• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sexual Dimorphism, Female Reproductive Characteristics and Egg Incubation in an Oviparous Forest Skink (Sphenomorphus incognitus) from South China

    2018-06-28 03:17:44LiMAJianchiPEICuntongZHOUYuDUXiangJIandWenSHEN
    Asian Herpetological Research 2018年2期

    Li MA, Jianchi PEI, Cuntong ZHOU,3, Yu DU,4, Xiang JI and Wen SHEN

    1 School of Sports and Health, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China

    2 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University,Nanjing 210023, Jiangsu, China

    3 College of Ecology, Lishui University, Lishui 323000, Zhejiang, China

    4 Hainan Key Lab for Herpetology, College of Tropical Biology and Agronomy, Hainan Tropical Ocean University,Sanya 572022, China

    1. Introduction

    Forest skinks of the reproductively bimodal genusSphenomorphusFitzinger, 1843 occur in South-East Asia,Asia, Indochina and Central America (Linkemet al.,2011). Of some 145 currently recognizedSphenomorphusspecies (Linkemet al., 2011), six (S. courcyanus,S.incognitus,S. indicus,S. maculatus,S. taiwanensisandS.tonkinensis) can be found in China, withS. taiwanensisendemic to Taiwan Province of the country (Huang,1999; Nguyenet al., 2011, 2012). Despite its wide geographic distribution, high species diversity and the fact that it is morphologically, zoogeographically and taxonomically well known, the ecology and biology of the genusSphenomorphusremain poorly studied. Several investigators have studied sexual dimorphism and female reproduction but, to the best of our knowledge, they only reported descriptive data for five species (S. incognitus:Huang, 2010;S. indicus: Huang 1996; Ji and Du, 2000;Jiet al., 2006;S. jagori: Auffenberg and Auffenberg,1989;S. maculates: Huang, 1999;S. taiwanensis: Huang,1997, 1998). Detailed data on female reproductive traits do not exist for all these species except forS. indicus(Ji and Du, 2000; Jiet al., 2006). For example, ten femaleS. incognitus(Huang, 2010), nine femaleS. taiwanensis(Huang, 1997) and a unknown number of femaleS.jagori(Auffenberg and Auffenberg, 1989) were measured for fecundity (clutch size), but in none of these species were egg mass and reproductive output (clutch mass)documented.

    Sphenomorphus incognitusstudied here ranges from Southern-Central China (Anhui, Fujian, Guangdong,Guangxi, Hainan, Hubei, Taiwan, Yunnan and Zhejiang)to North Vietnam (Huang, 1999; Lau, 2005; Nguyenet al., 2012; Tang and Huang, 2014; Chenet al., 2017).This medium sized (up to 107 mm snout-vent length,SVL), oviparous terrestrial skink shows a preference for stream habitats, forest edges and riverbeds (Huang,1999; Nguyenet al., 2012). The skink is morphologically similar toS. indicus, its viviparous congener, and this similarity contributes to the confusion about taxonomic identity, habitat use and geographic distribution of these two species (Chenet al., 2017). Previous studies presented very limited descriptive data forS. incognitusfrom mainland China (Huang, 1999), and a bit more detailed data for a population on Lanyu Island, Taiwan,China (Huang, 2010). From Huang’s (2010) study onS.incognitusfrom Lanyu Island we know the following.First, males are larger in terms of linear body size (SVL)and thusS. incognitusis among species that show malebiased sexual size dimorphism (SSD). Second, females exhibit spring and summer vitellogenesis and lay eggs from March to July. Third, females lay 3–6 eggs per clutch, with clutch size being independent of female SVL.Here, we presented data forS. incognitusfrom South China. Based on morphological measurements taken for adults in the field and clutches laid in the laboratory,we studied sexual dimorphism in body size and shape,female reproduction and egg incubation. Our aims were:(1) to show sexual dimorphism in several morphological characters (body size, head size, head width, abdomen length, and fore- and hind-limb lengths) likely to be associated with reproductive success and performance;(2) to investigate the relationships among egg size (and thus hatchling size), clutch size and female size; and(3) to examine the effects of constant versus fluctuating temperatures on incubation length and hatchling morphology.

    2. Materials and Methods

    We collected 263 adult skinks (92 females and 171 males) larger than 80 mm SVL in three consecutive years between 2013 and 2015 from Guangzhou, Wuzhishan and Zhaoqing in South China. Most of these skinks (65 females and all males) were released at their point of capture following the collection of morphological data.Measurements taken for each skink with Mitutoyo digital calipers included SVL, abdomen length (AL, between the insertion points of the fore- and hind-limbs), head length(HL, from the snout to the anterior edge of tympanum)and head width (HW, the posterior end of the mandible)(Sunet al., 2012). Of the 263 adults, 123 (42 females and 81 males) were also measured for fore-limb length (FLL,humerus plus ulna) and hind-limb length (HLL, femur plus tibia) (Jiet al., 2007).

    We palpated all adult females in the field and transported 27 females with enlarged follicles to our laboratory in Nanjing, where they were individually housed in 540 × 400 × 320 mm3plastic cages placed in a room inside which temperatures varied from 20 °C to 28 °C. All cages had a substrate consisting of moist soil (~150 mm depth) covered with cobblestones, grass and fallen leaves, and females were able to regulate body temperature using natural sunlight. Mealworms(Tenebrio molitor), house crickets (Achetus domesticus),cockroaches (Blaptica dubia) and water enriched with vitamin and minerals were provided or refreshed daily.

    Females laid a single clutch of eggs between early May and mid-August. We checked the cages at least thrice daily for freshly laid eggs after the first female laid eggs,thereby collecting, weighing and measuring (for length and width) eggs always less than 6 h post-laying. Postoviposition females were weighed and measured for SVL.Of the 27 females, two were excluded from analyses because they laid unfertilized eggs or abnormal eggs with condensed yolk. We calculated relative clutch mass(RCM) by dividing clutch mass by the post-oviposition female mass (Shine, 1992). To account for the influence of variation in female size on fecundity, we calculated relative fecundity by using the residuals derived from the regression of clutch size on female SVL (Olsson and Shine, 1997).

    We collected 142 fertilized egg, of which eight,each from one of eight clutches, were used to identify the Dufaure and Hubert’s (1961) stage of embryonic development at laying. The remaining eggs were individually placed into covered plastic jars (50 ml) with moist vermiculite at –12 kPa (Ji and Bra?a, 1999). All incubating egg were 2/3 buried in the substrate, with the surface near the embryo exposed to air inside the jar. Eggs from the same clutch were assigned as equally as possible among five incubators (Binder, Germany): three set at 22,25 and 28 °C, respectively; the other two set at 25 ± 3 °C and 25 ± 5 °C, respectively. Thermal fluctuations were maintained at 12 h (+) and 12 h (–) and were confirmed with Tinytalk temperature loggers (Gemini Pty, Australia)placed inside jars. We rotated jars at 4-d intervals to minimize the influence of thermal gradients. Substrate water potential was adjusted at 4-d intervals by weighing jars. Incubation length was defined as the time between laying and pipping. Upon emergence, hatchlings were collected, weighed and measured for SVL, AL, HL and HW.

    We used linear regression analysis to examine if the relationship between a selected pair of dependent and independent variables was significant. We calculated regression residuals of an examined morphological variable (AL, HL, HW, FLL, or HLL) against SVL, and then used one-way ANOVA to see if the variable differed between male and female adults. Data on egg size,incubation length and hatchling morphology from the same clutch were pooled to avoid pseudo-replication. We usedG-test and one-way ANOVA to see if eggs incubated under different thermal regimes differed in hatching success, mean mass at laying and mean incubation length.We used one-way ANCOVA to test for slope homogeneity of regressions lines and to see if hatchlings from eggs assigned to different treatments differed morphologically after accounting for egg mass at laying. Prior to parametric analyses, all data were tested for normality using the Kolmogorov-Smirnov test, and for homogeneity of variances using Bartlett’s test. All statistical procedures were performed in Statistica 8.0 (StatSoft; Tulsa, OK,USA), and statistical significance was assumed atP<0.05. Values are presented as mean ± standard error (SE)and range.

    3. Results and Discussion

    3.1. Sexual dimorphismThe largest male and female were 110 mm and 108 mm SVL, respectively. Both values are greater than the maximal sizes ever reported forS.incognitusfrom mainland China (107 mm SVL; Huang,1999) and Taiwan, China (94 mm SVL; Huang, 2010).The mean SVL did not differ between male (97 ± 0.5 mm)and female (96 ± 0.7 mm) adults (ANOVA;F1,261= 0.45,P= 0.50; Figure 1), suggesting thatS. incognitusfrom South China is sexually monomorphic in terms of adult body size (SVL). This pattern of SSD differs from malebiased SSD reported forS. incognitusfrom Taiwan, China(Huang, 2010), and it also does not support the hypothesis that lizards on islands are more likely to exhibit malebiased SSD (Hernández-Salinaset al., 2014). Much more adults were measured in this study (92 females and 171 males) than in the earlier one (43 females and 45 males;Huang, 2010), thus allowing more accurate determination of SSD.

    The evolution and maintenance of a given pattern of SSD often result from sexual differences in reproductive success relating to adult body size (Cooper and Vitt, 1989;Hews, 1990; Mouton and Van Wyk, 1993; Reeve and Fairbairn, 2001; Coxet al., 2003). Within scincid lizards,selection through male contest competition is the key factor for male-biased SSD inPlestiodonchinensis(Lin and Ji, 2000),Plestiodon elegans(Du and Ji, 2001; Zhang and Ji, 2004) andEutropismultifasciata(Jiet al., 2006),whereas selection on fecundity or reproductive output is the main cause for increased female size inS. indicus(Ji and Du, 2000),Scincella modestaandScincella reevesii(Yanget al., 2012). Sexual size monomorphism(SSM) often occurs in species where these two selective forces cancel each other out and has been documented in a wide range of lizard taxa. In lizard species so far studied in China, SSM has been documented inCalotes versicolor(Jiet al., 2002),Eremias argus(Chenet al.,2015),Eremias brenchleyi(Xu and Ji, 2003),Eremias multiocellata(Liet al., 2006),Japalura splendida(Lin, 2004),Phrynocephalus frontalis(Quet al., 2011),Phrynocephalus grumgrzimailoi(Liu and Shi, 2009),Phrynocephalus guinanensis(Jiet al., 2009),Shinisaurus crocodilurus(Heet al., 2011),Takydromus septentrionalis(Jiet al., 1998; Zhang and Ji, 2000) andTakydromus sexlineatus(Xuet al., 2014).

    Figure 1 Frequency distributions of SVL of adult Sphenomorphus incognitus (92 females and 171 males), showing sexual size monomorphism.

    The rates at which HL (Figure 2a) and HW (Figure 2b) increased with SVL were greater in adult males(ANCOVA for slope homogeneity, bothP< 0.001),and the rates at which AL (Figure 2c), FLL (Figure 2d)and HLL (Figure 2e) increased with SVL did not differ significantly between the sexes (ANCOVA for slope homogeneity; allP> 0.09). The mean values of residuals from the regressions of HL, HW, FLL and HLL on SVL were greater in adult males (ANOVA; allP< 0.0001),whereas the mean value of residuals from the regressions of AL (ANOVA;F1,261= 64.20,P< 0.0001) on SVL was greater in adult females. The greater relative head size in males and the greater relative abdomen size in females are the rule in nearly all lizard lineages (Olssonet al., 2002; Coxet al., 2003; Kratochvílet al., 2003;Pincheira-Donoso and Tregenza, 2011; Sunet al., 2012;see also Huang, 1996). It is therefore not surprising thatS. incognitusshares these features. Head size (both length and width) and abdomen length are sexually dimorphic largely because these traits are directly linked to the reproductive role of each sex (Bultéet al., 2008),although in some species the greater relative head size in males may also have a secondary role in reducing intersexual resource competition by amplifying food niche divergence between the sexes (Bra?a, 1996; Lin and Ji, 2000; Zhang and Ji, 2000, 2004). Sexual dimorphism in appendage (limb) length has been poorly known. LikePhrynocephalus przewalskii(Zhao and Liu, 2014) andS. incognitusfrom Taiwan, China (Huang, 2010),S.incognitusfrom South China shows male-biased sexual dimorphism in appendage length.

    3.2. Female reproductive characteristicsTable 1 shows female reproductive traits ofS. incognitusfrom South China. Females laid a single clutch of 3–10 eggs per breeding season from early May to mid-August, with the egg-laying season being about three months longer than that (from March to July) reported forS. incognitusfrom Taiwan, China (Huang, 2010). Clutch size was positively related to female SVL (r2= 0.18,F1,23= 5.09,P= 0.034), suggesting that, as in most other lizard species (Ramírez-Bautistaet al., 2017), female size is an important determinant of fecundity inS. incognitus. Such a relationship between clutch size and female SVL was nonetheless not statistically significant inS. incognitusfrom Taiwan, China (Huang, 2010). The mean clutch size was greater in South China (5.2; Table 1) than in Taiwan,China (4.0; Huang, 2010). This difference could be in part due to the fact that females of this study (81–108 mm SVL; Table 1) were larger than those studied in Taiwan,China (73–87 mm SVL; Huang, 2010), asS. incognitusis among species where larger females are more fecund than smaller ones. Egg mass and clutch mass had never been examined inS. incognitus. In this study, we found that neither clutch mass (r2= 0.12,F1,23= 3.23,P=0.085) nor egg mass (r2= 0.04,F1,23= 0.99,P= 0.33)was significantly related to female SVL. These findings suggest that female size is not an important determinant of reproductive output or investment per offspring inS. incognitus. Egg mass was independent of relative fecundity (r2= 0.03,F1,23= 0.64,P= 0.43), suggesting that, as inEutropis longicaudata(Sunet al., 2012) andS.modesta(Yanget al., 2012), the egg size-number tradeoff does not exist inS. incognitus.

    Among oviparous skinks so far studied in mainland China, the mean RCM was smaller inS. incognitus(0.25;Table 1) than inS. modesta(0.72; Yanget al., 2012),E.longicaudata(0.34; Sunet al., 2012),P. chinensis(0.33;Lin and Ji, 2000) andP. elegans(0.31; Du and Ji, 2001),the proportion of variation in clutch mass explained by female SVL was lower inS. incognitus(12%) than inP.chinensis(51%; Lin and Ji, 2000),P. elegans(46%; Du and Ji, 2001),E. longicaudata(42%; Sunet al., 2012) andS. modesta(37%; Yanget al., 2012), and the proportion of variation in clutch size explained by female SVL is lower inS. incognitus(18%) than inP. chinensis(52%;Lin and Ji, 2000),S. modesta(40%; Yanget al., 2012),P. elegans(37%; Du and Ji, 2001) andE. longicaudata(35%; Sunet al., 2012). These comparisons provide an inference that selection on increased maternal body size and thus increased body volume available to hold eggs is comparatively weak inS. incognitus.

    Figure 2 Linear regressions of head length (a), head width (b), abdomen length (c), fore-limb length (d) and hind-limb length (e) on SVL in adult Sphenomorphus incognitus. Filled circles: females; open circles: males.

    3.3. Egg incubation and hatchling phenotypeEmbryonic stages at laying ranged from Dufaure and Hubert’s (1961) stage 31 to 32, with a mean stage of 31.3.Embryonic stage at laying is a causal factor of inter- and intra-specific variation in incubation length in oviparous lizards (Wanget al., 2013). However, incubation length at any given temperature may vary considerably among species that differ in phylogeny, egg size and/or distribution (Linet al., 2010; Liet al., 2012, 2013; Sunet al., 2013). Within sincid lizards, for example, the mean incubation length at 28 °C is much longer inS. incognitus(~40 d; Table 2) than inS. modesta(~20 d; Luet al.,2006) andP. chinensis(~24 d; Luet al., 2012, 2014; Shenet al., 2017), although the mean DH stage at laying does not differ betweenS. incognitusandS. modesta(31.1; Luet al., 2006) and is about one stage earlier inS. incognitusthan inP. chinensis(~32.5; Luet al., 2012, 2014; Shenet al., 2017). InPhrynocephaluslizards the changeover from the DH stage 30 to 31 shortens the mean incubation length at 28 °C by 3 d (Wanget al., 2013; Zenget al.,2013).

    Eggs assigned to the five temperature treatments did not differ significantly in mean mass (F4,42= 2.44,P=0.06) or hatching success (G= 2.62,df= 4,P> 0.50).Hatching successes varied from 64% (16/25) in the 25 ± 5°C treatment to 82% (9/11) in the 28 °C treatment, with a mean of 74% (Table 2). Within each treatment incubation length was independent of egg mass (linear regression analysis: allP> 0.20). Mean values for incubation length differed among the five treatments (F4,42= 45.62,P<0.0001). For eggs incubated at constant temperatures,the mean incubation length was shortened by 22.0 and 13.2 d for every 3 °C increase from 22–28 °C (Table 2).This pattern of thermal sensitivity of incubation length is consistent with earlier studies on turtles (Jiet al., 2003,Duet al., 2007, 2010), lizards (Ji and Bra?a, 1999; Linet al., 2007; Wanget al., 2013; Shenet al., 2017), snakes(Ji and Du, 2001; Linet al., 2005; Linet al., 2010) and crocodiles (Pi?aet al., 2003; Charruau, 2012) where incubation length decreases at an ever decreasing rate as temperature increases across the range where successful embryonic development can take place, explaining why eggs take a longer time to hatch at fluctuating temperatures than at constant temperatures with the same mean in some species (Shine, 2004a; Haoet al., 2006;Bra?a and Ji, 2007; Leset al., 2007; Luet al., 2009; Liet al., 2012). However, contrast to what was expected the fluctuating temperature treatments result in shorter incubation lengths relative to constant temperatures inS.incognitus. This suggests that, as inBassiana duperreyi(Shine, 2004b),Lycaena tityrus(Fischeret al., 2011),Naja atra(Linet al., 2008) andXenochrophis piscator(Luet al., 2009), incubation at stable temperatures may lead to delayed hatchinginS. incognitus.

    Table 1 Reproductive traits of female Sphenomorphus incognitus (N = 25).

    Table 2 Hatching success and descriptive statistics (expressed as mean ± SE and range) for egg mass at laying (initial egg mass), incubation length and wet body mass and morphology of hatchling Sphenomorphus incognitus from eggs incubated under fi ve thermal regimes.

    Incubation temperatures higher than 28 °C substantially reduce hatching success and adversely affect hatchling phenotypes in forest skinks (Luet al., 2006; Liet al.,2012). Here we found that hatchlings from eggs incubated at 25 ± 5 °C did not differ from those from eggs incubated under other four thermal regimes in any examined trait after accounting for egg mass at laying (ANCOVA; allP> 0.19; Table 2). This finding is overall consistent with that reported for a wide range of reptile taxa, including turtles (Pelodiscus sinensis: Du and Ji, 2003; Jiet al.,2003), lizards (E. argus: Haoet al., 2006;Heteronotia binoei: Andrewarthaet al., 2010;Lacerta agilis: Liet al., 2013;P. chinensis: Chenet al., 2003) and snakes(Rhabdophis tigrinus lateralis: Chen and Ji, 2002;Ptyas mucosus: Lin and Ji, 2004;N. atra: Linet al., 2008;X.piscator: (Luet al., 2009). In all these species, incubation temperature has no role in modifying hatchling traits as long as eggs are not exposed to extreme temperatures for prolonged periods of time.

    4. Conclusions

    Sphenomorphus incognitusis a morphologically,zoogeographically and taxonomically well known species,but its ecology and biology remain sparsely studied. Here we used adults collected from South China to study sexual dimorphism, female reproduction and egg incubation in this species. From this study we know the following.First, the skink is a sexually monomorphic species in terms of adult SVL but shows sexual dimorphism in head size, abdomen length and limb length, with males being larger in head size (both length and width), longer in foreand hind-limb lengths and shorter in abdomen length than females of the same SVL. Second, females larger than 80 mm SVL lay a single clutch of 3–10 eggs per breeding season from early May to mid-August, with larger females generally laying more (but not always larger)eggs per clutch than do smaller ones. Third, the positive relationship between clutch mass and female SVL is not significant, and the offspring size-number tradeoff does not exist inS. incognitus. Fourth, embryonic stages at laying range from Dufaure and Hubert’s (1961)stage 31 to 32, and the mean incubation length at a given temperature is much longer inS. incognituscompared toS. modestawith nearly the same embryonic stage at laying. Last, eggs ofS. incognitusincubated at fluctuating temperatures take a shorter time to hatch than those incubated at stable temperatures with the same mean, and incubation temperature has no role in modifying hatchling morphology as long as eggs are not exposed to extreme temperatures for prolonged periods of time.

    AcknowledgementsOur experimental procedures complied with the current laws on animal welfare and research in China. We thank Yijing CHEN, Kun GUO, Min SHAO, Yanqing WU, Guangzheng ZHANG and Liang ZHANG for assistance during the research. For funding,we thank the National Natural Science Foundation of China (31470471), the Priority Academic Development Program of Jiangsu Higher Education Institutions and the Innovation of Graduate Student Training Project of Jiangsu Province (KYLX15_0737).

    Andrewartha S. J., Mitchell N. J., Frappell P. B. 2010. Does incubation temperature fluctuation influence hatchling phenotypes in reptiles? A test using parthenogenetic geckos.Physiol Biochem Zool, 83: 597–607

    Auffenberg W., Auffenberg T. 1989. Reproductive patterns in sympatric Philippine skinks (Sauria: Scincidae). Bull FL State Mus Biol Sci Ser, 34: 201–247

    Bra?a F. 1996. Sexual dimorphism in lacertid lizards: male head increase vs female abdomen increase.Oikos, 75: 511–523

    Bra?a F., Ji X. 2007. The selective basis for increased egg retention: Early incubation temperature determines hatchling phenotype in wall lizards. Biol J Linn Soc, 91: 441–447

    Bulté G., Irschick D. J., Blouin-Demerset G. 2008. The reproductive role hypothesis explains trophic morphology dimorphism in the northern map turtle. Funct Ecol, 22: 824–830

    Charruau P. 2012. Microclimate of American crocodile nests in Banco Chinchorro biosphere reserve, Mexico: Effect on incubation length, embryos survival and hatchlings sex. J Therm Biol, 37: 6–14

    Chen H. L., Ji X. 2002. The effects of thermal environments on duration of incubation, hatching success and hatchling traits in a colubrid snakeRhabdophis tigrinus lateralis(Boie). Acta Ecol Sin, 22: 1850–1858

    Chen S. Y., Bi J. H., He Z. C., Li S. R., Liu R., Wang Y., Zhao X.2015. Sexual dimorphism and reproductive output ofEremias argusfrom Ordos. Chin J Zool, 50: 214–220

    Chen X. J., Lin Z. H., Ji X. 2003. Further studies on influence of temperature on egg incubation in the Chinese skink,Eumeces chinensis. Zool Res, 24: 21–25

    Chen Z. Q., Wei H. H., Liu J. L., Wu Y. K., Le X. G., Cheng S.L., Guo H. X., Ding G. H. 2017. New record ofSphenomorphus incognitusfrom Zhejiang and Jiangxi provinces. Sichuan J Zool,36: 479–480

    Cooper W. E., Vitt L. J. 1989. Sexual dimorphism of head and body size in an iguanid lizard: paradoxical results. Am Nat, 133:729–735

    Cox R. M., Skelly S. L., John-Alder H. B. 2003. A comparative test of adaptive hypothesis for sexual size dimorphism in lizards.Evolution, 57: 1653–1669

    Du W. G., Hu L. J., Lu J. L., Zhu L. J. 2007. Effects of incubation temperature on embryonic development rate, sex ratio and post-hatching growth in the Chinese three-keeled pond turtle,Chinemys reevesii. Aquaculture, 272: 747–753

    Du W. G., Ji X. 2001. Growth, sexual dimorphism and female reproduction of blue-tailed skinks,Eumeces elegans. Zool Res,22: 279–286

    Du W. G., Ji X. 2003. The effects of incubation thermal environments on size, locomotor performance and early growth of hatchling soft-shelled turtles,Pelodiscussinensis. J Therm Biol, 28: 279–286

    Du W. G., Wang L., Shen J. W. 2010. Optimal temperatures for egg incubation in two geoemydid turtles:Ocadia sinensisandMauremys mutica. Aquaculture, 305: 138–142

    Dufaure J. P., Hubert J. 1961. Table de développement du lézard vivipare:Lacerta(Zootoca)viviparaJacquin. Arch Anat Microsc Morphol Exp, 50: 309–328

    Fischer K., K?lzow N., H?ltje H., Karl I. 2011. Assay conditions in laboratory experiments: Is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia, 166: 23–33

    Hao Q. L., Liu H. X., Ji X. 2006. Phenotypic variation in hatchling Mongolian racerunners (Eremias argus) from eggs incubated at constant versus fl uctuating temperatures. Acta Zool Sin, 52:1049–1057

    He N., Wu Z. J., Cai F. J., Wang Z. X., Yu H., Huang C. M.2011. Sexual dimorphism ofShinisaurus crocodilurus. Chin J Ecol, 30: 7–11

    Hernández-Salinas U., Ramírez-Bautista A., Pavón N. P.,Pacheco L. F. R. 2014. Morphometric variation in island and mainland populations of two lizard species from the Pacific Coast of Mexico. Rev Chil Hist Nat, 87: 21

    Hews, D. K. 1990. Examining hypotheses generated by field measures of sexual selection on male lizards,Uta palmeri.Evolution, 44: 1956–1966

    Huang Q. Y. 1999. Scincidae. In Zhao E. M., Zhao K. T., Zhou K.Y. (Eds.), Fauna Sinica, Reptilia,Vol. 2. Beijing: Science Press,271–360

    Huang W. S. 1996. Reproductive cycles and sexual dimorphism in the viviparous skink,Sphenomorphus indicus(Sauria:Scincidae), from Wushe, Central Taiwan. Zool Stud, 35: 55–61

    Huang W. S. 1997. Reproductive cycle of the skink,Sphenomorphus taiwanensis, in central Taiwan. J Herpetol, 31:287–290

    Huang W. S. 1998. Sexual size dimorphism and microhabitat use of two sympatric lizards,Sphenomorphus taiwanensisandTakydromus hsuehshanensis, from the central highlands of Taiwan. Zool Stud, 37: 303–308

    Huang W. S. 2010. Ecology and reproductive characteristics of the skinkSphenomorphus incognituson an East Asian Island, with comments on variations in clutch size with reproductive modes inSphenomorphus. Zool Stud, 49: 779–788

    Ji X, Bra?a F. 1999. Influence of thermal and hydric environments on embryonic use of energy and nutrients, and hatchling traits,in the wall lizards (Podarcismuralis). Comp Biochem Physiol,124A: 205–213

    Ji X., Chen F., Du W. G., Chen H. L. 2003. Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtlePelodiscus sinensis. J Zool, 261: 409–416

    Ji X., Du W. G. 2000. Sexual dimorphism in body size and head size and female reproduction in a viviparous skink,Sphenomorphus indicus. Zool Res, 21: 349–354

    Ji X., Huang H. Y., Hu X. Z., Du W. G. 2002. Geographic variation in female reproductive characteristics and egg incubation in the Chinese skink,Eumeces chinensis. Chin J Appl Ecol, 13: 680–684

    Ji X., Lin C. X., Lin L. H., Qiu Q. B., Du Y. 2007. Evolution of viviparity in warm-climate lizards: An experimental test of the maternal manipulation hypothesis. J Evol Biol, 20: 1037–1045

    Ji X., Lin L. H., Lin C. X., Qiu Q. B., Du Y. 2006. Sexual dimorphism and female reproduction in the many-lined sun skink (Mabuya multifasciata) from China. J Herpetol, 40: 353–359

    Ji X., Lin L. H., Luo L. G., Lu H. L., Gao J. F., Han J. 2006.Gestation temperature affects sexual phenotype, morphology,locomotor performance and growth of neonatal brown forest skink,Sphenomorphus indicus. Biol J Linn Soc, 88: 453–463

    Ji X., Qiu Q. B., Diong C. H. 2002. Sexual dimorphism and female reproductive characteristics in the oriental garden lizard,Calotes versicolorfrom a population in Hainan, southern China. J Herpetol, 36: 1–8

    Ji X., Wang Y. Z., Wang Z. 2009. New species ofPhrynocephalus(Squamata, Agamidae) from Qinghai, Northwest China. Zootaxa,1988: 61–68

    Ji X., Zhang C. H. 2001. Effects of thermal and hydric environments on incubating eggs, hatching success, and hatchling traits in the Chinese skink (Eumeces chinensis). Acta Zool Sin, 47: 250–259

    Ji X., Zhou W. H., He G. B., Zhang X. D. 1998. Sexual dimorphism and reproduction in the grass lizard,Takydromus septentrionalis. Russ J Herpetol, 5: 44–48

    Kratochvíl L., Fokt M., Rehák I., Frynta D. 2003.Misinterpretation of character scaling: A tale of sexual dimorphism in body shape of common lizards. Can J Zool, 81:1112–1117

    Lau M. 2005. The occurrence ofSphenomorphus incognitusin Hong Kong with notes on its diagnostic features and distribution.Porcupine, 32: 9–10

    Les H. L., Paitz R. T., Bowden R. M. 2007. Experimental test of the effects of fluctuating incubation temperatures on hatchling phenotype. J Exp Zool A, 307: 274–280

    Li H., Ding G. H., Zhou Z. S., Ji X. 2013. Fluctuations in incubation temperature affect incubation duration but not morphology, locomotion and growth of hatchlings in the sand lizardLacerta agilis(Lacertidae). Acta Zool (Stockholm), 94:11–18

    Li H., Ji X., Qu Y. F., Gao J. F., Zhang L. 2006. Sexual dimorphism and female reproduction in the multi-ocellated racerunner,Eremias multiocellata(Lacertidae). Acta Zool Sin,52: 250–255

    Li H., Wang Z., Chen C., Ji X. 2012. Does the variance of incubation temperatures always constitute a selective force for the origin of reptilian viviparity? Curr Zool, 58: 812–819

    Lin C. X., Du Y., Qiu Q. B., Ji X. 2007. Relatively high but narrow incubation temperatures in lizards depositing eggs in warm and thermally stable nests. Acta Zool Sin, 53: 437–445

    Lin L. H., Li H., An H., Ji X. 2008. Do temperature fluctuations during incubation always play an important role in shaping the phenotype of hatchling reptiles? J Therm Biol, 33: 193–199

    Lin L. H., Ma X. M., Li H., Ji X. 2010. Phenotypic variation in hatchling Chinese ratsnakes (Zaocys dhumnades) from eggs incubated at constant temperatures. J Therm Biol, 35: 28–33

    Lin Z. H. 2004. Sexual dimorphism in head and body size and the growth during reproductive period in the lizard,Japalura splendida. Sichuan J Zool, 23: 277–280

    Lin Z. H., Ji X. 2000. Food habits, sexual dimorphism and female reproduction of the skink (Eumeces chinensis) from a Lishui population in Zhejiang. Acta Ecol Sin, 20: 304–310

    Lin Z. H., Ji X. 2004. Reproductive output and effects of incubation thermal environments on hatchling phenotypes of mucous rat snakesPtyas mucosus. Acta Zool Sin, 50: 541–550

    Lin Z. H., Ji X., Luo L. G., Ma X. M. 2005. Incubation temperature affects hatching success, embryonic expenditure of energy and hatchling phenotypes of a prolonged egg-retaining snake,Deinagkistrodon acutus(Viperidae). J Therm Biol, 30:289–297

    Linkem C. W., Diesmos A. C., Brown R. M. 2011. Molecular systematics of the Philippine forest skinks (Squamata: Scincidae:Sphenomorphus): Testing morphological hypotheses of interspecific relationships. Zool J Linn Soc, 163: 1217–1243

    Liu Y, Shi L. 2009. Ontogenetic shifts of sexual dimorphism inPhrynocephalus grumgrzimailoi(Agamidae). Sichuan J Zool,28: 710–713

    Lu H. L., Gao J. F., Ma X. H., Lin Z. H., Ji X. 2012. Tail loss affects fecundity but not offspring traits in the Chinese skink,Eumeces chinensis. Curr Zool, 58: 228–235

    Lu H. L., Hu R. B., Ji X. 2009. The variance of incubation temperatures does not affect the phenotype of hatchlings in a colubrid snake,Xenochrophis piscator(Colubridae). J Therm Biol, 34: 138–143

    Lu H. L., Ji X., Lin L. H., Zhang L. 2006. Relatively low upper threshold temperature in lizards using cool habitats. J Therm Biol, 31: 256–261

    Lu H. L., Lin Z. H., Li H., Ji X. 2014. Geographic variation in hatchling size in an oviparous skink: Effects of maternal investment and incubation thermal environment. Biol J Linn Soc, 113: 283–296

    Mouton P. F. N., Van Wyk J. H. 1993. Sexual dimorphism in cordylid lizards: A case study of the Drakensberg crag lizard,Pseudocordylus melanotus. Can J Zool, 71: 1715–1723

    Nguyen T. Q., Schmitz A., Nguyen T. T., Orlov N. L., B?hme W.,Ziegler T. 2011. Review of the genusSphenomorphusFitzinger,1843 (Squamata: Sauria: Scincidae) in Vietnam, with description of a new species from northern Vietnam and southern China and the first record ofSphenomorphus mimicusTaylor, 1962 from Vietnam. J Herpetol, 45: 145–154

    Nguyen T. Q., Tran T. T., Nguyen T. T., B?hme W., Ziegler T.2012. First record ofSphenomorphus incognitus(Thompson,1912) (Squamata: Scincidae) from Vietnam with some notes on natural history. Asian Herpetol Res, 3: 147–150

    Olsson M., Shine R. 1997. The limits to reproductive output:offspring size versus number in the sand lizard (Lacerta agilis).Am Nat, 149: 179–188

    Olsson M., Shine R., Wapstra E., Ujvari B., Madsen T. 2002.Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution, 56: 1538–1542

    Pi?a C. I., Larriera A., Cabrera M. R. 2003. Effect of incubation temperature on incubation period, sex ratio, hatching success, and survivorship inCaiman latirostris(Crocodylia,Alligatoridae). J Herpetol, 37: 199–202

    Pincheira-Donoso D., Tregenza T. 2011. Fecundity selection and the evolution of reproductive output and sex-specific body size in theLiolaemuslizard adaptive radiation. Evol Biol, 38: 197–207

    Qu Y. F., Gao J. F., Mao L. X., Ji X. 2011. Sexual dimorphism and female reproduction in two sympatric toad-headed lizards,Phrynocephalus frontalisandP. versicolor(Agamidae). Anim Biol, 61: 139–151

    Ramírez-Bautista A., Cruz-Elizalde R., Hernández-Salinas U., Lozano A., Grummer J. A. 2017. Reproductive trait variation in theSceloporus scalarisspecies group (Squamata:Phrynosomatidae) from the Transvolcanic Belt, Mexico. Biol J Linn Soc, 122: 838–849

    Reeve J. P., Fairbairn D. J. 2001. Predicting the evolution of sexual size dimorphism. J Evol Biol, 14: 244–254

    Shen W., Pei J. C., Lin L. H., Ji X. 2017. Effects of constant versus fluctuating incubation temperatures on hatching success,incubation length and hatchling morphology in the Chinese skink (Plestiodon chinensis). Asian Herpetol Res, 8: 262–268

    Shine R. 1992. Relative clutch mass and body shape in lizards and snakes: its reproductive investment constrained or optimized?Evolution, 46: 828–833

    Shine R. 2004a. Incubation regimes of cold-climate reptiles: The thermal consequences of nest-site choice, viviparity and maternal basking. Biol J Linn Soc, 83: 145–155

    Shine R. 2004b. Seasonal shifts in nest temperature can modify the phenotypes of hatchling lizards, regardless of overall mean incubation temperature. Funct Ecol, 18: 43–49

    Sun B. J., Li S. L., Xu X. F., Zhao W. G., Luo L. G., Ji X., Du W. G. 2013. Different mechanisms lead to convergence of reproductive strategies in two lacertid lizards (Takydromus wolteriandEremias argus). Oecologia, 172: 645–652

    Sun Y. Y., Du Y., Yang J., Fu T. B., Lin C. X., Ji X. 2012. Is the evolution of viviparity accompanied by a relative increase in maternal abdomen size in lizards? Evol Biol, 39: 388–399

    Tang X. S., Huang S. 2014.Sphenomorphus incognitusfirstly found in Anhui province, China. Chin J Zool, 49: 609–612

    Wang Z., Lu H. L., Ma L., Ji X. 2014. Viviparity in high altitudePhrynocephaluslizards is adaptive because embryos cannot fully develop without maternal thermoregulation. Oecologia,174: 639–649

    Wang Z., Ma L., Shao M., Ji X. 2013. Differences in incubation length and hatchling morphology among five oviparousPhrynocephaluslizards (Agamidae) from China. Asian Herpetol Res, 4: 225–232

    Xu D. D., Luo S. T., Liu W. H., Yao X. M., Wu H. X. 2014. The intersexual differences of sexual dimorphism, feeding habits and locomotor performance at different temperatures of southern grass lizard (Takydromus sexlineatus) in Zhaoqing, China.Sichuan J Zool, 33: 808–814

    Xu X. F., Ji X. 2003. Ontogenetic shifts in sexual dimorphism in head size and food habits in the lacertid lizard,Eremias brenchleyi. Chin J Appl Ecol, 14: 557–561

    Yang J., Sun Y. Y., Fu T. B., Xu D. D., Ji X. 2012. Selection for increased maternal body-volume does not differ between twoScincellalizards with different reproductive modes. Zoology,115: 199–206

    Zeng Z. G., Zhao J. M., Sun B. J. 2013. Life history variation among geographically close populations of the toad-headed lizard (Phrynocephalus przewalskii): Exploring environmental and physiological associations. Acta Oecol, 51: 28–33

    Zhang Y. P., Ji X. 2000. Ontogenetic changes of sexual dimorphism in head size and food habit in grass lizard,Takydromus septentrionalis. Zool Res, 21: 181–186

    Zhang Y. P., Ji X. 2004. Sexual dimorphism in head size and food habits in the blue-tailed skink,Eumeces elegans. Acta Zool Sin,50: 745–752

    Zhao W., Liu N. F. 2014. The proximate causes of sexual size dimorphism inPhrynocephalus przewalskii. PLoS One, 9:e85963

    熟女少妇亚洲综合色aaa.| 一进一出抽搐gif免费好疼| 此物有八面人人有两片| 女生性感内裤真人,穿戴方法视频| 亚洲五月天丁香| 午夜激情福利司机影院| 看片在线看免费视频| 全区人妻精品视频| 欧美午夜高清在线| 麻豆av在线久日| 久久久国产成人精品二区| 日本一本二区三区精品| 少妇熟女aⅴ在线视频| 悠悠久久av| 久久精品夜夜夜夜夜久久蜜豆 | 午夜福利在线观看吧| 国产单亲对白刺激| 真人做人爱边吃奶动态| 久久婷婷成人综合色麻豆| 草草在线视频免费看| 精品午夜福利视频在线观看一区| 亚洲男人的天堂狠狠| 国产成+人综合+亚洲专区| 天天躁夜夜躁狠狠躁躁| 国产三级黄色录像| 三级毛片av免费| 怎么达到女性高潮| www.熟女人妻精品国产| 手机成人av网站| 无遮挡黄片免费观看| 床上黄色一级片| 91国产中文字幕| 精品久久久久久久久久久久久| 欧美精品啪啪一区二区三区| 亚洲熟女毛片儿| 国产亚洲精品第一综合不卡| 国产亚洲精品久久久久5区| 亚洲人成伊人成综合网2020| 亚洲国产欧美网| 欧美三级亚洲精品| 88av欧美| 禁无遮挡网站| 亚洲欧美日韩高清在线视频| 悠悠久久av| 88av欧美| 日韩有码中文字幕| 丁香六月欧美| 国产亚洲精品综合一区在线观看 | 99久久国产精品久久久| 日韩大尺度精品在线看网址| 大型黄色视频在线免费观看| 国产精品爽爽va在线观看网站| 99在线视频只有这里精品首页| 成人18禁在线播放| 国产成人精品久久二区二区免费| 午夜福利高清视频| 女人高潮潮喷娇喘18禁视频| 久久这里只有精品中国| 97人妻精品一区二区三区麻豆| 老汉色∧v一级毛片| 男人舔女人的私密视频| 亚洲精品久久成人aⅴ小说| 美女午夜性视频免费| 亚洲色图av天堂| 中文字幕高清在线视频| 国产高清激情床上av| 一级黄色大片毛片| 国内精品久久久久精免费| 91麻豆av在线| 制服诱惑二区| 国产精品久久久久久人妻精品电影| 岛国视频午夜一区免费看| 欧美黄色片欧美黄色片| 极品教师在线免费播放| 中国美女看黄片| 国产成人一区二区三区免费视频网站| √禁漫天堂资源中文www| 亚洲av中文字字幕乱码综合| 岛国在线观看网站| 天天躁夜夜躁狠狠躁躁| 国产精品,欧美在线| 亚洲av第一区精品v没综合| 在线观看日韩欧美| 亚洲中文av在线| av在线天堂中文字幕| 俺也久久电影网| 亚洲国产精品久久男人天堂| 国产精品亚洲美女久久久| 国产精品久久久久久亚洲av鲁大| 美女黄网站色视频| 午夜福利免费观看在线| 久久久国产成人免费| 国产成人av激情在线播放| 久久久久国产精品人妻aⅴ院| 999久久久国产精品视频| 一区福利在线观看| 舔av片在线| 亚洲五月天丁香| 在线观看免费午夜福利视频| 欧美另类亚洲清纯唯美| 欧美一级a爱片免费观看看 | 国产私拍福利视频在线观看| 国产精品精品国产色婷婷| 国产老妇伦熟女老妇高清| 中出人妻视频一区二区| av专区在线播放| 一个人看的www免费观看视频| 神马国产精品三级电影在线观看| 亚洲av男天堂| 舔av片在线| 国产精品久久久久久av不卡| 亚洲一区高清亚洲精品| 免费一级毛片在线播放高清视频| 国产午夜福利久久久久久| www.色视频.com| 两个人视频免费观看高清| 日韩一区二区三区影片| 精品久久久久久久久久久久久| 国产精品人妻久久久久久| 日本免费一区二区三区高清不卡| 日日撸夜夜添| 日本免费a在线| 18禁裸乳无遮挡免费网站照片| 久久久国产成人精品二区| 人人妻人人看人人澡| 国产爱豆传媒在线观看| 99久久中文字幕三级久久日本| 精品久久久久久久久av| av在线播放精品| 国产亚洲精品久久久com| 中出人妻视频一区二区| 国产伦理片在线播放av一区 | 最新中文字幕久久久久| 国产精品一及| 亚洲欧美日韩卡通动漫| 欧美xxxx性猛交bbbb| 久久久国产成人精品二区| 久久久精品大字幕| 欧美区成人在线视频| 亚洲真实伦在线观看| 国产精品一及| а√天堂www在线а√下载| 欧美成人a在线观看| 成人av在线播放网站| 尤物成人国产欧美一区二区三区| 内射极品少妇av片p| 此物有八面人人有两片| 波多野结衣高清作品| 一区二区三区免费毛片| 欧美成人精品欧美一级黄| 天堂av国产一区二区熟女人妻| 国产熟女欧美一区二区| 最新中文字幕久久久久| 我要搜黄色片| 午夜激情福利司机影院| 欧美最黄视频在线播放免费| 99视频精品全部免费 在线| 欧美日韩精品成人综合77777| 国产精品精品国产色婷婷| 国产中年淑女户外野战色| 观看免费一级毛片| 夫妻性生交免费视频一级片| 大型黄色视频在线免费观看| 国产探花极品一区二区| 大香蕉久久网| 又粗又爽又猛毛片免费看| 91麻豆精品激情在线观看国产| 深爱激情五月婷婷| 在线观看一区二区三区| 一级黄片播放器| 久久6这里有精品| 男女做爰动态图高潮gif福利片| 国产三级在线视频| 久久久午夜欧美精品| 永久网站在线| 悠悠久久av| 91精品一卡2卡3卡4卡| 91精品一卡2卡3卡4卡| 特级一级黄色大片| 欧美日韩乱码在线| 亚洲五月天丁香| 女人被狂操c到高潮| 国产高清三级在线| 黄色配什么色好看| 美女大奶头视频| 深爱激情五月婷婷| 久久精品国产亚洲网站| 一级毛片aaaaaa免费看小| 寂寞人妻少妇视频99o| 日日撸夜夜添| 99riav亚洲国产免费| 久久精品国产亚洲av天美| 亚洲最大成人中文| 深夜精品福利| 中文字幕免费在线视频6| 色哟哟哟哟哟哟| 69人妻影院| 成人美女网站在线观看视频| 国内揄拍国产精品人妻在线| 少妇人妻精品综合一区二区 | 黄片wwwwww| 97热精品久久久久久| 亚洲第一电影网av| 夜夜看夜夜爽夜夜摸| 乱人视频在线观看| 精品久久久噜噜| 美女大奶头视频| 国产精品嫩草影院av在线观看| 特级一级黄色大片| 国产一区二区在线av高清观看| 特大巨黑吊av在线直播| 不卡一级毛片| 欧美成人a在线观看| 赤兔流量卡办理| 男女做爰动态图高潮gif福利片| 欧美xxxx性猛交bbbb| 人人妻人人澡人人爽人人夜夜 | 亚洲精品久久久久久婷婷小说 | 精品无人区乱码1区二区| av福利片在线观看| 69人妻影院| 亚洲丝袜综合中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产极品精品免费视频能看的| 一个人免费在线观看电影| 又黄又爽又刺激的免费视频.| 只有这里有精品99| 成人av在线播放网站| h日本视频在线播放| 一级毛片电影观看 | 国内精品久久久久精免费| 国产精品久久久久久亚洲av鲁大| 亚洲欧美日韩高清专用| 在线观看66精品国产| 我要看日韩黄色一级片| av专区在线播放| 亚洲欧洲国产日韩| 国产黄色视频一区二区在线观看 | 亚洲精品久久久久久婷婷小说 | 国内精品美女久久久久久| 久久精品久久久久久噜噜老黄 | 欧美成人a在线观看| 亚洲国产精品国产精品| 免费av不卡在线播放| 草草在线视频免费看| 成年女人永久免费观看视频| 日韩av在线大香蕉| 午夜福利成人在线免费观看| 亚洲色图av天堂| 美女国产视频在线观看| 亚洲欧美清纯卡通| 亚洲人成网站高清观看| 99国产极品粉嫩在线观看| 国产精品女同一区二区软件| 欧美3d第一页| 久久久色成人| 日韩一区二区视频免费看| 日产精品乱码卡一卡2卡三| 国产黄色小视频在线观看| 亚洲美女搞黄在线观看| 欧美日韩一区二区视频在线观看视频在线 | 51国产日韩欧美| 久久鲁丝午夜福利片| 丰满人妻一区二区三区视频av| 免费在线观看成人毛片| 九草在线视频观看| 中文字幕av成人在线电影| 两性午夜刺激爽爽歪歪视频在线观看| 欧美又色又爽又黄视频| 听说在线观看完整版免费高清| 国产精品一二三区在线看| 少妇的逼水好多| 97人妻精品一区二区三区麻豆| 久久午夜福利片| 大又大粗又爽又黄少妇毛片口| 在线观看av片永久免费下载| 一个人免费在线观看电影| 亚洲美女搞黄在线观看| 国产精品1区2区在线观看.| 国产成年人精品一区二区| a级毛色黄片| 亚洲丝袜综合中文字幕| 99精品在免费线老司机午夜| 99久久久亚洲精品蜜臀av| 欧美日韩乱码在线| 亚洲天堂国产精品一区在线| 亚洲成人久久性| 综合色丁香网| 成年av动漫网址| 亚洲国产高清在线一区二区三| 欧美性猛交黑人性爽| 青春草国产在线视频 | 寂寞人妻少妇视频99o| 亚洲精品粉嫩美女一区| 中文字幕制服av| av在线蜜桃| 69人妻影院| 国产色婷婷99| 亚洲成人中文字幕在线播放| 给我免费播放毛片高清在线观看| 午夜免费男女啪啪视频观看| 日韩制服骚丝袜av| 禁无遮挡网站| 岛国毛片在线播放| 99在线人妻在线中文字幕| 日本撒尿小便嘘嘘汇集6| h日本视频在线播放| 亚洲最大成人av| 欧美丝袜亚洲另类| 国产精品一区二区在线观看99 | 麻豆一二三区av精品| eeuss影院久久| 亚洲国产色片| 欧美激情国产日韩精品一区| 久久99热这里只有精品18| 日韩亚洲欧美综合| 国产伦一二天堂av在线观看| 高清日韩中文字幕在线| 最近2019中文字幕mv第一页| 全区人妻精品视频| 一级二级三级毛片免费看| 久久久久久久亚洲中文字幕| 久久久午夜欧美精品| 最后的刺客免费高清国语| 国产探花极品一区二区| 床上黄色一级片| 精品99又大又爽又粗少妇毛片| 12—13女人毛片做爰片一| 亚洲七黄色美女视频| 啦啦啦观看免费观看视频高清| 成人国产麻豆网| 最近的中文字幕免费完整| 人人妻人人澡人人爽人人夜夜 | 亚洲中文字幕一区二区三区有码在线看| 色综合站精品国产| 极品教师在线视频| 91久久精品电影网| 天天躁日日操中文字幕| 天堂网av新在线| 午夜福利在线在线| 免费搜索国产男女视频| 免费人成在线观看视频色| 亚洲精品成人久久久久久| 久久国内精品自在自线图片| 麻豆一二三区av精品| 色综合亚洲欧美另类图片| 成人av在线播放网站| 人人妻人人澡人人爽人人夜夜 | 99久久成人亚洲精品观看| 大型黄色视频在线免费观看| 99视频精品全部免费 在线| 久久精品国产自在天天线| 久久6这里有精品| 国产成人精品一,二区 | 卡戴珊不雅视频在线播放| 国产色爽女视频免费观看| 蜜臀久久99精品久久宅男| 亚洲五月天丁香| 日韩一区二区视频免费看| 国产成人91sexporn| 亚洲av.av天堂| 欧美精品国产亚洲| 欧美日韩乱码在线| 老女人水多毛片| 亚洲欧美精品自产自拍| 日本免费a在线| 黄色欧美视频在线观看| av免费观看日本| 在线国产一区二区在线| 国产精品av视频在线免费观看| 好男人在线观看高清免费视频| 亚洲欧美日韩东京热| 亚洲av成人av| 99热这里只有精品一区| 国产极品天堂在线| 欧美成人一区二区免费高清观看| 18+在线观看网站| 日日撸夜夜添| 亚洲精品456在线播放app| 1000部很黄的大片| 日日摸夜夜添夜夜爱| 欧美最黄视频在线播放免费| 国产一区二区在线观看日韩| 乱系列少妇在线播放| 亚洲中文字幕日韩| 麻豆国产av国片精品| 人妻夜夜爽99麻豆av| 麻豆成人午夜福利视频| 亚洲精品日韩在线中文字幕 | 国产成人freesex在线| 一个人免费在线观看电影| 亚洲丝袜综合中文字幕| 五月玫瑰六月丁香| 国产欧美日韩精品一区二区| 久久久精品欧美日韩精品| 亚洲无线观看免费| 久久6这里有精品| 一个人看的www免费观看视频| 国产精品久久视频播放| 日本黄大片高清| 亚洲欧美中文字幕日韩二区| 久久久午夜欧美精品| 国产亚洲欧美98| 免费观看a级毛片全部| 一卡2卡三卡四卡精品乱码亚洲| 国产不卡一卡二| 国产91av在线免费观看| 国产精品免费一区二区三区在线| 青春草视频在线免费观看| 国产精品日韩av在线免费观看| 看黄色毛片网站| 乱人视频在线观看| 黄色一级大片看看| 午夜免费激情av| 国产免费一级a男人的天堂| 能在线免费观看的黄片| 日本与韩国留学比较| 极品教师在线视频| 99热网站在线观看| 免费人成在线观看视频色| 综合色av麻豆| 人妻制服诱惑在线中文字幕| 好男人视频免费观看在线| 夜夜看夜夜爽夜夜摸| 精品一区二区三区视频在线| 亚洲真实伦在线观看| 一级av片app| 3wmmmm亚洲av在线观看| 日本三级黄在线观看| 国产成人91sexporn| 观看免费一级毛片| 久久久精品94久久精品| 特级一级黄色大片| 午夜福利在线观看吧| 成年版毛片免费区| 久久精品夜夜夜夜夜久久蜜豆| 性色avwww在线观看| 欧美三级亚洲精品| 非洲黑人性xxxx精品又粗又长| 久久人人精品亚洲av| 国产精品伦人一区二区| 99国产极品粉嫩在线观看| 久久久国产成人免费| 91午夜精品亚洲一区二区三区| 成人av在线播放网站| 夫妻性生交免费视频一级片| 成人无遮挡网站| av在线蜜桃| 最近2019中文字幕mv第一页| 日本色播在线视频| 99久久人妻综合| 国产精品一区二区三区四区久久| 午夜视频国产福利| 一个人免费在线观看电影| 亚洲av二区三区四区| 在线观看午夜福利视频| 国产高潮美女av| 久久人人爽人人片av| 五月伊人婷婷丁香| 天堂影院成人在线观看| 久久久久久久午夜电影| 内射极品少妇av片p| 毛片一级片免费看久久久久| 亚洲成人av在线免费| 日本欧美国产在线视频| 波多野结衣高清无吗| 国产v大片淫在线免费观看| eeuss影院久久| 最近最新中文字幕大全电影3| 成熟少妇高潮喷水视频| 日韩成人伦理影院| 一区二区三区四区激情视频 | 亚洲国产色片| 村上凉子中文字幕在线| 一卡2卡三卡四卡精品乱码亚洲| 婷婷六月久久综合丁香| 男女那种视频在线观看| 国产一区二区激情短视频| 欧美激情国产日韩精品一区| 久久韩国三级中文字幕| 精品一区二区三区人妻视频| 午夜激情欧美在线| 91aial.com中文字幕在线观看| 亚洲国产精品久久男人天堂| 免费不卡的大黄色大毛片视频在线观看 | av在线播放精品| 国产黄片美女视频| 人妻少妇偷人精品九色| 日本与韩国留学比较| 婷婷色av中文字幕| 免费看a级黄色片| 麻豆精品久久久久久蜜桃| 国产三级在线视频| 欧美3d第一页| 日韩中字成人| 中文字幕久久专区| 中国国产av一级| 人妻制服诱惑在线中文字幕| 久久国内精品自在自线图片| 国产女主播在线喷水免费视频网站 | 免费观看在线日韩| 最近手机中文字幕大全| 你懂的网址亚洲精品在线观看 | 亚洲精品国产av成人精品| .国产精品久久| 国产精品久久视频播放| 老熟妇乱子伦视频在线观看| 日本免费a在线| 内射极品少妇av片p| 亚洲最大成人av| 久久久久久久久中文| 成人特级av手机在线观看| 国产日韩欧美在线精品| 日韩欧美一区二区三区在线观看| 校园春色视频在线观看| 91av网一区二区| 桃色一区二区三区在线观看| 日本免费一区二区三区高清不卡| 美女cb高潮喷水在线观看| 亚洲成人av在线免费| videossex国产| 国产老妇女一区| 男女视频在线观看网站免费| 成年版毛片免费区| 天天躁日日操中文字幕| 看十八女毛片水多多多| 卡戴珊不雅视频在线播放| 久久久久国产网址| 欧美日韩乱码在线| 看免费成人av毛片| 亚洲国产精品成人综合色| 免费无遮挡裸体视频| 最近手机中文字幕大全| 国产午夜精品久久久久久一区二区三区| 99热这里只有精品一区| 久久精品影院6| 国内精品一区二区在线观看| 久久国内精品自在自线图片| 国产真实伦视频高清在线观看| 久久精品国产亚洲av天美| 成人特级av手机在线观看| 日韩国内少妇激情av| 国产伦理片在线播放av一区 | 亚洲成av人片在线播放无| 色播亚洲综合网| 亚洲欧美精品自产自拍| 女的被弄到高潮叫床怎么办| 爱豆传媒免费全集在线观看| 日韩国内少妇激情av| 18禁裸乳无遮挡免费网站照片| av天堂在线播放| 高清毛片免费看| 久久久久久大精品| 岛国毛片在线播放| 一区二区三区免费毛片| 插逼视频在线观看| 美女内射精品一级片tv| 亚洲色图av天堂| 亚洲国产欧美人成| 日韩欧美在线乱码| 观看美女的网站| 亚洲色图av天堂| 天天躁日日操中文字幕| .国产精品久久| 97热精品久久久久久| 寂寞人妻少妇视频99o| 人妻少妇偷人精品九色| 波多野结衣高清无吗| a级毛色黄片| 亚洲精品日韩av片在线观看| 99久国产av精品| 搡女人真爽免费视频火全软件| 国产av一区在线观看免费| 久久久久久久久大av| 国产高清三级在线| 一边亲一边摸免费视频| 久久这里有精品视频免费| 国产一区二区三区在线臀色熟女| 国产成人一区二区在线| av视频在线观看入口| 人人妻人人澡人人爽人人夜夜 | 尾随美女入室| 国产黄片视频在线免费观看| 国产精品一区二区在线观看99 | 国产精品1区2区在线观看.| 美女cb高潮喷水在线观看| 日韩欧美 国产精品| 精品人妻熟女av久视频| 国产精品综合久久久久久久免费| 99热6这里只有精品| 国内久久婷婷六月综合欲色啪| 亚洲国产精品sss在线观看| 99在线视频只有这里精品首页| 精品人妻偷拍中文字幕| 国产人妻一区二区三区在| 日韩精品青青久久久久久| 免费看日本二区| 国产蜜桃级精品一区二区三区| 国产高清三级在线| 欧美性感艳星| 欧美+日韩+精品| 成人午夜高清在线视频| av福利片在线观看| 麻豆国产av国片精品| 中文欧美无线码| 亚洲第一电影网av| 91麻豆精品激情在线观看国产| 乱码一卡2卡4卡精品| 97超视频在线观看视频| 男女那种视频在线观看| 久久久久久久久久黄片| 亚洲av成人精品一区久久| 亚洲av免费在线观看| 亚洲丝袜综合中文字幕| 国产成人福利小说|