• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Increased Salinity on Growth, Development and Survival in Early Life Stages of the Green Toad Bufotes variabilis (Anura:Bufonidae)

    2018-06-28 03:17:44SoheylaYAGHOBISomayeVAISSIZeynabTaheriKHASandMozafarSHARIFI
    Asian Herpetological Research 2018年2期

    Soheyla YAGHOBI, Somaye VAISSI, Zeynab Taheri KHAS and Mozafar SHARIFI

    Razi University Centre for Environmental Studies, Department of Biology, Baghabrisham 67149, Kermanshah, Iran

    1. Introduction

    Amphibian populations worldwide are in decline due to a variety of factors including habitat destruction,climate change, diseases, introduction of exotic species,and environmental contamination (Petersonet al., 2002;Stuartet al., 2004). Susceptibility to these factors differs among species and populations (Langhanset al., 2009),and depends, in part, on environmental conditions such as water chemistry (Blaustein and Kiesecker, 2002).Salinity is one of several parameters of water chemistry that influences the survival, development, and fitness of amphibians, and may act as a significant factor in the decline of amphibians (Sparlinget al., 2000). Emphasis on the effects of sodium chloride on amphibians has been placed only recently (Karraker and Ruthig, 2009).However, many amphibian species breed in agricultural run off or storm water ponds, which are located along or close to roads and are expected to come into contact with road de-icing agents that are often applied just before their breeding seasons (Snodgrasset al. 2008).

    Road de-icers (dry or liquid chemicals able to lower the freezing point of water) are used in temperate and cold regions worldwide when harsh climatic conditions affect road traffic. In most cases, the active agent used in road de-icers is sodium chloride (Ramakrishna and Viraraghavan, 2005). The salts used in de-icers can run off through overland flow, groundwater infiltration and aerosol sprays to reach various wetlands in the washbasin and causes contamination (Marsalek, 2003; Karraker,2008). De-icing agents, primarily road salt, are applied to roads in 26 states in the United States (Daleyet al., 2009)and in a number of European countries (Karraker, 2007;Wijethungaet al., 2016), however, the scale of impacts of road salt on aquatic organisms remains largely understudied (Corsiet al., 2010; Findlay and Kelly, 2011;Petranka and Francis, 2013; Niyogiet al., 2016). In Iran a mixture of sand and salt is normally used as road de-icer in western and northern part of the country where there is normally a long period of freezing in winter. There are reports of associations between road de-icing, salinity in ground water along highway (Reyahiet al., 2011) and also in surface run off (Aghazadeh etal., 2012) in Iran.

    Salinity is one of the important environmental factors affecting survival, growth and distribution of many aquatic organisms (Kumluet al., 2000; Chandet al.,2015). Most amphibians do not adapt well to brackish water because their skin is highly permeable, posing problems for water and ion balance (Duellman and Trueb,1986). Moderate salinity of 2–9 ppt (parts per thousand)can decrease survival, growth, and development(Chinathambyet al., 2006; Sanzo and Hecnar, 2006), and cause morphological abnormalities, such as distortion of tail, abdominal edema and emaciated appearance together with reduction in body water content (Chinathambyet al.,2006; Karraker, 2007). Despite the evidences provided for some populations of amphibian showing that they can locally adapt to saline environments, evidence is emerging that this may not always be possible (Brady, 2013).Several reports of populations of various species such asRana temporaria,Buergeriajaponica,Kaloula pulchra,Microhyla ornata,andBufo bufohave further concluded that salinity causes negative effects onsurvival, growth,development, metamorphosis and behavior of tadpoles(Gordonet al., 1961; Ackrillet al., 1969; Ferreira and Jesus, 1973; Viertel, 1999; Haramura, 2007; Karrakeret al., 2010). In contrast, other species, such asFejervarya cancrivora,F. limnocharis,Bufotes balearicus,Epidalea calamita,Litoria aureaandHoplobatrachus tigerinuscan tolerate higher salinity by maintaining high level of urea in the blood (e. g.,F. cancrivora) or through gradual acclimation to increasing salinity in laboratory experiments (Christy and Dickman, 2002; Gomez-Mestre and Tejedo, 2003; Wu and Kam, 2009).

    Most studies on the effects of salt on amphibians have focused on the adult or larval stage, ignoring the eggs,despite some evidence suggesting that embryos and tadpoles may in fact be the most susceptible life-history stage to salt (Karraker and Ruthig, 2009; Nakkrasaeet al., 2016). Adult amphibians rely on integumentary system to retain body fluids through ionic exchange and the ability to hyper synthesize and retain urea to increase body osmolarity (Shoemaker and Nagy, 1977; Balinsky,1981; Katz, 1989). The green toad,Bufotes variabilis(Pallas, 1769), is a common toad of Iran and has a wide distribution in most provinces. This toad is rarely found in central and eastern areas of Iran (Masshaiiet al.,2008). Whether salinity change interferes with hatching,survival, growth and development ofB. variabilistadpoles is unknown. Therefore, main purposes of this study are to examine the influence of salinity on the (1)growth, (2) development and (3) survival of embryos and larvae ofB. variabilis.

    2. Materials and Methods

    Eggs (embryos within their jelly capsule, Gosner Stage 10–11) from a single cohort ofB. variabiliswere collected on May 2016 in Sarable (34°32' N, 47°01' E),Kermanshah Province, Iran. All eggs of the same trial were at the same stage. Eggs were cultured at various salinities, 0.20, 0.70, 1.70, 2.70, 3.70, 4.70, 5.70, 6.70,7.70, 8.70 and 10 g/l. The salinity we used in this study has been determined based on the expected toleration of a freshwater amphibians reported in the scientific literature ranging from tap water (0.20 g/l) to hyper saline water(10 g/l). Freshwater is generally defined as water in which salinity is less than 3 g/l and sea water as 35 g/l (Nielsenet al., 2003). Each treatment was replicated 3 times for a total of 33 containers (14 cm height and 14 cm diameter),each filled with 2l of dechlorinated tap water with salinity of 0.20 g/l. All containers had 20 eggs, Gosner Stage 14–15. In this study developmental stages are followed as defined by Gosner (1960): embryo <25, hatchling 17–20,larvae >25. The experiment was conducted on a 12h dark:12h light photoperiod at approximately 18°C. Light was supplied by 18 metal halide lamps hanged over laboratory benches to provide a broad spectrum of photosynthetically available irradiant. After hatching larvae were fed with raw spinach: 1 g four times per week for every container.We monitored experimental containers twice a day and removed the bodies of larvae that had died. The larvae were taken out and container were cleaned thoroughly.We did not use any chemical cleaner for this purpose.

    We evaluated the impact of salt water on growth of body size by measuring changes in snout to vent length(SVL) during larval period. Regression equations were used to derive the growth rates from the values of length of SVL. Survival was determined as the percent of remaining individuals during embryo and larval period.Photos were taken with a digital camera (SONY, DSCHX9V, 3.6V) on a tripod at a fixed height (30 cm). The larvae were put in a Petri dish which was located over latticed paper. Immediately after photography the larvae were released into their containers. All pictures were analyzed using Digimizer version 4.6.0 (http://digimizer.findmysoft.com/). We measured the snout to vent length(SVL: mm). SVLs were calculated by drawing a line from the tip of the snout to the tip of the vent. Measurements were performed at days 1, 6, 12, 18 and 24. When experiment was completed, the surviving larvae were returned to the pond where they were collected. One-way analysis of variance (ANOVA) was used to examine the effects of salinity on the rate of hatching and on growth,development and survival during embryonic, and larval period. All data are expressed as mean ± SD (standard deviation). The statistical program package SPSS (v. 16)was used for all analyses.

    3. Results

    In this study, salinity was found to markedly affect the rate of hatching among treatments (ANOVA,P≤0.001).Also, increase in water salinity extended hatching period.Eggs in salinity of 0.20 g/l to 3.70 g/l were hatched after 72 hours while eggs in salinity of 4.70 g/l to 5.70 g/l were hatched after 79.92 hours days. More delay in hatching was found for eggs in salinity 6.70 to 8.70 g/l,were hatched after 96 hours (Table 1). At salinity level of 10 g/1, all eggs shrank and died before hatching.Most unhatched eggs died as indicated by signs of opaqueness and shrinkage, while few eggs were alive but did not hatch. After being exposed to saline water for 24 h post hatching, there was a significant effect of salinity on survival (ANOVA,P≤0.001) of larvae.Approximately, 83.33% of hatched larvae in 0.20 g/l survived for 24 h. Hatched larvae in salinities of 0.70,1.70, 2.70, 3.70, 4.70, 5.70 and 6.70 g/l showed a survival rate of 71.66%, 78.33%, 80.66%, 78.66%, 75.33%, 70%and 66.33%, respectively, 24 h after hatching (Figure 1A). The percentage of survival of larvae to the end of the experiment (Gosner stage 30) was 80.00%, 66.66%,76.66%, 65%, 30% and 0.00% for the 0.20, 0.70, 1.70,2.70, 3.70 and 4.70 to 10 g/l treatments, respectively(Table 1, Figure 1). At salinities over 8.70 g/l unhatched and dead embryos appeared with signs of shrinkage and distorted appearance.

    Egg diameter ofB. variabiliswas on average 1.51 mm± 0.01, (Gosner stage 10–11) and jelly capsules diameter was 3.76 mm ± 0.12. Figure 2 and Table 1 demonstrates the average and standard deviation of the (SVL) during larval period ofB. variabilisfrom 6 to 24 days. Growth ofB. variabilisshowed significant difference in the third week (P≤0.05), (Figure 1B).Growth rate for SVL of larvae ofB. variabilisare shown in Table 1.Larvae growth rate of the 0.70 g/l (Linear regression, 0.26 mm/day) was fastest than 0.20 g/l (Linear regression, 0.24 mm/day) and followed by the 1.70 g/l (Linear regression,0.23 mm/day), 2.70 g/l (Linear regression, 0.22 mm/day)and 3.70 g/l (Linear regression, 0.15 mm/day).Various salinity treatments affected developmental rate in live embryos and larvae but this difference was not significant(ANOVA,P≤0.07). The Gosner stages for development of the eggs of the same clutch reared at four treatments of various salinity treatments at 6 to 24 days are shown in Table 1.

    4. Discussions

    The increase in water salinity in wetland and aquatic ecosystems can result from natural factors such as climate change or sea water intrusion into freshwater wetlands.Various man-made processes such as deforestation,excessive irrigation, salt mining, and road de-icing cause changes in water salinity (Nielsen and Brock, 2009).Increase in salt content in natural aquatic ecosystems under natural or anthropogenic processes is now recognized as a threat to the biological communitiesas a whole and represents an environmental stress for many species (Jinet al., 2011). Amphibians with their permeable skin are at risk in hyposaline and hypersaline water, because they gain or lose water across the skin surface at rates that may rapidly be fatal (Wijethungaet al., 2016). A highly permeable skin makes amphibian osmotically sensitive organisms, because their osmoregulation works at a certain range of water salinity(Gomez-Mestreet al., 2004; Haramura, 2007).

    Table 1 Percentage and time of hatching (Gosner stage 20) and survival rate of Bufotes variabilis larvae in various salinity treatments for 24 h (Gosner stage 26) and 24 days (Gosner stage 30) after hatching. Snout to vent length (SVL: Mean ± SD) was measured at 6 and 24 days.Growth rate (mm/day) of body size (SVL) is determined as daily increase of SVL during 6 and 24 days.

    Figure 1 Effect of different salinities on survival rate (%) of embryo (E) and larvae (L) of Bufotes variabilis from 1 to 24 days(age). ***: P≤0.001; **: P≤0.01; *: P≤0.05.

    Figure 2 Effect of different salinities on snout to vent length (mm)of larvae (L) of Bufotes variabilis from 1 to 24 days (age). ***:P≤0.001; **: P≤0.01; *: P≤0.05.

    Experimental evaluation of the impact of elevated salinity normally showed a considerable reduction in growth, and the rate of metamorphosis. These are also reports of associations between an increase in mortality rate in anuran adults and larvae (Christy and Dickman,2002). There is a general consensus in the literature that amphibian embryos are most sensitive to water salinity,followed by larvae, with adults being most tolerant (e. g.,Chinathambyet al., 2006; Brandet al., 2010; Petranka and Doyle, 2010; Bernabet al., 2013; Hopkinset al.,2014; Thirion, 2014). There are also some opposing data and evidence that show the sensitivity can also change with age within a particular life stage (Alexanderet al.,2012).

    Recent investigations indicated that de-icing salts were associated with reduced survival and increased frequency of malformations in some amphibians e.g. the Spotted Salamander,Ambystoma maculatum, and the Wood FrogRana sylvatica(Nakkrasaeet al., 2015). A reduction in survival in embryonicA. maculatumandR. sylvaticawas probably caused by physiological constraints imposed on embryos at higher salinities (Nakkrasaeet al., 2015).In contrast, survival of embryos and larvae of green frogs (Lithobates clamitans), which breed principally in permanent wetlands, was not significantly influenced but frequency of malformations increased with chloride concentration (Karraker, 2007). While a reduction in growth may result from the increased energy expense required for osmoregulation, delayed development may result from a decreased thyroid hormone (TH) level in response to hormonal involvement in osmoregulation(Gomez-Mestreet al., 2004).

    Present study covered embryonic, hatching and early larval periods in the course of 20 days after hatching. On this short period of exposure to different water salinity the reaction was slow or limited to retard development of eggs, hatchlings and larvae (Table 1) which may eventually lead to smaller size at metamorphosis. Weather this can result in a reduction in survival rate in adult is not known. There are several studies that show small body size at metamorphosis decreases the ability to tolerate dehydration (Newman and Dunham, 1994) and the likelihood of post-metamorphic survival (Smith,1987; Berven, 1990; Chelgrenet al., 2006). Present study did not cover entire developmental period but previous studies showed that time to metamorphosis of larvae decreased when reared in intermediate salinity treatments compared with freshwater or low salinity treatment.(Chinathambyet al., 2006; Sanzo and Hecnar, 2006;Wu and Kam, 2009).

    The Green Toad (B. variabilis)of Europe and the Middle East (Gordon, 1962) have been reported from aquatic environments of salinities as high as 2 g/l, in northern Europe (Gislén and Kauri, 1959). Results obtained from current experiment showed that impact of salinity on embryonic mortality, hatching and survival rate of larvae began at concentration over 3.70 g/l.Although present salinity of freshwater wetland where the eggs have been collected for this experiment is much lower than the water salinity in the laboratory but the interaction of a shortened metamorphosis period and a smaller body size at high salinity with other ecological factors is difficult to anticipate under natural condition.There are now increasing evidences showing that in many regions of the world a net negative impact of the recent climate change is expected to occur in freshwater ecosystems (IPCC 2007). However, the intensity and characteristics of the impact can significantly vary from region to region. In many arid and semi-arid regions such as Iran, trends toward warmer climate and increased precipitation variability are linked to warming streams and rivers (IPCC 2007). Amphibians are well adapted to environmental fluctuations but the novel situation resulting from the combined impact of various environmental factors may cause an irreversible impact on their existence.

    AcknowledgementsWe thank the Razi University for the support of this study as an MSc research project.Collection of Green Toad eggs was permitted by the Regional Office of Environment in Kermanshah Province.

    Ackrill P., Hornby R., Thomas S. 1969. Responses ofRana temporariaandRana esculentato prolonged exposure to a saline environment. Comp Biochem Physiol, 28(3): 1317–1329

    Aghazadeh N., Nojavan M., Mogaddam A. A. 2012. Effects of road-de-icing salt (NaCl) and saline water on water quality in the Urmia area, northwest of Iran.Arab J Geosci, 5(4): 565–570

    Alexander L. G., Lailvaux S. P., Pechmann J. H. K., DeVries Philip. J. 2012. Effects of salinity on early life stages of the Gulf Coast toad,Incilius nebulifer(Anura: Bufonidae). Copeia,2012(1): 106–114

    Balinsky J. B. 1981. Adaptation of nitrogen metabolism to hyperosmotic environment in Amphibia.J Exp Zool A Ecol Genet Physiol, 215(3): 335–350

    Bernab I., Bonacci A., Coscarelli F., Tripepi M., Brunelli E.2013. Effects of salinity stress onBufo balearicusandBufo bufotadpoles: tolerance, morphological gill alterations and Na+/K+-ATPase localization.Aquat Toxicol, 132: 119–133

    Berven K. A. 1990. Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica).Ecology, 71(4): 1599–1608

    Blaustein A. R., Kiesecker J. M. 2002. Complexity in conservation: lessons from the global decline of amphibian populations.Ecol Lett, 5(4): 597–608

    Brady S. P. 2013. Microgeographic maladaptive performance and deme depression in response to roads and runoff.Peer J, 1: e163

    Brand A. B., Snodgrass J. W., Gallagher M. T., Casey R. E.,Van Meter R. 2010. Lethal and sublethal effects of embryonic and larval exposure ofHyla versicolorto stormwater pond sediments.Arch Environ Contam Toxicol, 58(2): 325–331

    Chand B. K., Trivedi R. K., Dubey S. K., Rout S. K., Beg M.M., Das U. K. 2015. Effect of salinity on survival and growth of giant freshwater prawnMacrobrachium rosenbergii(de Man).Aquacul Rep, 2: 26–33

    Chelgren N. D., Rosenberg D. K., Heppell S. S., and Gitelman A.I. 2006. Carryover aquatic effects on survival of metamorphic frogs during pond emigration. Ecol Appl, 16(1): 250–261

    Chinathamby K., Reina R. D., Bailey P. C. E., Lees B. K. 2006.Effects of salinity on the survival, growth and development of tadpoles of the brown tree frog,Litoria ewingii.Aust J Zool,54(2): 97–105

    Christy M. T., Dickman C. R. 2002. Effects of salinity on tadpoles of the green and golden bell frog (Litoria aurea).Amphiba-Reptila, 23(1): 1–11

    Corsi S. R., Graczyk, D. J., Geis, S. W., Booth N. L, Richards K. D. 2010. A fresh look at road salt: aquatic toxicity and waterquality impacts on local, regional, and national scales.Environ Sci Technol, 44(19): 7376–7382

    Daley, M. L., Potter J. D., McDowell W. H. 2009. Salinization of urbanizing New Hampshire streams and groundwater: effects of road salt and hydrologic variability.J N Am Benthol Soc, 28(4):929–940

    Duellman W. E., Trueb L. 1986. Biology of amphibians.New York: McGraw-Hill, 670

    Ferreira H. G., Jesus C. H. 1973. Salt adaptation inBufo bufo.J physiol, 228(3): 583–600

    Findlay S. E. G., Kelly V. R. 2011. Emerging indirect and longterm road salt effects on ecosystems. Ann N Y Acad Scien,1223(1): 58–68

    Gislén T., Kauri H. 1959. Zoogeography of the Swedish amphibians and reptiles: With notes on their growth and ecology. Stockholm,Almqvist and Wiksell. Acta vertebratica, Vol. 1, No. 3

    Gomez-Mestre I., Tejedo M. 2003. Local adaptation of an anuran amphibian to osmotically stressful environments.Evolution 57(8): 1889–1899

    Gomez-Mestre I., Tejedo M., Ramayo E., Estepa J. 2004.Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress.Physiol Biochem Zool, 77(2):267–274

    Gordon M. S. 1962. Osmotic regulation in the green toad (Bufo viridis).J Exp Biol, 39(2): 261–270

    Gordon M. S., Schmidt-Nielsen K., Kelly H. M. 1961. Osmotic regulation in the crab-eating frog (Rana cancrivora). J Exp Biol,38(3): 659–678

    Gosner K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification.Herpetologica, 16(3):183–190

    Haramura T. 2007. Salinity tolerance of eggs of Buergeria japonica(Amphibia, Anura) inhabiting coastal areas.Zool sci, 24(8):820–823

    Haramura T. 2011. Use of oviposition sites by a rhacophorid frog inhabiting a coastal area in Japan.J Herpetol 45(4): 432–437

    Hopkins G. R., Brodie Jr. E. D., French S. S. 2014.Developmental and evolutionary history affect survival in stressful environments.PloS One, 9(4): e95174

    Jin L., Whitehead P., Siegel D. I., Findlay S. 2011. Salting our landscape: An integrated catchment model using readily accessible data to assess emerging road salt contamination to streams. Environ Pollut, 159(5): 1257–1265

    Karraker N. E. 2007. Are embryonic and larval green frogs (Rana clamitans) insensitive to road de-icing salt?.Herpetol Conserv Biol, 2: 35–41

    Karraker N. E., Arrigoni J., Dudgeon D. 2010. Effects of increased salinity and an introduced predator on lowland amphibians in Southern China: Species identity matters. Biol Conserva, 143(5): 1079–1086

    Karraker N. E., Gibbs J. P., Vonesh J. R. 2008. Impacts of road deicing salt on the demography of vernal pool-breeding amphibians.Ecol Appl, 18(3): 724–734

    Karraker N. E., Ruthig G. R. 2009. Effect of road deicing salt on the susceptibility of amphibian embryos to infection by water molds.Environ Res, 109(1): 40–45

    Katz U. 1989. Strategies of adaptation to osmotic stress in anuran amphibia under salt and burrowing conditions.Comp Biochem Physiol Part A: Physiology, 93(3): 499–503

    Kumlu M., Eroldogan O. T., Aktas M. 2000. Effects of temperature and salinity on larval growth, survival and development ofPenaeus semisulcatus.Aquaculture, 188(1):167–173

    Langhans M., Peterson B., Walker A., Smith G. R., Rettig J. E.2009. Effects of salinity on survivorship of wood frog (Rana sylvatica) tadpoles. J Fresh Ecol, 24(2): 335–337

    Marsalek J. 2003. Road salts in urban stormwater: An emerging issue in stormwater management in cold climates. Water Sci Technol, 48(9): 61–70

    Masshaii N., Balouch M., Mobedi I. 2008. Report about helminth parasites of some Amphibians (Anura: Ranidae, Bufonidae) from the North and Northeast of Iran. J Sci Univ Tehran, 33(4): 9–13

    Nakkrasae L. I., Phummisutthigoon S., Charoenphandhu N. 2016. Low salinity increases survival, body weight and development in tadpoles of the Chinese edible frogHoplobatrachus rugulosus. Aquacul Res, 47(10): 3109–3118.

    Newman R. A., Dunham A. E. 1994. Size at metamorphosis and water loss in a desert anuran (Scaphiopus couchii).Copeia,372–381

    Nielsen D. L., Brock M. A. 2009. Modified water regime and salinity as a consequence of climate change: Prospects for wetlands of Southern Australia. Clim Change, 95(3): 523–533

    Nielsen D. L., Brock M. A., Rees G. N., Baldwin D. S. 2003.Effects of increasing salinity on freshwater ecosystems in Australia. Aust J Bot.51(6): 655–665

    Niyogi S., Blewett T. A., Gallagher T., Fehsenfeld S., Wood C.M. 2016. Effects of salinity on short-term waterborne zinc uptake, accumulation and sub-lethal toxicity in the green shore crab (Carcinus maenas).Aquat Toxicol, 178: 132–140

    Peterson A. T., Ortega-Huerta M. A., Bartley J., Sjnchez-Cordero V., Sobern J., Buddemeier R. H., Stockwell D. R.B. 2002. Future projections for Mexican faunas under global climate change scenarios.Nature, 416(6881): 626–629

    Petranka J. W., Doyle E. J. 2010. Effects of road salts on the composition of seasonal pond communities: Can the use of road salts enhance mosquito recruitment? Aquat Ecol, 44(1): 155–166

    Petranka J. W., Francis R. A. 2013. Effects of road salts on seasonal wetlands: poor prey performance may compromise growth of predatory salamanders. Wetlands, 33(4): 707–715

    Pora A. E., Stoicovici F. 1955. Cercetari asupra rolului sistemului nervos de laBufo viridisin fenomenele de adaptare la salinitate.Bull ttiint Acad romdne, 7: 59–89

    Ramakrishna D. M., Viraraghavan T. 2005. Environmental impact of chemical de-icers–a review.Water Air and Soil Pollut,166(1–4): 49–63

    Reyahi K., Nafea M. M., Mahjub H., Hashemy M., Parchian M.2011. Effects of road deicing salt on the quality of ground water resources in hamadan province, west of Iran. J res health sci,11(1): 39–44

    Sanzo D., Hecnar S. J. 2006. Effects of road de-icing salt (NaCl)on larval wood frogs (Rana sylvatica).Environ Pollut, 140(2):247–256

    Shoemaker V., Nagy K. A. 1977. Osmoregulation in amphibians and reptiles.Annu Rev Physiol, 39(1): 449–471

    Smith D. C. 1987. Adult recruitment in chorus frogs: Effects of size and date at metamorphosis.Ecology, 68(2): 344–350

    Snodgrass J. W., Casey R. E., Joseph D., Simon J. A. 2008.Microcosm investigations of stormwater pond sediment toxicity to embryonic and larval amphibians: Variation in sensitivity among species.Environ Pollut, 154(2): 291–297

    Sparling D. W., Bishop C. A., Linder G. 2000. The current status of amphibian and reptile ecotoxicological research. Society of Environmental Toxicology and Chemistry, 13pp

    Stuart S. N., Chanson J. S., Cox N. A., Young B. E., Rodrigues A. S. L., Fischman D. L., Waller R. W. 2004. Status and trends of amphibian declines and extinctions worldwide. Science,306(5702): 1783–1786

    Thirion J. M. 2014. salinity of the reproduction habitats of the Western spadefoot ToadPelobates cultripes(cuvier, 1829),along the atlantic coast of France. Herpetozoa, 27: 13–20

    Viertel B. 1999. Salt tolerance of Rana temporaria: Spawning site selection and survival during embryonic development(Amphibia, Anura).Amphiba-Reptila, 20(2): 161–171

    Wijethunga U., Greenlees M., Shine R. 2016. Living up to its name? The effect of salinity on development, growth, and phenotype of the “marine” toad (Rhinella marina). J Comp Physiol B, 186(2): 205–213

    Wu C. S., Kam Y. C. 2009. Effects of salinity on the survival,growth, development, and metamorphosis of Fejervarya limnocharis tadpoles living in brackish water. Zool Sci, 26(7):476–482

    欧美在线一区亚洲| 免费看a级黄色片| 国产高清激情床上av| 我要搜黄色片| 久久久国产成人免费| 女的被弄到高潮叫床怎么办 | 婷婷色综合大香蕉| 亚洲av一区综合| 51国产日韩欧美| 国内久久婷婷六月综合欲色啪| 久久精品国产亚洲av天美| 免费av毛片视频| 久久99热这里只有精品18| 精品人妻视频免费看| 搡女人真爽免费视频火全软件 | 国产激情偷乱视频一区二区| 波多野结衣巨乳人妻| 免费一级毛片在线播放高清视频| 免费看光身美女| 在线天堂最新版资源| 国产精品综合久久久久久久免费| 国产一区二区在线观看日韩| 他把我摸到了高潮在线观看| 免费不卡的大黄色大毛片视频在线观看 | 婷婷六月久久综合丁香| 精品午夜福利在线看| 在线观看美女被高潮喷水网站| 在线免费观看不下载黄p国产 | 在线观看美女被高潮喷水网站| 国产日本99.免费观看| 欧美潮喷喷水| 午夜免费成人在线视频| 丰满乱子伦码专区| 久久精品国产亚洲网站| 国产伦在线观看视频一区| 一进一出抽搐gif免费好疼| 日韩欧美三级三区| 日韩亚洲欧美综合| 免费观看精品视频网站| 国产三级中文精品| 露出奶头的视频| 无人区码免费观看不卡| 免费av观看视频| 日韩精品青青久久久久久| 99在线人妻在线中文字幕| 禁无遮挡网站| 观看免费一级毛片| 三级国产精品欧美在线观看| 十八禁网站免费在线| 久久午夜亚洲精品久久| 国产探花在线观看一区二区| 色哟哟哟哟哟哟| 男女做爰动态图高潮gif福利片| 校园人妻丝袜中文字幕| 桃色一区二区三区在线观看| 黄色一级大片看看| 日日撸夜夜添| 性色avwww在线观看| 精品久久久久久久末码| 在现免费观看毛片| 亚洲欧美精品综合久久99| 99热这里只有精品一区| 免费在线观看日本一区| 亚洲国产日韩欧美精品在线观看| 免费av不卡在线播放| 三级国产精品欧美在线观看| 深夜a级毛片| 久久久久久久久久黄片| 国产精品自产拍在线观看55亚洲| 午夜老司机福利剧场| 女人被狂操c到高潮| 乱码一卡2卡4卡精品| 免费av观看视频| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久九九精品二区国产| 国产高清激情床上av| 嫩草影院新地址| 91精品国产九色| 欧美精品啪啪一区二区三区| 免费电影在线观看免费观看| 在线免费十八禁| 成人欧美大片| 人人妻人人澡欧美一区二区| 欧美在线一区亚洲| 日韩大尺度精品在线看网址| 大型黄色视频在线免费观看| 国产一区二区三区在线臀色熟女| 亚洲av电影不卡..在线观看| 日本-黄色视频高清免费观看| 美女高潮喷水抽搐中文字幕| 非洲黑人性xxxx精品又粗又长| 中国美白少妇内射xxxbb| 日本与韩国留学比较| 偷拍熟女少妇极品色| 成年女人毛片免费观看观看9| 少妇熟女aⅴ在线视频| 国产主播在线观看一区二区| 亚洲va在线va天堂va国产| 中文字幕人妻熟人妻熟丝袜美| 国产精品久久久久久久电影| 亚洲精品国产成人久久av| 国产欧美日韩一区二区精品| 99久久精品一区二区三区| 成人国产一区最新在线观看| 欧美一区二区亚洲| 一卡2卡三卡四卡精品乱码亚洲| 国产黄片美女视频| 国产国拍精品亚洲av在线观看| 久久久国产成人免费| 亚洲中文日韩欧美视频| 中文字幕av成人在线电影| 十八禁网站免费在线| www.www免费av| 一区二区三区四区激情视频 | 国产探花极品一区二区| 午夜福利在线在线| 国产亚洲91精品色在线| 嫁个100分男人电影在线观看| 亚洲avbb在线观看| 国产伦在线观看视频一区| 日韩一本色道免费dvd| 精品久久久久久久久av| 可以在线观看的亚洲视频| 国产精品野战在线观看| 日韩一本色道免费dvd| 狂野欧美激情性xxxx在线观看| 嫩草影院新地址| 亚洲一区高清亚洲精品| 久久久久久久久中文| av在线观看视频网站免费| 91久久精品国产一区二区三区| 99久久无色码亚洲精品果冻| 成人二区视频| 欧美日韩国产亚洲二区| 国产高清视频在线播放一区| 欧美bdsm另类| a级毛片免费高清观看在线播放| 亚洲va在线va天堂va国产| 精品99又大又爽又粗少妇毛片 | 色哟哟·www| 久9热在线精品视频| 在线国产一区二区在线| 男女做爰动态图高潮gif福利片| 毛片女人毛片| 久久精品国产亚洲av涩爱 | 亚洲成人中文字幕在线播放| 亚洲最大成人手机在线| 日韩国内少妇激情av| 99热网站在线观看| xxxwww97欧美| 国产精品久久久久久久电影| 搡老妇女老女人老熟妇| 欧美一级a爱片免费观看看| 免费观看在线日韩| 日本a在线网址| 尤物成人国产欧美一区二区三区| 91久久精品电影网| 最近中文字幕高清免费大全6 | avwww免费| 亚洲va在线va天堂va国产| 亚洲av中文字字幕乱码综合| 热99在线观看视频| 国产麻豆成人av免费视频| 亚洲va日本ⅴa欧美va伊人久久| 色综合亚洲欧美另类图片| 在线免费十八禁| 欧美绝顶高潮抽搐喷水| 国产精品一及| 欧美中文日本在线观看视频| 成人av一区二区三区在线看| 欧美激情在线99| 亚洲在线自拍视频| 午夜a级毛片| 男插女下体视频免费在线播放| 18+在线观看网站| 黄片wwwwww| 一本久久中文字幕| netflix在线观看网站| 少妇被粗大猛烈的视频| 无人区码免费观看不卡| 小说图片视频综合网站| 国产一区二区三区在线臀色熟女| 国产精品永久免费网站| 1000部很黄的大片| 欧美成人a在线观看| 99热精品在线国产| 久久99热这里只有精品18| 麻豆国产av国片精品| 久久久久久久久久成人| 亚洲内射少妇av| 欧美中文日本在线观看视频| 国产综合懂色| 午夜影院日韩av| 久久久久国内视频| 国产午夜精品论理片| 久久这里只有精品中国| 99精品久久久久人妻精品| 国产成人一区二区在线| 麻豆国产97在线/欧美| 特大巨黑吊av在线直播| 亚洲 国产 在线| 一夜夜www| av在线老鸭窝| 男女下面进入的视频免费午夜| 亚洲国产色片| 亚洲精品一卡2卡三卡4卡5卡| 琪琪午夜伦伦电影理论片6080| 亚洲av电影不卡..在线观看| 日韩欧美国产一区二区入口| 亚洲最大成人手机在线| 国产午夜精品论理片| 国产私拍福利视频在线观看| 国产日本99.免费观看| 亚洲专区国产一区二区| 俄罗斯特黄特色一大片| 国内精品久久久久精免费| 无遮挡黄片免费观看| 免费搜索国产男女视频| 成人永久免费在线观看视频| 天堂√8在线中文| 亚洲精品456在线播放app | x7x7x7水蜜桃| 国产高清不卡午夜福利| 午夜亚洲福利在线播放| 亚洲av中文字字幕乱码综合| 亚洲一级一片aⅴ在线观看| 麻豆av噜噜一区二区三区| 久久香蕉精品热| 免费观看人在逋| 久久国产精品人妻蜜桃| 久久精品夜夜夜夜夜久久蜜豆| 国产真实乱freesex| 特级一级黄色大片| a级毛片a级免费在线| 亚洲欧美精品综合久久99| 精品一区二区三区人妻视频| 最近视频中文字幕2019在线8| 又爽又黄a免费视频| 午夜福利18| 亚洲最大成人手机在线| 一个人看的www免费观看视频| 中文字幕熟女人妻在线| 国产色爽女视频免费观看| 搡老岳熟女国产| 国产精品美女特级片免费视频播放器| 网址你懂的国产日韩在线| or卡值多少钱| 亚洲av中文字字幕乱码综合| 久久人人爽人人爽人人片va| 久久精品国产鲁丝片午夜精品 | 亚洲第一电影网av| av.在线天堂| 综合色av麻豆| 极品教师在线视频| 欧美日本视频| 国产一区二区三区在线臀色熟女| 蜜桃久久精品国产亚洲av| 午夜福利在线观看免费完整高清在 | 久久久久久久精品吃奶| 亚洲av成人精品一区久久| 国产女主播在线喷水免费视频网站 | 蜜桃亚洲精品一区二区三区| 亚洲色图av天堂| 五月玫瑰六月丁香| 又爽又黄无遮挡网站| 一级黄色大片毛片| 狂野欧美激情性xxxx在线观看| 色av中文字幕| 国产高清视频在线播放一区| 国产一区二区激情短视频| 欧美成人一区二区免费高清观看| 精品人妻一区二区三区麻豆 | 久久人妻av系列| ponron亚洲| 国产精品精品国产色婷婷| 性欧美人与动物交配| 全区人妻精品视频| 色综合站精品国产| 性欧美人与动物交配| 亚洲最大成人中文| 国产一区二区三区av在线 | 最好的美女福利视频网| 夜夜爽天天搞| 国内精品久久久久久久电影| 国产在线精品亚洲第一网站| 国产乱人伦免费视频| 男女边吃奶边做爰视频| 国产精品永久免费网站| ponron亚洲| 日韩欧美精品免费久久| 国产精品野战在线观看| 美女大奶头视频| 男插女下体视频免费在线播放| 在线播放无遮挡| 国产免费av片在线观看野外av| 成人性生交大片免费视频hd| 天天一区二区日本电影三级| 丰满人妻一区二区三区视频av| 国产人妻一区二区三区在| 伦精品一区二区三区| 丰满的人妻完整版| 日本一二三区视频观看| 小蜜桃在线观看免费完整版高清| 亚洲真实伦在线观看| 少妇猛男粗大的猛烈进出视频 | 久久人人精品亚洲av| 日本a在线网址| 亚洲黑人精品在线| 欧美成人a在线观看| 亚洲美女搞黄在线观看 | 国产精品亚洲一级av第二区| 九色成人免费人妻av| 日本撒尿小便嘘嘘汇集6| 国产精品国产高清国产av| 精品久久久久久久久av| 在线免费观看不下载黄p国产 | 欧美激情在线99| 真人一进一出gif抽搐免费| 窝窝影院91人妻| 美女免费视频网站| 禁无遮挡网站| 国产高清三级在线| 国产高清视频在线播放一区| 国内毛片毛片毛片毛片毛片| 久久久久精品国产欧美久久久| 成人av一区二区三区在线看| 日韩欧美免费精品| aaaaa片日本免费| 成人高潮视频无遮挡免费网站| 久久这里只有精品中国| 乱系列少妇在线播放| 色5月婷婷丁香| 丰满人妻一区二区三区视频av| 日韩 亚洲 欧美在线| 少妇熟女aⅴ在线视频| 精品久久久久久久久av| 久久99热6这里只有精品| 一个人看的www免费观看视频| or卡值多少钱| 高清在线国产一区| 国产女主播在线喷水免费视频网站 | 如何舔出高潮| av.在线天堂| 校园人妻丝袜中文字幕| 99久国产av精品| 一级黄色大片毛片| or卡值多少钱| 内地一区二区视频在线| 精品人妻偷拍中文字幕| 最近最新免费中文字幕在线| 尤物成人国产欧美一区二区三区| 欧美三级亚洲精品| 中文字幕熟女人妻在线| 女的被弄到高潮叫床怎么办 | 美女cb高潮喷水在线观看| 色5月婷婷丁香| 99热网站在线观看| 国产亚洲欧美98| 人妻夜夜爽99麻豆av| 国产精品女同一区二区软件 | 我的女老师完整版在线观看| 蜜桃亚洲精品一区二区三区| 成人av一区二区三区在线看| 欧美性感艳星| 国产又黄又爽又无遮挡在线| 久久久午夜欧美精品| 欧美性感艳星| 精品国内亚洲2022精品成人| 欧美日韩精品成人综合77777| 久久久国产成人免费| 在线观看66精品国产| 观看美女的网站| 中文在线观看免费www的网站| 免费看a级黄色片| 精品免费久久久久久久清纯| 国产又黄又爽又无遮挡在线| 日日啪夜夜撸| 久久久色成人| 黄色一级大片看看| av在线天堂中文字幕| 久久久久久久久久久丰满 | 亚洲av日韩精品久久久久久密| 久久精品国产亚洲av天美| 村上凉子中文字幕在线| 97热精品久久久久久| 中文字幕av在线有码专区| 日韩欧美精品v在线| 禁无遮挡网站| 国产精品一区二区三区四区免费观看 | 国产精品98久久久久久宅男小说| 长腿黑丝高跟| 国产精品久久久久久久久免| 波多野结衣高清无吗| 日韩高清综合在线| 亚洲精华国产精华液的使用体验 | 亚洲色图av天堂| 听说在线观看完整版免费高清| 欧美国产日韩亚洲一区| 久久久午夜欧美精品| 午夜精品在线福利| 亚洲人成网站在线播放欧美日韩| 精品免费久久久久久久清纯| 成人一区二区视频在线观看| 少妇人妻一区二区三区视频| 国产麻豆成人av免费视频| 日本黄色视频三级网站网址| 日本免费a在线| 国产激情偷乱视频一区二区| 亚州av有码| 亚洲人与动物交配视频| .国产精品久久| 淫秽高清视频在线观看| 天堂影院成人在线观看| 色噜噜av男人的天堂激情| 少妇人妻精品综合一区二区 | 久久午夜福利片| 国产精品不卡视频一区二区| 国产主播在线观看一区二区| 两人在一起打扑克的视频| 久久精品91蜜桃| 日本a在线网址| 日日摸夜夜添夜夜添小说| 99久久中文字幕三级久久日本| 女的被弄到高潮叫床怎么办 | 可以在线观看的亚洲视频| 悠悠久久av| 日韩亚洲欧美综合| 亚洲性久久影院| 国产黄a三级三级三级人| 亚洲美女搞黄在线观看 | 久久精品影院6| 午夜福利成人在线免费观看| 午夜福利在线在线| 别揉我奶头~嗯~啊~动态视频| 国产精品98久久久久久宅男小说| 琪琪午夜伦伦电影理论片6080| 久久久久久久亚洲中文字幕| 日韩中字成人| 美女高潮的动态| 亚洲 国产 在线| 中文字幕精品亚洲无线码一区| 亚洲一区二区三区色噜噜| 嫩草影院新地址| 亚洲精华国产精华液的使用体验 | 男女啪啪激烈高潮av片| 色播亚洲综合网| 日韩,欧美,国产一区二区三区 | 国产高清三级在线| 久久中文看片网| 亚洲色图av天堂| 搡女人真爽免费视频火全软件 | 丰满的人妻完整版| www.www免费av| 成年版毛片免费区| 免费搜索国产男女视频| 黄色配什么色好看| 在线观看美女被高潮喷水网站| 少妇的逼水好多| 乱人视频在线观看| 午夜免费男女啪啪视频观看 | 88av欧美| 又爽又黄a免费视频| 3wmmmm亚洲av在线观看| 91精品国产九色| 最好的美女福利视频网| 精品无人区乱码1区二区| 国产三级中文精品| bbb黄色大片| 日韩欧美 国产精品| 久久九九热精品免费| 网址你懂的国产日韩在线| 欧美在线一区亚洲| 黄色日韩在线| 在线观看午夜福利视频| 精品不卡国产一区二区三区| 啪啪无遮挡十八禁网站| 国产黄片美女视频| 少妇裸体淫交视频免费看高清| 日韩欧美在线乱码| 久久人人爽人人爽人人片va| 久久国产精品人妻蜜桃| 男人舔女人下体高潮全视频| 啦啦啦啦在线视频资源| 午夜免费男女啪啪视频观看 | 国产伦精品一区二区三区视频9| 久久精品国产亚洲av天美| 18禁黄网站禁片免费观看直播| 亚洲精品456在线播放app | 色尼玛亚洲综合影院| 在线观看一区二区三区| 亚洲精品456在线播放app | 国产单亲对白刺激| 少妇被粗大猛烈的视频| 亚洲不卡免费看| 他把我摸到了高潮在线观看| 国产av一区在线观看免费| 亚洲美女视频黄频| 国产精品久久电影中文字幕| 少妇被粗大猛烈的视频| 精品久久久久久成人av| 在线观看一区二区三区| 成人无遮挡网站| 亚洲天堂国产精品一区在线| av天堂在线播放| 好男人在线观看高清免费视频| 日本黄大片高清| 桃红色精品国产亚洲av| 日本成人三级电影网站| 一区二区三区四区激情视频 | 一个人看视频在线观看www免费| 国产一区二区亚洲精品在线观看| 久久人妻av系列| 91麻豆精品激情在线观看国产| 乱码一卡2卡4卡精品| 亚洲精品色激情综合| 日韩大尺度精品在线看网址| 国产成人福利小说| 赤兔流量卡办理| 欧美性猛交╳xxx乱大交人| 伦精品一区二区三区| а√天堂www在线а√下载| 人妻制服诱惑在线中文字幕| 亚洲国产精品成人综合色| 网址你懂的国产日韩在线| 欧美xxxx黑人xx丫x性爽| 一级黄色大片毛片| 成人午夜高清在线视频| 精品福利观看| 午夜老司机福利剧场| 国产极品精品免费视频能看的| 最近在线观看免费完整版| 精品人妻偷拍中文字幕| 成年免费大片在线观看| 国产一区二区三区av在线 | 香蕉av资源在线| 少妇丰满av| 国产精品永久免费网站| 他把我摸到了高潮在线观看| 国产大屁股一区二区在线视频| 亚洲国产欧洲综合997久久,| 日韩欧美在线乱码| 免费观看人在逋| 亚洲最大成人中文| 亚洲精品久久国产高清桃花| 动漫黄色视频在线观看| 精品欧美国产一区二区三| 男人舔奶头视频| 精品欧美国产一区二区三| 国产高清视频在线播放一区| 少妇人妻精品综合一区二区 | 欧美在线一区亚洲| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品合色在线| 免费看日本二区| 成人av一区二区三区在线看| 男插女下体视频免费在线播放| 日本熟妇午夜| 18禁在线播放成人免费| 久久久国产成人免费| 国产精品亚洲一级av第二区| 一边摸一边抽搐一进一小说| 国产白丝娇喘喷水9色精品| 性色avwww在线观看| 国产高清不卡午夜福利| 校园人妻丝袜中文字幕| 欧美高清成人免费视频www| 床上黄色一级片| 成人av在线播放网站| 亚洲成人久久爱视频| 色哟哟哟哟哟哟| 性色avwww在线观看| 亚洲av五月六月丁香网| 亚洲av一区综合| 日日摸夜夜添夜夜添av毛片 | 免费在线观看成人毛片| av黄色大香蕉| 看片在线看免费视频| 九九热线精品视视频播放| 国产精品电影一区二区三区| 久久精品影院6| 99热精品在线国产| 国产高清视频在线观看网站| 久久久精品大字幕| 九色成人免费人妻av| 成人综合一区亚洲| 欧美黑人欧美精品刺激| 国产 一区 欧美 日韩| 亚洲av.av天堂| 亚洲国产精品久久男人天堂| 国产蜜桃级精品一区二区三区| 日本在线视频免费播放| 一a级毛片在线观看| 亚洲第一电影网av| 在线观看舔阴道视频| 91午夜精品亚洲一区二区三区 | 尤物成人国产欧美一区二区三区| 一进一出好大好爽视频| 天堂影院成人在线观看| 99久久中文字幕三级久久日本| 精品人妻一区二区三区麻豆 | 日本在线视频免费播放| 久久精品国产亚洲av香蕉五月| 精品久久久久久成人av| 免费av毛片视频| 乱码一卡2卡4卡精品| 色吧在线观看| 免费人成在线观看视频色| 99久久中文字幕三级久久日本| 国产色爽女视频免费观看| 国产一区二区亚洲精品在线观看| 看片在线看免费视频| 久久亚洲真实| 波多野结衣高清无吗| 黄色丝袜av网址大全| 我要看日韩黄色一级片|