• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sexual Dimorphism, Female Reproductive Characteristics and Egg Incubation in an Oviparous Forest Skink (Sphenomorphus incognitus) from South China

    2018-06-28 03:17:44LiMAJianchiPEICuntongZHOUYuDUXiangJIandWenSHEN
    Asian Herpetological Research 2018年2期

    Li MA, Jianchi PEI, Cuntong ZHOU,3, Yu DU,4, Xiang JI and Wen SHEN

    1 School of Sports and Health, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China

    2 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University,Nanjing 210023, Jiangsu, China

    3 College of Ecology, Lishui University, Lishui 323000, Zhejiang, China

    4 Hainan Key Lab for Herpetology, College of Tropical Biology and Agronomy, Hainan Tropical Ocean University,Sanya 572022, China

    1. Introduction

    Forest skinks of the reproductively bimodal genusSphenomorphusFitzinger, 1843 occur in South-East Asia,Asia, Indochina and Central America (Linkemet al.,2011). Of some 145 currently recognizedSphenomorphusspecies (Linkemet al., 2011), six (S. courcyanus,S.incognitus,S. indicus,S. maculatus,S. taiwanensisandS.tonkinensis) can be found in China, withS. taiwanensisendemic to Taiwan Province of the country (Huang,1999; Nguyenet al., 2011, 2012). Despite its wide geographic distribution, high species diversity and the fact that it is morphologically, zoogeographically and taxonomically well known, the ecology and biology of the genusSphenomorphusremain poorly studied. Several investigators have studied sexual dimorphism and female reproduction but, to the best of our knowledge, they only reported descriptive data for five species (S. incognitus:Huang, 2010;S. indicus: Huang 1996; Ji and Du, 2000;Jiet al., 2006;S. jagori: Auffenberg and Auffenberg,1989;S. maculates: Huang, 1999;S. taiwanensis: Huang,1997, 1998). Detailed data on female reproductive traits do not exist for all these species except forS. indicus(Ji and Du, 2000; Jiet al., 2006). For example, ten femaleS. incognitus(Huang, 2010), nine femaleS. taiwanensis(Huang, 1997) and a unknown number of femaleS.jagori(Auffenberg and Auffenberg, 1989) were measured for fecundity (clutch size), but in none of these species were egg mass and reproductive output (clutch mass)documented.

    Sphenomorphus incognitusstudied here ranges from Southern-Central China (Anhui, Fujian, Guangdong,Guangxi, Hainan, Hubei, Taiwan, Yunnan and Zhejiang)to North Vietnam (Huang, 1999; Lau, 2005; Nguyenet al., 2012; Tang and Huang, 2014; Chenet al., 2017).This medium sized (up to 107 mm snout-vent length,SVL), oviparous terrestrial skink shows a preference for stream habitats, forest edges and riverbeds (Huang,1999; Nguyenet al., 2012). The skink is morphologically similar toS. indicus, its viviparous congener, and this similarity contributes to the confusion about taxonomic identity, habitat use and geographic distribution of these two species (Chenet al., 2017). Previous studies presented very limited descriptive data forS. incognitusfrom mainland China (Huang, 1999), and a bit more detailed data for a population on Lanyu Island, Taiwan,China (Huang, 2010). From Huang’s (2010) study onS.incognitusfrom Lanyu Island we know the following.First, males are larger in terms of linear body size (SVL)and thusS. incognitusis among species that show malebiased sexual size dimorphism (SSD). Second, females exhibit spring and summer vitellogenesis and lay eggs from March to July. Third, females lay 3–6 eggs per clutch, with clutch size being independent of female SVL.Here, we presented data forS. incognitusfrom South China. Based on morphological measurements taken for adults in the field and clutches laid in the laboratory,we studied sexual dimorphism in body size and shape,female reproduction and egg incubation. Our aims were:(1) to show sexual dimorphism in several morphological characters (body size, head size, head width, abdomen length, and fore- and hind-limb lengths) likely to be associated with reproductive success and performance;(2) to investigate the relationships among egg size (and thus hatchling size), clutch size and female size; and(3) to examine the effects of constant versus fluctuating temperatures on incubation length and hatchling morphology.

    2. Materials and Methods

    We collected 263 adult skinks (92 females and 171 males) larger than 80 mm SVL in three consecutive years between 2013 and 2015 from Guangzhou, Wuzhishan and Zhaoqing in South China. Most of these skinks (65 females and all males) were released at their point of capture following the collection of morphological data.Measurements taken for each skink with Mitutoyo digital calipers included SVL, abdomen length (AL, between the insertion points of the fore- and hind-limbs), head length(HL, from the snout to the anterior edge of tympanum)and head width (HW, the posterior end of the mandible)(Sunet al., 2012). Of the 263 adults, 123 (42 females and 81 males) were also measured for fore-limb length (FLL,humerus plus ulna) and hind-limb length (HLL, femur plus tibia) (Jiet al., 2007).

    We palpated all adult females in the field and transported 27 females with enlarged follicles to our laboratory in Nanjing, where they were individually housed in 540 × 400 × 320 mm3plastic cages placed in a room inside which temperatures varied from 20 °C to 28 °C. All cages had a substrate consisting of moist soil (~150 mm depth) covered with cobblestones, grass and fallen leaves, and females were able to regulate body temperature using natural sunlight. Mealworms(Tenebrio molitor), house crickets (Achetus domesticus),cockroaches (Blaptica dubia) and water enriched with vitamin and minerals were provided or refreshed daily.

    Females laid a single clutch of eggs between early May and mid-August. We checked the cages at least thrice daily for freshly laid eggs after the first female laid eggs,thereby collecting, weighing and measuring (for length and width) eggs always less than 6 h post-laying. Postoviposition females were weighed and measured for SVL.Of the 27 females, two were excluded from analyses because they laid unfertilized eggs or abnormal eggs with condensed yolk. We calculated relative clutch mass(RCM) by dividing clutch mass by the post-oviposition female mass (Shine, 1992). To account for the influence of variation in female size on fecundity, we calculated relative fecundity by using the residuals derived from the regression of clutch size on female SVL (Olsson and Shine, 1997).

    We collected 142 fertilized egg, of which eight,each from one of eight clutches, were used to identify the Dufaure and Hubert’s (1961) stage of embryonic development at laying. The remaining eggs were individually placed into covered plastic jars (50 ml) with moist vermiculite at –12 kPa (Ji and Bra?a, 1999). All incubating egg were 2/3 buried in the substrate, with the surface near the embryo exposed to air inside the jar. Eggs from the same clutch were assigned as equally as possible among five incubators (Binder, Germany): three set at 22,25 and 28 °C, respectively; the other two set at 25 ± 3 °C and 25 ± 5 °C, respectively. Thermal fluctuations were maintained at 12 h (+) and 12 h (–) and were confirmed with Tinytalk temperature loggers (Gemini Pty, Australia)placed inside jars. We rotated jars at 4-d intervals to minimize the influence of thermal gradients. Substrate water potential was adjusted at 4-d intervals by weighing jars. Incubation length was defined as the time between laying and pipping. Upon emergence, hatchlings were collected, weighed and measured for SVL, AL, HL and HW.

    We used linear regression analysis to examine if the relationship between a selected pair of dependent and independent variables was significant. We calculated regression residuals of an examined morphological variable (AL, HL, HW, FLL, or HLL) against SVL, and then used one-way ANOVA to see if the variable differed between male and female adults. Data on egg size,incubation length and hatchling morphology from the same clutch were pooled to avoid pseudo-replication. We usedG-test and one-way ANOVA to see if eggs incubated under different thermal regimes differed in hatching success, mean mass at laying and mean incubation length.We used one-way ANCOVA to test for slope homogeneity of regressions lines and to see if hatchlings from eggs assigned to different treatments differed morphologically after accounting for egg mass at laying. Prior to parametric analyses, all data were tested for normality using the Kolmogorov-Smirnov test, and for homogeneity of variances using Bartlett’s test. All statistical procedures were performed in Statistica 8.0 (StatSoft; Tulsa, OK,USA), and statistical significance was assumed atP<0.05. Values are presented as mean ± standard error (SE)and range.

    3. Results and Discussion

    3.1. Sexual dimorphismThe largest male and female were 110 mm and 108 mm SVL, respectively. Both values are greater than the maximal sizes ever reported forS.incognitusfrom mainland China (107 mm SVL; Huang,1999) and Taiwan, China (94 mm SVL; Huang, 2010).The mean SVL did not differ between male (97 ± 0.5 mm)and female (96 ± 0.7 mm) adults (ANOVA;F1,261= 0.45,P= 0.50; Figure 1), suggesting thatS. incognitusfrom South China is sexually monomorphic in terms of adult body size (SVL). This pattern of SSD differs from malebiased SSD reported forS. incognitusfrom Taiwan, China(Huang, 2010), and it also does not support the hypothesis that lizards on islands are more likely to exhibit malebiased SSD (Hernández-Salinaset al., 2014). Much more adults were measured in this study (92 females and 171 males) than in the earlier one (43 females and 45 males;Huang, 2010), thus allowing more accurate determination of SSD.

    The evolution and maintenance of a given pattern of SSD often result from sexual differences in reproductive success relating to adult body size (Cooper and Vitt, 1989;Hews, 1990; Mouton and Van Wyk, 1993; Reeve and Fairbairn, 2001; Coxet al., 2003). Within scincid lizards,selection through male contest competition is the key factor for male-biased SSD inPlestiodonchinensis(Lin and Ji, 2000),Plestiodon elegans(Du and Ji, 2001; Zhang and Ji, 2004) andEutropismultifasciata(Jiet al., 2006),whereas selection on fecundity or reproductive output is the main cause for increased female size inS. indicus(Ji and Du, 2000),Scincella modestaandScincella reevesii(Yanget al., 2012). Sexual size monomorphism(SSM) often occurs in species where these two selective forces cancel each other out and has been documented in a wide range of lizard taxa. In lizard species so far studied in China, SSM has been documented inCalotes versicolor(Jiet al., 2002),Eremias argus(Chenet al.,2015),Eremias brenchleyi(Xu and Ji, 2003),Eremias multiocellata(Liet al., 2006),Japalura splendida(Lin, 2004),Phrynocephalus frontalis(Quet al., 2011),Phrynocephalus grumgrzimailoi(Liu and Shi, 2009),Phrynocephalus guinanensis(Jiet al., 2009),Shinisaurus crocodilurus(Heet al., 2011),Takydromus septentrionalis(Jiet al., 1998; Zhang and Ji, 2000) andTakydromus sexlineatus(Xuet al., 2014).

    Figure 1 Frequency distributions of SVL of adult Sphenomorphus incognitus (92 females and 171 males), showing sexual size monomorphism.

    The rates at which HL (Figure 2a) and HW (Figure 2b) increased with SVL were greater in adult males(ANCOVA for slope homogeneity, bothP< 0.001),and the rates at which AL (Figure 2c), FLL (Figure 2d)and HLL (Figure 2e) increased with SVL did not differ significantly between the sexes (ANCOVA for slope homogeneity; allP> 0.09). The mean values of residuals from the regressions of HL, HW, FLL and HLL on SVL were greater in adult males (ANOVA; allP< 0.0001),whereas the mean value of residuals from the regressions of AL (ANOVA;F1,261= 64.20,P< 0.0001) on SVL was greater in adult females. The greater relative head size in males and the greater relative abdomen size in females are the rule in nearly all lizard lineages (Olssonet al., 2002; Coxet al., 2003; Kratochvílet al., 2003;Pincheira-Donoso and Tregenza, 2011; Sunet al., 2012;see also Huang, 1996). It is therefore not surprising thatS. incognitusshares these features. Head size (both length and width) and abdomen length are sexually dimorphic largely because these traits are directly linked to the reproductive role of each sex (Bultéet al., 2008),although in some species the greater relative head size in males may also have a secondary role in reducing intersexual resource competition by amplifying food niche divergence between the sexes (Bra?a, 1996; Lin and Ji, 2000; Zhang and Ji, 2000, 2004). Sexual dimorphism in appendage (limb) length has been poorly known. LikePhrynocephalus przewalskii(Zhao and Liu, 2014) andS. incognitusfrom Taiwan, China (Huang, 2010),S.incognitusfrom South China shows male-biased sexual dimorphism in appendage length.

    3.2. Female reproductive characteristicsTable 1 shows female reproductive traits ofS. incognitusfrom South China. Females laid a single clutch of 3–10 eggs per breeding season from early May to mid-August, with the egg-laying season being about three months longer than that (from March to July) reported forS. incognitusfrom Taiwan, China (Huang, 2010). Clutch size was positively related to female SVL (r2= 0.18,F1,23= 5.09,P= 0.034), suggesting that, as in most other lizard species (Ramírez-Bautistaet al., 2017), female size is an important determinant of fecundity inS. incognitus. Such a relationship between clutch size and female SVL was nonetheless not statistically significant inS. incognitusfrom Taiwan, China (Huang, 2010). The mean clutch size was greater in South China (5.2; Table 1) than in Taiwan,China (4.0; Huang, 2010). This difference could be in part due to the fact that females of this study (81–108 mm SVL; Table 1) were larger than those studied in Taiwan,China (73–87 mm SVL; Huang, 2010), asS. incognitusis among species where larger females are more fecund than smaller ones. Egg mass and clutch mass had never been examined inS. incognitus. In this study, we found that neither clutch mass (r2= 0.12,F1,23= 3.23,P=0.085) nor egg mass (r2= 0.04,F1,23= 0.99,P= 0.33)was significantly related to female SVL. These findings suggest that female size is not an important determinant of reproductive output or investment per offspring inS. incognitus. Egg mass was independent of relative fecundity (r2= 0.03,F1,23= 0.64,P= 0.43), suggesting that, as inEutropis longicaudata(Sunet al., 2012) andS.modesta(Yanget al., 2012), the egg size-number tradeoff does not exist inS. incognitus.

    Among oviparous skinks so far studied in mainland China, the mean RCM was smaller inS. incognitus(0.25;Table 1) than inS. modesta(0.72; Yanget al., 2012),E.longicaudata(0.34; Sunet al., 2012),P. chinensis(0.33;Lin and Ji, 2000) andP. elegans(0.31; Du and Ji, 2001),the proportion of variation in clutch mass explained by female SVL was lower inS. incognitus(12%) than inP.chinensis(51%; Lin and Ji, 2000),P. elegans(46%; Du and Ji, 2001),E. longicaudata(42%; Sunet al., 2012) andS. modesta(37%; Yanget al., 2012), and the proportion of variation in clutch size explained by female SVL is lower inS. incognitus(18%) than inP. chinensis(52%;Lin and Ji, 2000),S. modesta(40%; Yanget al., 2012),P. elegans(37%; Du and Ji, 2001) andE. longicaudata(35%; Sunet al., 2012). These comparisons provide an inference that selection on increased maternal body size and thus increased body volume available to hold eggs is comparatively weak inS. incognitus.

    Figure 2 Linear regressions of head length (a), head width (b), abdomen length (c), fore-limb length (d) and hind-limb length (e) on SVL in adult Sphenomorphus incognitus. Filled circles: females; open circles: males.

    3.3. Egg incubation and hatchling phenotypeEmbryonic stages at laying ranged from Dufaure and Hubert’s (1961) stage 31 to 32, with a mean stage of 31.3.Embryonic stage at laying is a causal factor of inter- and intra-specific variation in incubation length in oviparous lizards (Wanget al., 2013). However, incubation length at any given temperature may vary considerably among species that differ in phylogeny, egg size and/or distribution (Linet al., 2010; Liet al., 2012, 2013; Sunet al., 2013). Within sincid lizards, for example, the mean incubation length at 28 °C is much longer inS. incognitus(~40 d; Table 2) than inS. modesta(~20 d; Luet al.,2006) andP. chinensis(~24 d; Luet al., 2012, 2014; Shenet al., 2017), although the mean DH stage at laying does not differ betweenS. incognitusandS. modesta(31.1; Luet al., 2006) and is about one stage earlier inS. incognitusthan inP. chinensis(~32.5; Luet al., 2012, 2014; Shenet al., 2017). InPhrynocephaluslizards the changeover from the DH stage 30 to 31 shortens the mean incubation length at 28 °C by 3 d (Wanget al., 2013; Zenget al.,2013).

    Eggs assigned to the five temperature treatments did not differ significantly in mean mass (F4,42= 2.44,P=0.06) or hatching success (G= 2.62,df= 4,P> 0.50).Hatching successes varied from 64% (16/25) in the 25 ± 5°C treatment to 82% (9/11) in the 28 °C treatment, with a mean of 74% (Table 2). Within each treatment incubation length was independent of egg mass (linear regression analysis: allP> 0.20). Mean values for incubation length differed among the five treatments (F4,42= 45.62,P<0.0001). For eggs incubated at constant temperatures,the mean incubation length was shortened by 22.0 and 13.2 d for every 3 °C increase from 22–28 °C (Table 2).This pattern of thermal sensitivity of incubation length is consistent with earlier studies on turtles (Jiet al., 2003,Duet al., 2007, 2010), lizards (Ji and Bra?a, 1999; Linet al., 2007; Wanget al., 2013; Shenet al., 2017), snakes(Ji and Du, 2001; Linet al., 2005; Linet al., 2010) and crocodiles (Pi?aet al., 2003; Charruau, 2012) where incubation length decreases at an ever decreasing rate as temperature increases across the range where successful embryonic development can take place, explaining why eggs take a longer time to hatch at fluctuating temperatures than at constant temperatures with the same mean in some species (Shine, 2004a; Haoet al., 2006;Bra?a and Ji, 2007; Leset al., 2007; Luet al., 2009; Liet al., 2012). However, contrast to what was expected the fluctuating temperature treatments result in shorter incubation lengths relative to constant temperatures inS.incognitus. This suggests that, as inBassiana duperreyi(Shine, 2004b),Lycaena tityrus(Fischeret al., 2011),Naja atra(Linet al., 2008) andXenochrophis piscator(Luet al., 2009), incubation at stable temperatures may lead to delayed hatchinginS. incognitus.

    Table 1 Reproductive traits of female Sphenomorphus incognitus (N = 25).

    Table 2 Hatching success and descriptive statistics (expressed as mean ± SE and range) for egg mass at laying (initial egg mass), incubation length and wet body mass and morphology of hatchling Sphenomorphus incognitus from eggs incubated under fi ve thermal regimes.

    Incubation temperatures higher than 28 °C substantially reduce hatching success and adversely affect hatchling phenotypes in forest skinks (Luet al., 2006; Liet al.,2012). Here we found that hatchlings from eggs incubated at 25 ± 5 °C did not differ from those from eggs incubated under other four thermal regimes in any examined trait after accounting for egg mass at laying (ANCOVA; allP> 0.19; Table 2). This finding is overall consistent with that reported for a wide range of reptile taxa, including turtles (Pelodiscus sinensis: Du and Ji, 2003; Jiet al.,2003), lizards (E. argus: Haoet al., 2006;Heteronotia binoei: Andrewarthaet al., 2010;Lacerta agilis: Liet al., 2013;P. chinensis: Chenet al., 2003) and snakes(Rhabdophis tigrinus lateralis: Chen and Ji, 2002;Ptyas mucosus: Lin and Ji, 2004;N. atra: Linet al., 2008;X.piscator: (Luet al., 2009). In all these species, incubation temperature has no role in modifying hatchling traits as long as eggs are not exposed to extreme temperatures for prolonged periods of time.

    4. Conclusions

    Sphenomorphus incognitusis a morphologically,zoogeographically and taxonomically well known species,but its ecology and biology remain sparsely studied. Here we used adults collected from South China to study sexual dimorphism, female reproduction and egg incubation in this species. From this study we know the following.First, the skink is a sexually monomorphic species in terms of adult SVL but shows sexual dimorphism in head size, abdomen length and limb length, with males being larger in head size (both length and width), longer in foreand hind-limb lengths and shorter in abdomen length than females of the same SVL. Second, females larger than 80 mm SVL lay a single clutch of 3–10 eggs per breeding season from early May to mid-August, with larger females generally laying more (but not always larger)eggs per clutch than do smaller ones. Third, the positive relationship between clutch mass and female SVL is not significant, and the offspring size-number tradeoff does not exist inS. incognitus. Fourth, embryonic stages at laying range from Dufaure and Hubert’s (1961)stage 31 to 32, and the mean incubation length at a given temperature is much longer inS. incognituscompared toS. modestawith nearly the same embryonic stage at laying. Last, eggs ofS. incognitusincubated at fluctuating temperatures take a shorter time to hatch than those incubated at stable temperatures with the same mean, and incubation temperature has no role in modifying hatchling morphology as long as eggs are not exposed to extreme temperatures for prolonged periods of time.

    AcknowledgementsOur experimental procedures complied with the current laws on animal welfare and research in China. We thank Yijing CHEN, Kun GUO, Min SHAO, Yanqing WU, Guangzheng ZHANG and Liang ZHANG for assistance during the research. For funding,we thank the National Natural Science Foundation of China (31470471), the Priority Academic Development Program of Jiangsu Higher Education Institutions and the Innovation of Graduate Student Training Project of Jiangsu Province (KYLX15_0737).

    Andrewartha S. J., Mitchell N. J., Frappell P. B. 2010. Does incubation temperature fluctuation influence hatchling phenotypes in reptiles? A test using parthenogenetic geckos.Physiol Biochem Zool, 83: 597–607

    Auffenberg W., Auffenberg T. 1989. Reproductive patterns in sympatric Philippine skinks (Sauria: Scincidae). Bull FL State Mus Biol Sci Ser, 34: 201–247

    Bra?a F. 1996. Sexual dimorphism in lacertid lizards: male head increase vs female abdomen increase.Oikos, 75: 511–523

    Bra?a F., Ji X. 2007. The selective basis for increased egg retention: Early incubation temperature determines hatchling phenotype in wall lizards. Biol J Linn Soc, 91: 441–447

    Bulté G., Irschick D. J., Blouin-Demerset G. 2008. The reproductive role hypothesis explains trophic morphology dimorphism in the northern map turtle. Funct Ecol, 22: 824–830

    Charruau P. 2012. Microclimate of American crocodile nests in Banco Chinchorro biosphere reserve, Mexico: Effect on incubation length, embryos survival and hatchlings sex. J Therm Biol, 37: 6–14

    Chen H. L., Ji X. 2002. The effects of thermal environments on duration of incubation, hatching success and hatchling traits in a colubrid snakeRhabdophis tigrinus lateralis(Boie). Acta Ecol Sin, 22: 1850–1858

    Chen S. Y., Bi J. H., He Z. C., Li S. R., Liu R., Wang Y., Zhao X.2015. Sexual dimorphism and reproductive output ofEremias argusfrom Ordos. Chin J Zool, 50: 214–220

    Chen X. J., Lin Z. H., Ji X. 2003. Further studies on influence of temperature on egg incubation in the Chinese skink,Eumeces chinensis. Zool Res, 24: 21–25

    Chen Z. Q., Wei H. H., Liu J. L., Wu Y. K., Le X. G., Cheng S.L., Guo H. X., Ding G. H. 2017. New record ofSphenomorphus incognitusfrom Zhejiang and Jiangxi provinces. Sichuan J Zool,36: 479–480

    Cooper W. E., Vitt L. J. 1989. Sexual dimorphism of head and body size in an iguanid lizard: paradoxical results. Am Nat, 133:729–735

    Cox R. M., Skelly S. L., John-Alder H. B. 2003. A comparative test of adaptive hypothesis for sexual size dimorphism in lizards.Evolution, 57: 1653–1669

    Du W. G., Hu L. J., Lu J. L., Zhu L. J. 2007. Effects of incubation temperature on embryonic development rate, sex ratio and post-hatching growth in the Chinese three-keeled pond turtle,Chinemys reevesii. Aquaculture, 272: 747–753

    Du W. G., Ji X. 2001. Growth, sexual dimorphism and female reproduction of blue-tailed skinks,Eumeces elegans. Zool Res,22: 279–286

    Du W. G., Ji X. 2003. The effects of incubation thermal environments on size, locomotor performance and early growth of hatchling soft-shelled turtles,Pelodiscussinensis. J Therm Biol, 28: 279–286

    Du W. G., Wang L., Shen J. W. 2010. Optimal temperatures for egg incubation in two geoemydid turtles:Ocadia sinensisandMauremys mutica. Aquaculture, 305: 138–142

    Dufaure J. P., Hubert J. 1961. Table de développement du lézard vivipare:Lacerta(Zootoca)viviparaJacquin. Arch Anat Microsc Morphol Exp, 50: 309–328

    Fischer K., K?lzow N., H?ltje H., Karl I. 2011. Assay conditions in laboratory experiments: Is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia, 166: 23–33

    Hao Q. L., Liu H. X., Ji X. 2006. Phenotypic variation in hatchling Mongolian racerunners (Eremias argus) from eggs incubated at constant versus fl uctuating temperatures. Acta Zool Sin, 52:1049–1057

    He N., Wu Z. J., Cai F. J., Wang Z. X., Yu H., Huang C. M.2011. Sexual dimorphism ofShinisaurus crocodilurus. Chin J Ecol, 30: 7–11

    Hernández-Salinas U., Ramírez-Bautista A., Pavón N. P.,Pacheco L. F. R. 2014. Morphometric variation in island and mainland populations of two lizard species from the Pacific Coast of Mexico. Rev Chil Hist Nat, 87: 21

    Hews, D. K. 1990. Examining hypotheses generated by field measures of sexual selection on male lizards,Uta palmeri.Evolution, 44: 1956–1966

    Huang Q. Y. 1999. Scincidae. In Zhao E. M., Zhao K. T., Zhou K.Y. (Eds.), Fauna Sinica, Reptilia,Vol. 2. Beijing: Science Press,271–360

    Huang W. S. 1996. Reproductive cycles and sexual dimorphism in the viviparous skink,Sphenomorphus indicus(Sauria:Scincidae), from Wushe, Central Taiwan. Zool Stud, 35: 55–61

    Huang W. S. 1997. Reproductive cycle of the skink,Sphenomorphus taiwanensis, in central Taiwan. J Herpetol, 31:287–290

    Huang W. S. 1998. Sexual size dimorphism and microhabitat use of two sympatric lizards,Sphenomorphus taiwanensisandTakydromus hsuehshanensis, from the central highlands of Taiwan. Zool Stud, 37: 303–308

    Huang W. S. 2010. Ecology and reproductive characteristics of the skinkSphenomorphus incognituson an East Asian Island, with comments on variations in clutch size with reproductive modes inSphenomorphus. Zool Stud, 49: 779–788

    Ji X, Bra?a F. 1999. Influence of thermal and hydric environments on embryonic use of energy and nutrients, and hatchling traits,in the wall lizards (Podarcismuralis). Comp Biochem Physiol,124A: 205–213

    Ji X., Chen F., Du W. G., Chen H. L. 2003. Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtlePelodiscus sinensis. J Zool, 261: 409–416

    Ji X., Du W. G. 2000. Sexual dimorphism in body size and head size and female reproduction in a viviparous skink,Sphenomorphus indicus. Zool Res, 21: 349–354

    Ji X., Huang H. Y., Hu X. Z., Du W. G. 2002. Geographic variation in female reproductive characteristics and egg incubation in the Chinese skink,Eumeces chinensis. Chin J Appl Ecol, 13: 680–684

    Ji X., Lin C. X., Lin L. H., Qiu Q. B., Du Y. 2007. Evolution of viviparity in warm-climate lizards: An experimental test of the maternal manipulation hypothesis. J Evol Biol, 20: 1037–1045

    Ji X., Lin L. H., Lin C. X., Qiu Q. B., Du Y. 2006. Sexual dimorphism and female reproduction in the many-lined sun skink (Mabuya multifasciata) from China. J Herpetol, 40: 353–359

    Ji X., Lin L. H., Luo L. G., Lu H. L., Gao J. F., Han J. 2006.Gestation temperature affects sexual phenotype, morphology,locomotor performance and growth of neonatal brown forest skink,Sphenomorphus indicus. Biol J Linn Soc, 88: 453–463

    Ji X., Qiu Q. B., Diong C. H. 2002. Sexual dimorphism and female reproductive characteristics in the oriental garden lizard,Calotes versicolorfrom a population in Hainan, southern China. J Herpetol, 36: 1–8

    Ji X., Wang Y. Z., Wang Z. 2009. New species ofPhrynocephalus(Squamata, Agamidae) from Qinghai, Northwest China. Zootaxa,1988: 61–68

    Ji X., Zhang C. H. 2001. Effects of thermal and hydric environments on incubating eggs, hatching success, and hatchling traits in the Chinese skink (Eumeces chinensis). Acta Zool Sin, 47: 250–259

    Ji X., Zhou W. H., He G. B., Zhang X. D. 1998. Sexual dimorphism and reproduction in the grass lizard,Takydromus septentrionalis. Russ J Herpetol, 5: 44–48

    Kratochvíl L., Fokt M., Rehák I., Frynta D. 2003.Misinterpretation of character scaling: A tale of sexual dimorphism in body shape of common lizards. Can J Zool, 81:1112–1117

    Lau M. 2005. The occurrence ofSphenomorphus incognitusin Hong Kong with notes on its diagnostic features and distribution.Porcupine, 32: 9–10

    Les H. L., Paitz R. T., Bowden R. M. 2007. Experimental test of the effects of fluctuating incubation temperatures on hatchling phenotype. J Exp Zool A, 307: 274–280

    Li H., Ding G. H., Zhou Z. S., Ji X. 2013. Fluctuations in incubation temperature affect incubation duration but not morphology, locomotion and growth of hatchlings in the sand lizardLacerta agilis(Lacertidae). Acta Zool (Stockholm), 94:11–18

    Li H., Ji X., Qu Y. F., Gao J. F., Zhang L. 2006. Sexual dimorphism and female reproduction in the multi-ocellated racerunner,Eremias multiocellata(Lacertidae). Acta Zool Sin,52: 250–255

    Li H., Wang Z., Chen C., Ji X. 2012. Does the variance of incubation temperatures always constitute a selective force for the origin of reptilian viviparity? Curr Zool, 58: 812–819

    Lin C. X., Du Y., Qiu Q. B., Ji X. 2007. Relatively high but narrow incubation temperatures in lizards depositing eggs in warm and thermally stable nests. Acta Zool Sin, 53: 437–445

    Lin L. H., Li H., An H., Ji X. 2008. Do temperature fluctuations during incubation always play an important role in shaping the phenotype of hatchling reptiles? J Therm Biol, 33: 193–199

    Lin L. H., Ma X. M., Li H., Ji X. 2010. Phenotypic variation in hatchling Chinese ratsnakes (Zaocys dhumnades) from eggs incubated at constant temperatures. J Therm Biol, 35: 28–33

    Lin Z. H. 2004. Sexual dimorphism in head and body size and the growth during reproductive period in the lizard,Japalura splendida. Sichuan J Zool, 23: 277–280

    Lin Z. H., Ji X. 2000. Food habits, sexual dimorphism and female reproduction of the skink (Eumeces chinensis) from a Lishui population in Zhejiang. Acta Ecol Sin, 20: 304–310

    Lin Z. H., Ji X. 2004. Reproductive output and effects of incubation thermal environments on hatchling phenotypes of mucous rat snakesPtyas mucosus. Acta Zool Sin, 50: 541–550

    Lin Z. H., Ji X., Luo L. G., Ma X. M. 2005. Incubation temperature affects hatching success, embryonic expenditure of energy and hatchling phenotypes of a prolonged egg-retaining snake,Deinagkistrodon acutus(Viperidae). J Therm Biol, 30:289–297

    Linkem C. W., Diesmos A. C., Brown R. M. 2011. Molecular systematics of the Philippine forest skinks (Squamata: Scincidae:Sphenomorphus): Testing morphological hypotheses of interspecific relationships. Zool J Linn Soc, 163: 1217–1243

    Liu Y, Shi L. 2009. Ontogenetic shifts of sexual dimorphism inPhrynocephalus grumgrzimailoi(Agamidae). Sichuan J Zool,28: 710–713

    Lu H. L., Gao J. F., Ma X. H., Lin Z. H., Ji X. 2012. Tail loss affects fecundity but not offspring traits in the Chinese skink,Eumeces chinensis. Curr Zool, 58: 228–235

    Lu H. L., Hu R. B., Ji X. 2009. The variance of incubation temperatures does not affect the phenotype of hatchlings in a colubrid snake,Xenochrophis piscator(Colubridae). J Therm Biol, 34: 138–143

    Lu H. L., Ji X., Lin L. H., Zhang L. 2006. Relatively low upper threshold temperature in lizards using cool habitats. J Therm Biol, 31: 256–261

    Lu H. L., Lin Z. H., Li H., Ji X. 2014. Geographic variation in hatchling size in an oviparous skink: Effects of maternal investment and incubation thermal environment. Biol J Linn Soc, 113: 283–296

    Mouton P. F. N., Van Wyk J. H. 1993. Sexual dimorphism in cordylid lizards: A case study of the Drakensberg crag lizard,Pseudocordylus melanotus. Can J Zool, 71: 1715–1723

    Nguyen T. Q., Schmitz A., Nguyen T. T., Orlov N. L., B?hme W.,Ziegler T. 2011. Review of the genusSphenomorphusFitzinger,1843 (Squamata: Sauria: Scincidae) in Vietnam, with description of a new species from northern Vietnam and southern China and the first record ofSphenomorphus mimicusTaylor, 1962 from Vietnam. J Herpetol, 45: 145–154

    Nguyen T. Q., Tran T. T., Nguyen T. T., B?hme W., Ziegler T.2012. First record ofSphenomorphus incognitus(Thompson,1912) (Squamata: Scincidae) from Vietnam with some notes on natural history. Asian Herpetol Res, 3: 147–150

    Olsson M., Shine R. 1997. The limits to reproductive output:offspring size versus number in the sand lizard (Lacerta agilis).Am Nat, 149: 179–188

    Olsson M., Shine R., Wapstra E., Ujvari B., Madsen T. 2002.Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution, 56: 1538–1542

    Pi?a C. I., Larriera A., Cabrera M. R. 2003. Effect of incubation temperature on incubation period, sex ratio, hatching success, and survivorship inCaiman latirostris(Crocodylia,Alligatoridae). J Herpetol, 37: 199–202

    Pincheira-Donoso D., Tregenza T. 2011. Fecundity selection and the evolution of reproductive output and sex-specific body size in theLiolaemuslizard adaptive radiation. Evol Biol, 38: 197–207

    Qu Y. F., Gao J. F., Mao L. X., Ji X. 2011. Sexual dimorphism and female reproduction in two sympatric toad-headed lizards,Phrynocephalus frontalisandP. versicolor(Agamidae). Anim Biol, 61: 139–151

    Ramírez-Bautista A., Cruz-Elizalde R., Hernández-Salinas U., Lozano A., Grummer J. A. 2017. Reproductive trait variation in theSceloporus scalarisspecies group (Squamata:Phrynosomatidae) from the Transvolcanic Belt, Mexico. Biol J Linn Soc, 122: 838–849

    Reeve J. P., Fairbairn D. J. 2001. Predicting the evolution of sexual size dimorphism. J Evol Biol, 14: 244–254

    Shen W., Pei J. C., Lin L. H., Ji X. 2017. Effects of constant versus fluctuating incubation temperatures on hatching success,incubation length and hatchling morphology in the Chinese skink (Plestiodon chinensis). Asian Herpetol Res, 8: 262–268

    Shine R. 1992. Relative clutch mass and body shape in lizards and snakes: its reproductive investment constrained or optimized?Evolution, 46: 828–833

    Shine R. 2004a. Incubation regimes of cold-climate reptiles: The thermal consequences of nest-site choice, viviparity and maternal basking. Biol J Linn Soc, 83: 145–155

    Shine R. 2004b. Seasonal shifts in nest temperature can modify the phenotypes of hatchling lizards, regardless of overall mean incubation temperature. Funct Ecol, 18: 43–49

    Sun B. J., Li S. L., Xu X. F., Zhao W. G., Luo L. G., Ji X., Du W. G. 2013. Different mechanisms lead to convergence of reproductive strategies in two lacertid lizards (Takydromus wolteriandEremias argus). Oecologia, 172: 645–652

    Sun Y. Y., Du Y., Yang J., Fu T. B., Lin C. X., Ji X. 2012. Is the evolution of viviparity accompanied by a relative increase in maternal abdomen size in lizards? Evol Biol, 39: 388–399

    Tang X. S., Huang S. 2014.Sphenomorphus incognitusfirstly found in Anhui province, China. Chin J Zool, 49: 609–612

    Wang Z., Lu H. L., Ma L., Ji X. 2014. Viviparity in high altitudePhrynocephaluslizards is adaptive because embryos cannot fully develop without maternal thermoregulation. Oecologia,174: 639–649

    Wang Z., Ma L., Shao M., Ji X. 2013. Differences in incubation length and hatchling morphology among five oviparousPhrynocephaluslizards (Agamidae) from China. Asian Herpetol Res, 4: 225–232

    Xu D. D., Luo S. T., Liu W. H., Yao X. M., Wu H. X. 2014. The intersexual differences of sexual dimorphism, feeding habits and locomotor performance at different temperatures of southern grass lizard (Takydromus sexlineatus) in Zhaoqing, China.Sichuan J Zool, 33: 808–814

    Xu X. F., Ji X. 2003. Ontogenetic shifts in sexual dimorphism in head size and food habits in the lacertid lizard,Eremias brenchleyi. Chin J Appl Ecol, 14: 557–561

    Yang J., Sun Y. Y., Fu T. B., Xu D. D., Ji X. 2012. Selection for increased maternal body-volume does not differ between twoScincellalizards with different reproductive modes. Zoology,115: 199–206

    Zeng Z. G., Zhao J. M., Sun B. J. 2013. Life history variation among geographically close populations of the toad-headed lizard (Phrynocephalus przewalskii): Exploring environmental and physiological associations. Acta Oecol, 51: 28–33

    Zhang Y. P., Ji X. 2000. Ontogenetic changes of sexual dimorphism in head size and food habit in grass lizard,Takydromus septentrionalis. Zool Res, 21: 181–186

    Zhang Y. P., Ji X. 2004. Sexual dimorphism in head size and food habits in the blue-tailed skink,Eumeces elegans. Acta Zool Sin,50: 745–752

    Zhao W., Liu N. F. 2014. The proximate causes of sexual size dimorphism inPhrynocephalus przewalskii. PLoS One, 9:e85963

    久久久久久久午夜电影| 97在线人人人人妻| 老女人水多毛片| 中国美白少妇内射xxxbb| 两个人的视频大全免费| 亚洲怡红院男人天堂| 国产视频首页在线观看| 美女cb高潮喷水在线观看| 蜜桃亚洲精品一区二区三区| 在线精品无人区一区二区三 | 人人妻人人澡人人爽人人夜夜| 自拍偷自拍亚洲精品老妇| 777米奇影视久久| 亚洲精品影视一区二区三区av| 毛片一级片免费看久久久久| 久久精品久久久久久久性| 狠狠精品人妻久久久久久综合| 日韩一区二区视频免费看| kizo精华| 熟女av电影| 国产精品99久久久久久久久| 成人欧美大片| 我的女老师完整版在线观看| 日产精品乱码卡一卡2卡三| 午夜激情久久久久久久| 国产亚洲av嫩草精品影院| 99热这里只有精品一区| 久久久久网色| 欧美xxⅹ黑人| 国产女主播在线喷水免费视频网站| 亚洲激情五月婷婷啪啪| 黄片无遮挡物在线观看| 亚洲av男天堂| 丰满乱子伦码专区| 99九九线精品视频在线观看视频| 久久久久九九精品影院| 91精品国产九色| 高清在线视频一区二区三区| 欧美一级a爱片免费观看看| 国产欧美日韩精品一区二区| 国产成人精品福利久久| 亚洲经典国产精华液单| 少妇高潮的动态图| 国产精品秋霞免费鲁丝片| 国产成人一区二区在线| 国产在线男女| 午夜免费观看性视频| 日日摸夜夜添夜夜添av毛片| 大香蕉久久网| 在线观看一区二区三区激情| 高清在线视频一区二区三区| 午夜精品国产一区二区电影 | 亚洲精品456在线播放app| 成人亚洲精品av一区二区| 国产在线一区二区三区精| 黄色配什么色好看| 精品久久久久久久久亚洲| 亚洲精品色激情综合| av.在线天堂| 亚洲国产色片| 免费大片18禁| 五月玫瑰六月丁香| 人妻夜夜爽99麻豆av| 精品一区二区三卡| 国产日韩欧美在线精品| 又黄又爽又刺激的免费视频.| 国产91av在线免费观看| 亚洲精品aⅴ在线观看| 麻豆久久精品国产亚洲av| 九草在线视频观看| 久久人人爽av亚洲精品天堂 | 国产成人精品福利久久| 国产精品一区www在线观看| 国产高潮美女av| 人妻 亚洲 视频| 一级爰片在线观看| 久久久a久久爽久久v久久| 中国美白少妇内射xxxbb| 国产熟女欧美一区二区| 伊人久久精品亚洲午夜| 观看免费一级毛片| 韩国高清视频一区二区三区| av线在线观看网站| 国产成人a区在线观看| 国产伦精品一区二区三区四那| 亚洲成人一二三区av| 99久久精品国产国产毛片| 亚洲精品国产av蜜桃| 一区二区三区免费毛片| 大片电影免费在线观看免费| 国产视频首页在线观看| 最近中文字幕高清免费大全6| 国产av不卡久久| 五月玫瑰六月丁香| 久久ye,这里只有精品| 亚洲av电影在线观看一区二区三区 | www.av在线官网国产| 国产av码专区亚洲av| 亚洲av.av天堂| 精品久久久精品久久久| 成人欧美大片| 亚洲精品自拍成人| 久久97久久精品| 亚洲精品国产av蜜桃| .国产精品久久| 日韩不卡一区二区三区视频在线| 亚洲国产精品成人综合色| 亚洲精品乱码久久久v下载方式| 看十八女毛片水多多多| 一边亲一边摸免费视频| 女人被狂操c到高潮| 国产欧美亚洲国产| 中国三级夫妇交换| 日韩亚洲欧美综合| 亚洲精华国产精华液的使用体验| 久久精品国产自在天天线| 国产精品久久久久久av不卡| 日日啪夜夜爽| 欧美xxⅹ黑人| 国产精品精品国产色婷婷| 九九在线视频观看精品| 黑人高潮一二区| 成年人午夜在线观看视频| 亚洲美女搞黄在线观看| 精品熟女少妇av免费看| 舔av片在线| 国产中年淑女户外野战色| 国产精品不卡视频一区二区| 亚洲成人中文字幕在线播放| 91久久精品国产一区二区成人| 亚洲精品乱码久久久v下载方式| 精品国产露脸久久av麻豆| 一本色道久久久久久精品综合| 午夜福利视频精品| 精品视频人人做人人爽| 日韩一本色道免费dvd| 国产精品三级大全| 久久久久久久国产电影| 夜夜看夜夜爽夜夜摸| 大片电影免费在线观看免费| 男人狂女人下面高潮的视频| 伦理电影大哥的女人| 少妇人妻久久综合中文| 国产精品熟女久久久久浪| 国产在线男女| 国产伦精品一区二区三区视频9| 亚洲va在线va天堂va国产| 成人美女网站在线观看视频| 在线观看av片永久免费下载| 国产av国产精品国产| 晚上一个人看的免费电影| 人妻制服诱惑在线中文字幕| 国产精品福利在线免费观看| 少妇的逼好多水| 国产男人的电影天堂91| 99热网站在线观看| 国产真实伦视频高清在线观看| 五月玫瑰六月丁香| 性插视频无遮挡在线免费观看| 欧美xxxx性猛交bbbb| 亚洲av不卡在线观看| 青春草视频在线免费观看| 白带黄色成豆腐渣| 中文字幕av成人在线电影| 草草在线视频免费看| 好男人视频免费观看在线| 一级爰片在线观看| freevideosex欧美| 最近手机中文字幕大全| 国产欧美日韩精品一区二区| 亚洲美女视频黄频| 黄色视频在线播放观看不卡| 大香蕉久久网| 男女国产视频网站| 美女视频免费永久观看网站| 国产女主播在线喷水免费视频网站| 国产成人福利小说| 久久精品久久精品一区二区三区| 国产探花在线观看一区二区| 亚洲最大成人中文| 午夜日本视频在线| 国产 一区精品| 亚洲av免费在线观看| 久久韩国三级中文字幕| 秋霞在线观看毛片| 人妻 亚洲 视频| 亚洲精品亚洲一区二区| 国产亚洲91精品色在线| 麻豆成人午夜福利视频| 黄色配什么色好看| 男女国产视频网站| 丝袜喷水一区| av国产免费在线观看| 美女cb高潮喷水在线观看| 国产精品人妻久久久久久| 成人国产麻豆网| 简卡轻食公司| 欧美日韩综合久久久久久| 日韩三级伦理在线观看| 青青草视频在线视频观看| 丝袜喷水一区| 午夜爱爱视频在线播放| 久久精品久久精品一区二区三区| 久久综合国产亚洲精品| 性插视频无遮挡在线免费观看| 在线免费十八禁| 特大巨黑吊av在线直播| 免费人成在线观看视频色| 高清午夜精品一区二区三区| 日韩精品有码人妻一区| 国精品久久久久久国模美| 国产精品国产三级国产专区5o| 97超碰精品成人国产| 国产永久视频网站| 丰满乱子伦码专区| 久久久久性生活片| 欧美+日韩+精品| 久久热精品热| 97热精品久久久久久| 美女被艹到高潮喷水动态| eeuss影院久久| av女优亚洲男人天堂| 小蜜桃在线观看免费完整版高清| 日日啪夜夜撸| 国产av不卡久久| 国产亚洲最大av| 女人十人毛片免费观看3o分钟| 少妇 在线观看| 青春草视频在线免费观看| 在线a可以看的网站| 国产真实伦视频高清在线观看| 视频中文字幕在线观看| 国产中年淑女户外野战色| 免费av观看视频| 亚洲成人中文字幕在线播放| 色播亚洲综合网| 久久国内精品自在自线图片| 久久久久久久国产电影| 在线 av 中文字幕| 夫妻午夜视频| 麻豆精品久久久久久蜜桃| .国产精品久久| 亚洲精品色激情综合| 秋霞在线观看毛片| .国产精品久久| 男女下面进入的视频免费午夜| 王馨瑶露胸无遮挡在线观看| 高清在线视频一区二区三区| 久热久热在线精品观看| 欧美高清成人免费视频www| 国产女主播在线喷水免费视频网站| 久久久精品免费免费高清| 男人舔奶头视频| 久久97久久精品| 久久久久久久国产电影| 最近中文字幕2019免费版| 免费电影在线观看免费观看| 国产精品国产三级国产av玫瑰| 亚洲精品久久午夜乱码| 青春草国产在线视频| 男女无遮挡免费网站观看| 欧美激情国产日韩精品一区| 午夜福利高清视频| 少妇被粗大猛烈的视频| 国产精品人妻久久久影院| 一区二区三区乱码不卡18| 成人亚洲精品av一区二区| 久久久亚洲精品成人影院| 王馨瑶露胸无遮挡在线观看| 人妻一区二区av| 五月玫瑰六月丁香| 老女人水多毛片| 美女主播在线视频| 色视频www国产| 永久免费av网站大全| 校园人妻丝袜中文字幕| 欧美高清成人免费视频www| 18禁裸乳无遮挡动漫免费视频 | 我的老师免费观看完整版| 久久韩国三级中文字幕| 久久鲁丝午夜福利片| 色哟哟·www| av黄色大香蕉| 久久精品久久久久久噜噜老黄| 免费在线观看成人毛片| 亚洲av日韩在线播放| 69av精品久久久久久| kizo精华| 亚洲精品国产成人久久av| 久久久久久久亚洲中文字幕| 久久久成人免费电影| 一级av片app| 男人舔奶头视频| 好男人在线观看高清免费视频| 国产一区二区三区综合在线观看 | 丝袜脚勾引网站| 三级男女做爰猛烈吃奶摸视频| 天美传媒精品一区二区| 国产伦在线观看视频一区| 国产亚洲午夜精品一区二区久久 | 欧美国产精品一级二级三级 | 亚洲国产成人一精品久久久| 国产真实伦视频高清在线观看| 乱系列少妇在线播放| 99视频精品全部免费 在线| 嫩草影院新地址| 尤物成人国产欧美一区二区三区| 国产成人精品久久久久久| 伊人久久国产一区二区| 热re99久久精品国产66热6| 亚洲三级黄色毛片| 欧美精品一区二区大全| 久久久久久久午夜电影| 下体分泌物呈黄色| 国产又色又爽无遮挡免| av网站免费在线观看视频| 国产黄a三级三级三级人| 国产精品一区www在线观看| 91精品一卡2卡3卡4卡| 街头女战士在线观看网站| 色播亚洲综合网| 国产在线男女| 七月丁香在线播放| 水蜜桃什么品种好| 国产探花极品一区二区| 日韩,欧美,国产一区二区三区| 香蕉精品网在线| 99久久精品热视频| 一级毛片久久久久久久久女| 一区二区三区四区激情视频| 日韩一区二区三区影片| 亚洲最大成人中文| 成人国产麻豆网| 成人无遮挡网站| 亚洲图色成人| 免费观看在线日韩| 欧美国产精品一级二级三级 | 中文欧美无线码| 大香蕉97超碰在线| 大话2 男鬼变身卡| 国产精品嫩草影院av在线观看| 精品国产露脸久久av麻豆| 男男h啪啪无遮挡| 国产欧美亚洲国产| 亚洲国产精品成人综合色| 十八禁网站网址无遮挡 | 大码成人一级视频| videos熟女内射| 日本午夜av视频| 超碰97精品在线观看| 亚洲精品乱码久久久久久按摩| 五月天丁香电影| 三级经典国产精品| 男男h啪啪无遮挡| 少妇高潮的动态图| 大片免费播放器 马上看| 女人久久www免费人成看片| 国产高清有码在线观看视频| 精品酒店卫生间| av在线播放精品| 日本熟妇午夜| 日本av手机在线免费观看| 亚洲在线观看片| 国产一区二区在线观看日韩| 欧美精品人与动牲交sv欧美| 永久网站在线| 国产欧美另类精品又又久久亚洲欧美| 日韩 亚洲 欧美在线| 欧美日本视频| 国产高清不卡午夜福利| 国产 一区精品| 嫩草影院入口| 真实男女啪啪啪动态图| 精品人妻偷拍中文字幕| 日韩强制内射视频| 欧美一级a爱片免费观看看| 国产欧美另类精品又又久久亚洲欧美| 日日啪夜夜爽| 亚洲自偷自拍三级| 日韩一区二区视频免费看| 一边亲一边摸免费视频| 国产精品国产av在线观看| av一本久久久久| 免费看不卡的av| 久久精品综合一区二区三区| 欧美日本视频| 69人妻影院| 黄色一级大片看看| 18禁在线无遮挡免费观看视频| 久久女婷五月综合色啪小说 | 午夜福利视频1000在线观看| 亚洲国产高清在线一区二区三| 午夜福利视频1000在线观看| 日韩欧美 国产精品| 日韩欧美精品免费久久| 联通29元200g的流量卡| 婷婷色av中文字幕| 久热这里只有精品99| 久久热精品热| 有码 亚洲区| 欧美 日韩 精品 国产| 白带黄色成豆腐渣| 狂野欧美激情性xxxx在线观看| 亚洲不卡免费看| 亚洲精品乱码久久久久久按摩| 一级毛片我不卡| 日本熟妇午夜| 久久久精品94久久精品| 亚洲在线观看片| 日韩不卡一区二区三区视频在线| 熟妇人妻不卡中文字幕| 99久久中文字幕三级久久日本| 观看免费一级毛片| 有码 亚洲区| 人人妻人人看人人澡| 色吧在线观看| 晚上一个人看的免费电影| 91狼人影院| 成年女人在线观看亚洲视频 | 欧美性感艳星| 久久精品国产a三级三级三级| 日本与韩国留学比较| 春色校园在线视频观看| 日日摸夜夜添夜夜添av毛片| 午夜福利在线观看免费完整高清在| 久久影院123| 精品99又大又爽又粗少妇毛片| 高清午夜精品一区二区三区| 一级毛片电影观看| 99热全是精品| 国产成人精品久久久久久| 欧美激情在线99| 干丝袜人妻中文字幕| 两个人的视频大全免费| 精品久久久久久久末码| 亚洲无线观看免费| 日韩av免费高清视频| 99热这里只有是精品50| 国产一区二区三区av在线| 99热6这里只有精品| 成人毛片60女人毛片免费| 久久影院123| 久久精品国产亚洲av涩爱| 国精品久久久久久国模美| 夫妻性生交免费视频一级片| 成人无遮挡网站| 国产免费福利视频在线观看| 久久人人爽人人片av| 国产真实伦视频高清在线观看| 国产爽快片一区二区三区| 99久久中文字幕三级久久日本| 精品一区二区三卡| 99九九线精品视频在线观看视频| 伦理电影大哥的女人| 一本久久精品| 午夜福利高清视频| 一级av片app| 免费观看a级毛片全部| 国产亚洲一区二区精品| 亚洲精品自拍成人| 亚洲国产av新网站| 久久久精品欧美日韩精品| 乱码一卡2卡4卡精品| 亚洲精品成人久久久久久| 干丝袜人妻中文字幕| 国产成人精品一,二区| 哪个播放器可以免费观看大片| 日本三级黄在线观看| av又黄又爽大尺度在线免费看| 联通29元200g的流量卡| 一级毛片久久久久久久久女| 99久久九九国产精品国产免费| 国语对白做爰xxxⅹ性视频网站| 欧美精品一区二区大全| 国产精品伦人一区二区| 亚洲成人中文字幕在线播放| 亚洲精品456在线播放app| 亚洲天堂av无毛| 亚洲人成网站在线播| 我的女老师完整版在线观看| 亚洲人成网站高清观看| 啦啦啦在线观看免费高清www| 午夜免费男女啪啪视频观看| 色播亚洲综合网| 亚洲欧美精品自产自拍| 天堂俺去俺来也www色官网| 五月伊人婷婷丁香| 国产日韩欧美在线精品| 久久人人爽av亚洲精品天堂 | 三级国产精品欧美在线观看| 人妻系列 视频| 少妇丰满av| 99热这里只有是精品50| 欧美一区二区亚洲| 色综合色国产| 国产精品熟女久久久久浪| 久久久午夜欧美精品| 熟妇人妻不卡中文字幕| 有码 亚洲区| 国产一区二区三区综合在线观看 | 国产亚洲av片在线观看秒播厂| 2018国产大陆天天弄谢| 在线精品无人区一区二区三 | 国产日韩欧美亚洲二区| 97在线视频观看| 亚洲最大成人中文| 18禁裸乳无遮挡免费网站照片| 边亲边吃奶的免费视频| 国产精品蜜桃在线观看| 啦啦啦在线观看免费高清www| 91狼人影院| 性色avwww在线观看| 亚洲精品自拍成人| av线在线观看网站| 久久久久久久午夜电影| 女人久久www免费人成看片| 中文乱码字字幕精品一区二区三区| 亚洲成人精品中文字幕电影| 老师上课跳d突然被开到最大视频| 男女国产视频网站| .国产精品久久| 狂野欧美白嫩少妇大欣赏| 欧美日韩精品成人综合77777| 天堂网av新在线| 欧美另类一区| 亚洲欧美成人精品一区二区| 欧美性猛交╳xxx乱大交人| 亚洲,欧美,日韩| 亚洲,一卡二卡三卡| 亚洲成色77777| 能在线免费看毛片的网站| 日本免费在线观看一区| 亚洲国产色片| 亚洲精品日韩在线中文字幕| 国产精品国产三级国产专区5o| 亚洲欧美精品专区久久| 如何舔出高潮| 一区二区av电影网| 高清在线视频一区二区三区| 国产精品秋霞免费鲁丝片| av线在线观看网站| 久久99热这里只有精品18| 国产91av在线免费观看| 亚洲自拍偷在线| 欧美3d第一页| 深夜a级毛片| 女的被弄到高潮叫床怎么办| 最新中文字幕久久久久| 嘟嘟电影网在线观看| 日韩精品有码人妻一区| 观看免费一级毛片| 天美传媒精品一区二区| 1000部很黄的大片| 欧美日韩亚洲高清精品| 色哟哟·www| 99久久九九国产精品国产免费| 色婷婷久久久亚洲欧美| 亚洲av电影在线观看一区二区三区 | 中文字幕av成人在线电影| 高清毛片免费看| 日韩强制内射视频| 你懂的网址亚洲精品在线观看| 欧美3d第一页| 又粗又硬又长又爽又黄的视频| 黄色配什么色好看| 国产美女午夜福利| 美女国产视频在线观看| 国产精品麻豆人妻色哟哟久久| 免费大片18禁| 人妻夜夜爽99麻豆av| 99热这里只有精品一区| 欧美国产精品一级二级三级 | 成人无遮挡网站| 麻豆久久精品国产亚洲av| 国产精品99久久99久久久不卡 | 亚洲精品亚洲一区二区| 超碰97精品在线观看| 日韩不卡一区二区三区视频在线| 最近最新中文字幕大全电影3| 精品午夜福利在线看| 国产成人a区在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 黑人高潮一二区| 午夜老司机福利剧场| 国模一区二区三区四区视频| 久久久a久久爽久久v久久| 日韩中字成人| 国产乱来视频区| 婷婷色麻豆天堂久久| 精品人妻熟女av久视频| 永久网站在线| 大片免费播放器 马上看| 亚洲国产精品999| 精品国产三级普通话版| 人妻系列 视频| 成人毛片60女人毛片免费| 一二三四中文在线观看免费高清| 久久这里有精品视频免费| 精品久久久久久久久亚洲| 一级黄片播放器| 国产高潮美女av| 国产精品嫩草影院av在线观看| 美女脱内裤让男人舔精品视频| 天天躁日日操中文字幕| 国产欧美亚洲国产| 亚洲欧美清纯卡通| 日韩av不卡免费在线播放| 男人狂女人下面高潮的视频| 国产伦精品一区二区三区视频9| 又黄又爽又刺激的免费视频.| 一级毛片电影观看| 亚洲国产日韩一区二区| 婷婷色综合www| 亚洲激情五月婷婷啪啪| 欧美日韩亚洲高清精品|