,Q的二次曲線系方程為(2x+y-1)(2x-y)+λ(2x2+y2-2)=0,

      整理得(2λ+2)x2+(λ-1)y2-2x+y-2λ=0,(*)

      方程(*)若表示圓,則必有2λ+2=λ-1λ=-3,

      此時(shí)方程(*)為4x2+4y2+2x-y-6=0,

      即x+282+y-182=9964,

      所以A,P,B,Q四點(diǎn)在同一個(gè)圓x+282+y-182=9964上.

      猜你喜歡
      共圓圓錐曲線
      “脫貧奔小康 共圓中國(guó)夢(mèng)”獲獎(jiǎng)歌詞選登
      心聲歌刊(2020年6期)2021-01-14 00:23:36
      “脫貧奔小康 共圓中國(guó)夢(mèng)”原創(chuàng)詞、曲征集啟事
      心聲歌刊(2020年2期)2020-06-16 03:37:30
      愛(ài)心共圓“歸鄉(xiāng)夢(mèng)”
      圓錐曲線中定點(diǎn)問(wèn)題的常見(jiàn)方法
      考試周刊(2016年101期)2017-01-07 18:14:48
      探究發(fā)散思維教學(xué)法在高中數(shù)學(xué)課堂教學(xué)中的應(yīng)用
      考試周刊(2016年55期)2016-07-18 22:58:16
      解析高考數(shù)學(xué)圓錐曲線的復(fù)習(xí)策略
      考試周刊(2016年46期)2016-06-24 22:15:48
      高中圓錐曲線綜合題求解之初探
      考試周刊(2016年37期)2016-05-30 13:44:20
      例談高考中的“四點(diǎn)共圓”問(wèn)題
      同寫(xiě)中國(guó)字共圓中國(guó)夢(mèng)
      基于考題分析的圓錐曲線內(nèi)容備考探究
      考試周刊(2016年14期)2016-03-25 02:30:35
      九寨沟县| 永宁县| 会昌县| 图片| 绍兴县| 盐城市| 德安县| 化州市| 改则县| 彝良县| 城固县| 柞水县| 都匀市| 澄江县| 南岸区| 玉环县| 长春市| 台安县| 长治县| 石林| 临夏市| 镇江市| 岢岚县| 潞西市| 溆浦县| 龙川县| 晋宁县| 怀化市| 剑川县| 江西省| 文登市| 河曲县| 渭源县| 邢台市| 齐齐哈尔市| 荔波县| 鹿邑县| 香河县| 阿巴嘎旗| 邻水| 射阳县|