• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Amphibian Species Contribute Similarly to Taxonomic, but not Functional and Phylogenetic Diversity: Inferences from Amphibian Biodiversity on Emei Mountain

    2018-06-28 03:17:44TianZHAOBinWANGGuochengSHUChengLIandJianpingJIANG
    Asian Herpetological Research 2018年2期

    Tian ZHAO, Bin WANG, Guocheng SHU, Cheng LI and Jianping JIANG

    CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

    1. Introduction

    Biological diversity plays an important role in supporting ecosystem functioning and provides key ecosystem services to human beings (Balvaneraet al., 2006;Cardinaleet al., 2006). Unfortunately, with the expansion of human populations and urbanization, human-induced perturbations (e.g., habitat degradation, biological invasions, climate change, and pollution) have caused widespread loss of biodiversity at both local and global scales (Dunneet al., 2002; Cardinaleet al., 2012).Given that the loss of biodiversity may induce various ecological and economic consequences, conservationists have devoted much attention to biodiversity. Most previous conservation studies focused primarily on species richness (i.e., taxonomic diversity), based on the assumption that species can be treated as ecological equivalents within communities (Perringset al., 1995).In recent decades, however, a growing number of studies indicate that species richness represents only one measure of biodiversity, thus demanding more comprehensive approaches (Naeemet al., 2012; Poolet al., 2014). It is now recognized that in addition to taxonomic diversity,species-specific functional traits and genetic relatedness,mediate the stability and resilience of ecosystems(Villégeret al., 2010; Rudolfet al., 2014). Therefore,biodiversity conservation strategies should also include functional diversity (i.e., the range of species traits within a community; Poolet al., 2014) and phylogenetic history(i.e., evolutionary relationships among species; Faith,1992) of communities.

    This is especially true for communities under multiple disturbances in a changing world. The rapid and consistent response of functional diversity can provide advance warning of disturbances to ecosystems.Moreover, phylogenetic diversity has been proposed as a measure to predict how evolutionary plasticity within communities will respond to disturbances in the future (Faith, 1992), and to better explain ecosystem productivity (Cadotteet al., 2009). Incorporating multiple facets of biodiversity in conservation strategies can thus provide unique opportunities to better understand community structures and dynamics (Webbet al., 2002;Graham and Fine, 2008), to ensure the provision of goods and services (Díazet al., 2007), and to identify species of conservation interest (Mace, 2003; Knappet al., 2008).

    Theoretical studies suggest that the best way to conserve biodiversity is to protect individual species that preserve different biodiversity components (Devictoret al., 2010). Indeed, this policy is unfeasible because of limited resources. Instead, current conservation activities have focused on species that are rare, endemic,distinctive, or at risk of extinction (Myerset al., 2000;Kieret al., 2009). However, do these species of high conservation value contribute more to biodiversity, and therefore potentially induce stronger cascading effects on ecosystem functioning, than other species? Or do individual species that contribute equally to multiple facets of biodiversity still relatively uncommon (but see Devictoret al., 2010; Poolet al., 2014), especially for amphibian species that play a key functional role in the link between aquatic and terrestrial ecosystems.

    The aim of the present study is to assess the contribution of individual amphibian species to different aspects of biodiversity. We predict that amphibian species will contribute in different ways to taxonomic, functional and phylogenetic diversity. Specifically, we first explored the role of individual species in taxonomic, functional and phylogenetic diversity, which allowed us to identify the ecological and evolutionary importance of each species. Then, we tested whether species listed by the IUCN as being of conservation interest (i.e. endangered,vulnerable and near threatened species) contribute more to taxonomic, functional and phylogenetic diversity than species without elevated conservation status (i.e.,species of least concern). This can help us to recognize the conservation value of species for different facets of biodiversity that are not traditionally considered in conservation activities.

    2. Materials and Methods

    2.1. Study area and field surveysThe study area, Emei Mountain, is located in southwest Sichuan Province,China. This mountain is a series of ranges spread over 1100km2. In total, 104 nocturnal surveys were conducted along 52 transects (200 m × 2 m) from April to October in 2013 and 2014, using the same combination of distance sampling and quadrat sampling methods, with four transects sampled per night. Distance sampling is considered as a positive and effective method for anurans(Fogarty and Vilella, 2001; Funket al., 2003), and quadrat sampling is effective for stream amphibians (Dodd, 2010).Two persons first intensively searched the transect along the edge of stream by turning over logs, stones, and leaf litter, and hand-collected all individuals (Herbeck and Semlitsch, 2000; Naniwadekar and Vasudevan, 2006). Ten quadrats of one square meter area were then randomly selected within the stream, all the rocks were carefully removed, and individual amphibians were collected using a hand net (Dodd, 2010). All individuals were identified to species, measured (snout-vent length to the nearest mm), photographed, toe-clipped, and then released at the site of capture.

    These transects, at elevations from 476–3000m, have a gradient of environmental conditions. Specifically, lower transects are close to lentic aquatic ecosystems (e.g.,swamps and ponds), and are dominated by evergreen broad-leaved forest. Transects in middle and higher elevations are located along slowly flowing pools and stream tributaries, respectively, with evergreen and deciduous broad-leaved forests gradually replaced by coniferous and mixed forests. Transects were selected at random, but include all suitable habitats for amphibian species.

    2.2. Selection of functional traitsBased on published literatures, a set of 11 functional traits reflecting morphology, resource use, and life history strategy were selected (Trochetet al., 2014; Tsianou and Kallimanis,2016; Table 1). These traits described the unique relationship between each species and the environment,and importantly, reflected the ecological function of species in those ecosystems. Qualitative and quantitativemeasurements were made using digital calipers and visual observation; values of some traits were derived from Feiet al. (2009). These functional traits were snout vent length (SVL; cm), sexual maturity (SM; 1 year, 1-3 years,or >3 years), clutch position (=oviposition site) (CP;ground, lotic habitat, lentic habitat, or arboreal), number of eggs per clutch (NEC), egg size (diameter) (ES;mm), duration of breeding activity (DBA; prolonged,or explosive), spawning site (SS; aquatic, or terrestrial),life history habit (LHH; aquatic, or terrestrial), time partitioning (diel activity) (TP; nocturnal, or diurnal), diet[DI; carnivorous (i.e., all salamander species), mainly feeding on pests, mainly feeding on other insects] and mobility mode (mode of locomotion) (MM; jumper,walker, runner, climber, or swimmer). Considering the deficiency of data on amphibian species traits (reviewed in Trochetet al., 2014), selection of functional traits was also based on the availability of complete trait data.

    Table 1 Eleven functional traits associated with morphology, reproduction, habitat, food acquisition, and locomotion (adapted from Tsianou and Kallimanis, 2016).

    2.3. Phylogenetic analysesSequence data were obtained from GenBank. Sequences were edited manually in BioEdit v7.0.5, aligned in Mega 6.0 using the ClustalW algorithm with default parameters (Tamuraet al., 2013),and were checked by eye for ambiguous alignments.We used Bayesian inference (BI; performed in MrBayes 3.1.2; Ronquist and Huelsenbeck, 2003) and Maximumlikelihood (ML; performed under the GTRGAMMA model using RAxML Web Server; Stamatakis, 2006)to reconstruct a mitochondrial gene tree using partial fragments of the 12S and 16S ribosomal genes, and the complete t-RNAvaline. The best- fitting model, GTR+G, was developed using ModelTest 3.7 (Posada and Crandall,1998). For the bayesian analysis, we ran four concurrent Markov Chains for five million generations, sampling every 100 generations . The first 25% sampled trees were discarded as burn in. The resulting trees were combined to calculate posterior probabilities for each node in a 50% majority-rule consensus tree. Branch support in the maximum likelihood analysis was assessed using 1000 nonparametric bootstrap replicates. Nodes in the trees were considered well supported when Bayesian posterior probabilities were ≥0.95 and ML bootstrap support was≥70% (Hillis and Bull, 1993).

    2.4. Statistical analysesAll sampled species were considered to be the regional species pool. Species were then classified into three categories based on their IUCN conservation status. EN: critically endangered or endangered; VU/NT: vulnerable and near threatened; and LC: least concern. Species in the vulnerable and nearthreatened categories were pooled to ensure a sufficient sample size for statistical analysis. Since the functional traits data were measured on both discrete and continuous scales, we first used Gower’s coefficient to construct a dissimilarity matrix of all functional traits (Pavoineet al., 2009). We then used a principal coordinates analysis (PCoA) to build a multidimensional functional space following Villégeret al. (2008), to define the position of each species in functional space. Functional distances using Gower’s metric were significantly correlated with the Euclidean distances between species pairs in functional space (Mantel test,r2= 0.776,P<0.001), providing evidence that functional diversity can effectively capture community trait diversity (Poolet al., 2014). Following Maireet al. (2015), the first four synthetic principal components of the PCoA analysis were retained to describe the functional space, as they produced a mean-squared deviation index of 0.002,demonstrating that these components can sufficiently describe interspecific distances. The four axes accounted for 68.83% (PC1 = 24.73%, PC2 = 20.53%, PC3 =12.47% and PC4 = 11.10%; Figure 1 and Table 2) of theinitial inertia in trait values. Each species had a distinctive position in functional space, which was used below to calculate the contribution of individual species to overall aspects of biodiversity.

    Figure 1 Distribution of all species in the functional space defined by the regional species pool, based on the four first PCA axes. (A) PC1 and PC2 of the functional space, (B) PC3 and PC4 of the functional space. EN (critically endangered or endangered), VU/NT (vulnerable and near threatened) and LC (least concerned) species were plotted in red, blue, and green, respectively. Colored surfaces correspond to the functional space occupied by each category, and crosses to the center of gravity of the convex hulls. Species codes are in Table 3.

    Table 2 Pearson correlation coefficients between the first four synthetic principal components of the PCoA analysis axes and the 11 functional traits. Statistically significant correlation coefficients are in bold.

    Contribution of individual species to multiple facets of biodiversityTaxonomic diversity was represented by the number of species, functional diversity by functional richness index, and phylogenetic diversity by the total branch length of species within the community(Poolet al., 2014). We simulated randomly assembled communities to identify the contribution of individual amphibian species to different facets of biodiversity because (1) it was easy to obtain a large number of communities, which produced a gradient in species richness; (2) the local stochastic processes involved in community assembly can be mimicked by random sampling from a regional species pool (Loreau, 2001);and (3) simulations allow for control of concurrent changes in species richness and random extinctions of species (Larsenet al., 2005). Based on the fourdimension functional space, random communities should contain more than four species to allow calculation of functional richness. Therefore, five species were first selected randomly from the regional species pool using a bootstrap procedure with 1000 repetitions (i.e., a set of 1000 random communities, each with five species, was obtained). Since we assumed that the regional species pool containedSspecies in total, the same protocols were then performed to obtain a set of 1000 random communities with six species, a set of 1000 random communities with seven species, and so on, up to a set of 1000 random communities with (S– 1) species. In total,(S– 5) × 1000 random communities were simulated. The abundance of each species was not considered as it did not affect the taxonomic, functional, and phylogenetic diversity indices we used.

    The contribution of each species to different aspects of biodiversity was quantified as follows: the taxonomic,functional, and phylogenetic diversity of each random community were calculated firstly, and then all the diversity indices were recalculated by removing each species. The differences in diversity values before and after species removal were computed. The relative contribution of each species was assessed by calculating the mean percentage of diversity change within each random communities.

    Contribution of conservation status to facets biodiversityThe mean relative contribution to biodiversity of species of the same conservation status was calculated to explore whether species of conservation interest (i.e., EN and VU/NT species) contribute more to taxonomic, functional and phylogenetic diversity than species without elevated conservation status (i.e., LC species) do. Since the three groups have different number of species, we used Nemenyi–Damico–Wolfe–Dunn tests(Nemenyi, 1963) (a nonparametric Tukey-type, multiple comparisonpost hoctest) to compare the difference of biodiversity contribution between pairwise categories,All statistical analyses were conducted in R 3.3.2 (R development Core Team, 2017).

    3. Results

    A total of 24 amphibian species were detected in the regional species pool, with 5 EN species, 5 VU/NT species, and 14 LC species. The number of individual animals of each species ranged from 1 to 10, with a mean of 4.2 ± 3.2 SD. The most abundant amphibian species were Spiny-bellied frog (Quasipaa boulengeri) and Baoxing treefrog (Rhacophorus dugritei), which made up 31.75% of the total individuals. The rarest species was Longdong stream salamander (Batrachuperus londongensis), with only one individual found.

    3.1. Contribution of individual species to biodiversityAll 24 species contributed similarly to taxonomic diversity, but differently to functional and phylogenetic diversity of simulated random communities (Table 3).Specifically, the Asiatic toad (Bufo gargarizans), the Omei music frog (Nidirana daunchina) and the Spinybellied frog (Quasipaa boulengeri) were the speciesthat contributed the most to functional diversity (i.e.35.76% ± 0.16% SE, 21.27% ± 0.11% SE, and 16.85%± 0.09% SE; respectively). Species that contributed the least to functional diversity were the Shaping horned toad(Megophrys shapingensis; 1.09% ± 0.03% SE), the Omei mustache toad (Vibrissaphora boringii; 1.47% ± 0.04%SE) and the Jinding odontoid toad (Scutiger chintingensis;1.57% ± 0.04% SE). In terms of phylogenetic diversity,the Sichuan sucker frog (Amolops granulosus), the Omei tooth toad (Oreolalax omeimontis) and the Green odorous frog (Odorrana margaretae) were the substantial contributors (i.e. 10.83% ± 0.06% SE, 10.34% ± 0.05%SE, 10.26% ± 0.06% SE; respectively), while the Jinding odontoid toad (Scutiger chintingensis), the Oshan metacarpal-tubercled toad (Paramegophrys oshanensis)and the Omei horned toad (Megophrys omeimontis)contributed less (6.06% ± 0.04% SE, 6.47% ± 0.04%SE, 6.86% ± 0.04% SE; respectively) than other species(Table 3).

    Table 3 Contribution of individual species to different components of biodiversity (TD: taxonomic diversity; FD: functional diversity; PD:phylogenetic diversity).

    Figure 2 Box plots of each IUCN conservation status’ (EN:critically endangered or endangered; VU/NT: vulnerable and near threatened; and LC: least concern) contribution to different components of biodiversity (TD: taxonomic diversity; FD:functional diversity; and PD: phylogenetic diversity). Error bars indicate the standard error.

    3.2. Contribution of conservation status to biodiversityThe relative contributions of EN species to taxonomic,functional and phylogenetic diversity were 6.52% ±0.04% SE, 7.46% ± 1.20% SE, 7.63% ± 0.29% SE;respectively. The relative contributions of VU/NT species to taxonomic, functional and phylogenetic diversity were 6.40% ± 0.08% SE, 6.69% ± 0.59%SE, 8.02% ± 0.19% SE; respectively. For LC species,the relative contributions to taxonomic, functional and phylogenetic diversity were 6.43% ± 0.02% SE, 10.21%± 0.62% SE, 8.70% ± 0.10% SE; respectively. Nemenyi–Damico–Wolfe–Dunn multiple comparisonpost hoctests indicated that there were no signi fi cant differences between pairwise categories of conservation status of the relative contribution to taxonomic diversity (EN - VU/NT:P= 0.88, EN - LC:P= 0.76, VU/NT - LC:P= 0.94;respectively), functional diversity (EN - VU/NT:P= 1.00,EN - LC:P= 0.83, VU/NT - LC:P= 0.86; respectively)and phylogenetic diversity (EN - VU/NT:P= 0.94, EN- LC:P= 0.31, VU/NT - LC:P= 0.48; respectively)(Figure 2).

    4. Discussion

    Our results revealed that amphibian species contributed similarly to taxonomic diversity, but differently to functional and phylogenetic diversity. This was primarily driven by the diverse functional attributes of individual species present in the functional space, and the phylogenetic relationships between species.

    Traditional conservation theories suggested that the maximum protection of taxonomic diversity (species richness) can preserve multiple facets of biodiversity simultaneously (Devictoret al., 2010). However, it is impossible to protect all the species simultaneously, and it has been suggested that endemic and distinctive species be given conservation priority (Myerset al., 2000; Kieret al., 2009). Given that not all endemic and distinctive species contributed substantially to taxonomic, functional and phylogenetic diversity in the present study, we argue that effective conservation strategies should not only focus on speciesper se, but that such strategies need a comprehensive method that includes species richness,functional traits, and their evolutionary relationships(Brooks, 2006; Lee and Jetz, 2008).

    In fact, one of the important research areas in conservation ecology was the unraveling of linkages between species traits, genetic relatedness, and extinction risk, which were critical criteria for prioritizing conservation efforts (Murray and Hose, 2005). Our results showed that amphibian species that contributed the most to functional diversity usually exhibited specific functional attributes (e.g., the Omei music frog and Spiny-bellied frog), demonstrating that these species may play distinct functional roles in ecosystems. These species displayed larger body size, smaller number of eggs per clutch, larger egg size, and shorter breeding period. More importantly, these traits may lead to higher vulnerability when species are under various types of disturbances.This can be explained by the fact that species with larger body size generally have a longer life cycle (Cardillo,2005), and species with low fecundity have a slower population turnover, thus impeding rapid population restoration after historical contractions or catastrophic population crashes (Williams and Hero, 1998; Heroet al., 2005; Sodhiet al., 2008). Moreover, these species are mainly carnivorous, with poor capacity for locomotion,leading to high predation risk and over-exploitation by humans (Collins and Crump, 2009; Chanet al., 2014). In addition, our findings were also consistent with Lipset al.(2003), showing that riparian amphibians were generally more easily affected than terrestrial species, probably because many potential causal factors of population decline are stream-borne, such as disease and pollution(Williams and Hero, 1998). Similarly, species that contributed the most to phylogenetic diversity usually showed distinctive evolutionary relationships (e.g.,the Sichuan sucker frog and Omei tooth toad). These“phylogenetically rare” species should be considered to have priority for protection as their extinction will cause larger loss of evolutionary information within the community (Winteret al., 2013). Interestingly, we found that the degree of relative contribution of a species to functional and phylogenetic diversity were not similar.This result indicated that species within a community may have redundant functional traits, but show a unique position in the phylogeny (e.g.Amolops granulosusandRana omeimontis), or species with distinct functional traits may represent phylogenetic conservatism within a community (e.g.,Bufo gargarizansandParamegophrys oshanensis; Poolet al., 2014). All of these observations demonstrated that the conservation importance of species was affected by both their functional and phylogenetic attributes (Faith, 1992; Díaz and Cabido, 2001). And importantly, our results may give potential conservation priority for each species, with higher priority given to the conservation of species contributing most to functional and/or phylogenetic diversity in a given region.

    Species in categories of conservation interest did not display a significantly higher contribution to any aspect of biodiversity in our study area. Indeed, the local extirpation of either endangered or least concern species can result in dramatic loss in specific facet of community biodiversity. For instance,Quasipaa boulengeri(EN)andBufo gargarizans(LC) contributed substantially to functional diversity, whileOreolalax omeimontis(EN)andAmolops granulosus(LC) contributed substantially to phylogenetic diversity. Therefore, a set of species assemblages that include diverse threatened and common species should be protected to maintain a variety of biodiversity facets (Poolet al., 2014).

    In conclusion, the present study revealed the contribution of individual species to multiple biodiversity facets. Our results suggested that species of conservation interest were not always the greatest contributors to taxonomic, functional, and phylogenetic diversity.Moreover, our results suggest that the integrated diversity components of threatened and common species within a community may help preserve community biodiversity.In turn this can allow conservationists to optimize conservation strategies and protect biodiversity effectively(de Carvalho and Tejerina-Garro, 2015). Given that this study was constrained to a limited area (i.e., local scale),and biodiversity crisis is a global problem in space/time,how to maintain biodiversity across larger temporal and spatial scales in a changing world should be further studied (Geringet al., 2003).

    AcknowledgementsWe are grateful to Dengwei YANG and Jiongyu LIU for their help in the field. We thank David CANNATELLA and Jianwei GUO for editing the English. Tian ZHAO was supported by China Scholarship Council (CSC). This work was supported by the National Natural Science Foundation of China (31700353), the National Key Research and Development Program of China (2017YFC0505202), the West Light Foundation of Chinese Academy of Sciences (2016XBZG_XBQNXZ_B_007), and China Biodiversity Observation Networks(Sino BON).

    Reference

    Balvanera P., Pfisterer A. B., Buchmann N., He J. S.,Nakashizuka T., Raffaelli D., Schmid B. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett, 9: 1146–1156

    Brooks T. M. 2006. Global biodiversity conservation priorities.Science, 313: 58–61

    Cadotte M. W., Cavender-Bares J., Tilman D., Oakley T. H.2009. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE, 4:e5695

    Cardillo M. 2005. Multiple causes of high extinction risk in large mammal species. Science, 309: 1239–1241

    Cardinale B. J., Duffy J. E., Gonzalez A., Hooper D. U.,Perrings C., Venail P., Narwani A., Mace G. M., Tilman D.,Wardle D. A., Kinzig A. P., Daily G. C., Loreau M., Grace J. B., Larigauderie A., Srivastava D. S., Naeem S. 2012.Biodiversity loss and its impact on humanity. Nature, 486: 59–67

    Cardinale B. J., Srivastava D. S., Emmett Duffy J, Wright J.P., Downing A. L., Sankaran M., Jouseau C. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443: 989–992

    de Carvalho R. A., Tejerina-Garro F. L. 2015. Relationships between taxonomic and functional components of diversity:Implications for conservation of tropical freshwater fishes.Freshw Biol, 60: 1854–1862

    Chan H. K., Shoemaker K. T., Karraker N. E. 2014. Demography of Quasipaa frogs in China reveals high vulnerability to widespread harvest pressure. Biol Conserv, 170: 3–9

    Collins J. P., Crump M. L. 2009. Extinction in our times: global amphibian decline. New York: Oxford University Press.

    Devictor V., Mouillot D., Meynard C., Jiguet F., Thuiller W.,Mouquet N. 2010. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol Lett, 13: 1030–1040

    Díaz S., Cabido M. 2001. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol Evol, 16:646–655

    Díaz S., Lavorel S., de Bello F., Quetier F., Grigulis K., Robson T. M. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci, 104: 20684–20689

    Dodd C. K. 2010. Amphibian ecology and conservation: A handbook of techniques. New York: Oxford University Press

    Dunne J. A., Williams R. J., Martinez N. D. 2002. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol Lett, 5: 558–567

    Faith D. P. 1992. Conservation evaluation and phylogenetic diversity. Biol Conserv, 61: 1–10

    Fei L., Hu S., Ye C., Tian W., Jiang J., Wu G., Li J., Wang Y.2009. Fauna Sinica, Amphibia, Vol.2, Anura. Beijing, China:Science Press (In Chinese)

    Fogarty J. H., Vilella F. J. 2001. Evaluating methodologies to survey eleutherodactylus frogs in Montane forests of Puerto Rico. Wildl Soc Bull, 29: 948–955

    Funk W. C., Almeida-Reinoso D., Nogales-Sornosa F.,Bustamante M. R. 2003. Monitoring population trends of eleutherodactylus frogs. J Herpetol, 37: 245–256

    Gering J. C., Crist T. O., Veech J. A. 2003. Additive partitioning of species diversity across multiple spatial scales: Implications for regional conservation of biodiversity. Conserv Biol, 17:488–499

    Graham C. H., Fine P. V. A. 2008. Phylogenetic beta diversity:Linking ecological and evolutionary processes across space in time. Ecol Lett, 11: 1265–1277

    Herbeck L. A., Semlitsch R. D. 2000. Life history and ecology of the southern redback salamander,Plethodon serratus, in Missouri. J Herpetol, 34: 341–347

    Hero J. M., Williams S. E., Magnusson W. E. 2005. Ecological traits of declining amphibians in upland areas of eastern Australia. J Zool, 267: 221–232

    Hillis D. M., Bull J. J. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol, 42: 182–192

    Kier G., Kreft H., Lee T. M., Jetz W., Ibisch P. L., Nowicki C.,Mutke J., Barthlott W. 2009. A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci, 106: 9322–9327

    Knapp S., Kühn I., Schweiger O., Klotz S. 2008. Challenging urban species diversity: Contrasting phylogenetic patterns across plant functional groups in Germany. Ecol Lett, 11: 1054–1064

    Larsen T. H., Williams N. M., Kremen C. 2005. Extinction order and altered community structure rapidly disrupt ecosystem functioning: Altered community structure disrupts function. Ecol Lett, 8: 538–547

    Lee T. M., Jetz W. 2008. Future battlegrounds for conservation under global change. Proc R Soc B Biol Sci, 275: 1261–1270

    Lips K. R., Reeve J. D., Witters L. R. 2003. Ecological traits predicting amphibian population declines in central America.Conserv Biol, 17: 1078–1088

    Loreau M. 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294: 804–808

    Mace G. M. 2003. Preserving the tree of life. Science, 300: 1707–1709

    Maire E., Grenouillet G, Brosse S, Villéger S. 2015. How many dimensions are needed to accurately assess functional diversity?A pragmatic approach for assessing the quality of functional spaces: Assessing functional space quality. Glob Ecol Biogeogr.24:728–740.

    Murray BR, Hose GC. 2005. Life-history and ecological correlates of decline and extinction in the endemic Australian frog fauna.Austral Ecol, 30: 564–571

    Myers N., Mittermeier R. A., Mittermeier C. G., da Fonseca G. A., Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853–858

    Naeem S., Duffy J. E., Zavaleta E. 2012. The functions of biological diversity in an age of extinction. Science, 336: 1401–1406

    Naniwadekar R., Vasudevan K. 2006. Patterns in diversity of anurans along an elevational gradient in the Western Ghats,South India: Patterns in diversity of anurans. J Biogeogr, 34:842–853

    Nemenyi P. B. 1963. Distribution-free multiple comparisons. Ph.D.Thesis. Princeton University

    Pavoine S., Vallet J., Dufour A. B., Gachet S., Daniel H. 2009. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos,118: 391–402

    Perrings C. A , M?ler K. G., Folke C., Holling C. S., Jansson B. O. 1995. Biodiversity conservation: problems and policies.Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Pool T. K., Grenouillet G, Villéger S. 2014. Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity of freshwater fish communities. Divers Distrib, 20: 1235–1244

    Posada D., Crandall K. A. 1998. MODELTEST: Testing the model of DNA substitution. Bioinformatics, 14: 817–818

    R development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

    Ronquist F., Huelsenbeck J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19:1572–1574

    Rudolf V. H. W., Rasmussen N. L., Dibble C. J., Van Allen B.G. 2014. Resolving the roles of body size and species identity in driving functional diversity. Proc R Soc B Biol Sci, 281:20133203–20133203

    Sodhi N. S., Bickford D., Diesmos A. C., Lee T. M., Koh L. P.,Brook B. W., Sekercioglu C. H., Bradshaw C. J. A. 2008.Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS ONE, 3: e1636

    Stamatakis A. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Bioinformatics, 22: 2688–2690

    Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013.MEGA6: Molecular evolutionary genetics analysis version 6.0.Mol Biol Evol, 30: 2725–2729

    Trochet A., Moulherat S., Calvez O., Stevens V., Clobert J.,Schmeller D. 2014. A database of life-history traits of European amphibians. Biodivers Data J, 2: e4123

    Tsianou M. A., Kallimanis A. S. 2016. Different species traits produce diverse spatial functional diversity patterns of amphibians. Biodivers Conserv, 25: 117–132

    Villéger S., Mason N. W. H., Mouillot D. 2008. New multidimensional functional diversity indices for a multifaced framework in functional ecology. Ecology, 89: 2290–2301

    Villéger S., Miranda J. R., Hernández D. F., Mouillot D. 2010.Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol Appl,20: 1512–1522

    Webb C. O., Ackerly D. D., McPeek M. A., Donoghue M. J.2002. Phylogenies and community ecology. Annu Rev Ecol Syst,33: 475–505

    Williams S. E., Hero J. M. 1998. Rainforest frogs of the Australian Wet Tropics: Guild classification and the ecological similarity of declining species. Proc R Soc B Biol Sci, 265: 597–602

    Winter M., Devictor V., Schweiger O. 2013. Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol, 28: 199–204

    国内精品久久久久久久电影| 国产一区二区三区视频了| 亚洲欧美精品综合久久99| 久久性视频一级片| 国产伦人伦偷精品视频| 淫秽高清视频在线观看| 十八禁网站免费在线| 亚洲国产欧洲综合997久久, | 啦啦啦 在线观看视频| 村上凉子中文字幕在线| 侵犯人妻中文字幕一二三四区| 久久 成人 亚洲| 成人亚洲精品av一区二区| 别揉我奶头~嗯~啊~动态视频| 一个人观看的视频www高清免费观看 | 久久久久精品国产欧美久久久| 给我免费播放毛片高清在线观看| 精品久久久久久久毛片微露脸| 搡老岳熟女国产| 熟女电影av网| 免费在线观看视频国产中文字幕亚洲| 亚洲欧洲精品一区二区精品久久久| 国产精品美女特级片免费视频播放器 | 欧美激情高清一区二区三区| 国产精品香港三级国产av潘金莲| 一级黄色大片毛片| 国产精品国产高清国产av| 国产高清videossex| 国产97色在线日韩免费| 这个男人来自地球电影免费观看| 久久精品影院6| 国产精品久久久久久精品电影 | 亚洲五月婷婷丁香| 欧美激情高清一区二区三区| 亚洲人成网站在线播放欧美日韩| 成人一区二区视频在线观看| 老司机福利观看| 禁无遮挡网站| 国产精品爽爽va在线观看网站 | 欧美黄色片欧美黄色片| 波多野结衣高清无吗| 精品少妇一区二区三区视频日本电影| 香蕉久久夜色| 淫妇啪啪啪对白视频| 国产亚洲欧美精品永久| 国产麻豆成人av免费视频| 夜夜爽天天搞| 久久人妻福利社区极品人妻图片| 国产精品久久久av美女十八| 久久国产精品人妻蜜桃| 国产精品久久久久久人妻精品电影| 亚洲第一av免费看| 亚洲 欧美 日韩 在线 免费| 中文字幕av电影在线播放| 午夜久久久在线观看| 欧美乱妇无乱码| 母亲3免费完整高清在线观看| av在线天堂中文字幕| 波多野结衣高清作品| 搡老岳熟女国产| 久久久久亚洲av毛片大全| 久久久久久人人人人人| 男人舔女人的私密视频| 亚洲成人久久性| 欧美激情久久久久久爽电影| 99国产精品99久久久久| 亚洲欧洲精品一区二区精品久久久| 亚洲一区高清亚洲精品| 别揉我奶头~嗯~啊~动态视频| 久久亚洲真实| 亚洲精品国产精品久久久不卡| 美女免费视频网站| 91字幕亚洲| 少妇粗大呻吟视频| 妹子高潮喷水视频| 亚洲午夜精品一区,二区,三区| 看黄色毛片网站| 免费一级毛片在线播放高清视频| 高清在线国产一区| 天堂影院成人在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品第一国产精品| 中文字幕高清在线视频| 麻豆一二三区av精品| 国产精品一区二区免费欧美| 久久人妻av系列| 正在播放国产对白刺激| 欧美一级毛片孕妇| 亚洲免费av在线视频| av福利片在线| 日韩大码丰满熟妇| 色播亚洲综合网| 中国美女看黄片| 国产v大片淫在线免费观看| 男女那种视频在线观看| 欧美精品啪啪一区二区三区| 亚洲中文字幕日韩| 亚洲一区二区三区色噜噜| 国产亚洲精品av在线| 男女那种视频在线观看| 国产单亲对白刺激| 精品欧美一区二区三区在线| 亚洲欧美日韩高清在线视频| 黄色a级毛片大全视频| 级片在线观看| 亚洲国产中文字幕在线视频| 亚洲av电影不卡..在线观看| 十分钟在线观看高清视频www| 国产真实乱freesex| 在线观看午夜福利视频| 免费人成视频x8x8入口观看| 亚洲精品中文字幕一二三四区| 精品国产乱码久久久久久男人| 91成年电影在线观看| 国产精品一区二区三区四区久久 | 久久人妻av系列| 亚洲欧美激情综合另类| 国产麻豆成人av免费视频| 国产熟女午夜一区二区三区| 国产成人影院久久av| 两个人视频免费观看高清| 午夜亚洲福利在线播放| 丝袜美腿诱惑在线| 欧美性猛交╳xxx乱大交人| 日韩视频一区二区在线观看| 亚洲中文av在线| 亚洲成av片中文字幕在线观看| 久久天堂一区二区三区四区| 国产不卡一卡二| 日韩 欧美 亚洲 中文字幕| 亚洲欧美日韩无卡精品| 无遮挡黄片免费观看| 人人妻人人澡欧美一区二区| 在线免费观看的www视频| 午夜免费观看网址| 日韩 欧美 亚洲 中文字幕| 午夜福利一区二区在线看| 亚洲片人在线观看| 亚洲国产看品久久| 亚洲激情在线av| 99精品欧美一区二区三区四区| 宅男免费午夜| 亚洲av美国av| 一区二区日韩欧美中文字幕| 在线观看一区二区三区| 精品人妻1区二区| 中文字幕人成人乱码亚洲影| 国产高清激情床上av| 美女高潮喷水抽搐中文字幕| 亚洲精品美女久久av网站| 国产精品av久久久久免费| 精品熟女少妇八av免费久了| 国产亚洲欧美98| 欧美一级毛片孕妇| 精品午夜福利视频在线观看一区| 久久久久国产一级毛片高清牌| 美女扒开内裤让男人捅视频| 日韩欧美在线二视频| 成人亚洲精品av一区二区| 亚洲精品国产一区二区精华液| √禁漫天堂资源中文www| 精品久久久久久久久久免费视频| 脱女人内裤的视频| 中文字幕av电影在线播放| 超碰成人久久| 欧美成人午夜精品| 欧美+亚洲+日韩+国产| 国产av在哪里看| 丁香欧美五月| 两个人免费观看高清视频| 宅男免费午夜| 国产一区二区在线av高清观看| 国产高清有码在线观看视频 | 亚洲av五月六月丁香网| 一二三四在线观看免费中文在| 精品福利观看| 亚洲电影在线观看av| 久久久久久免费高清国产稀缺| 久久婷婷成人综合色麻豆| 最好的美女福利视频网| 在线视频色国产色| 男女午夜视频在线观看| 久久人人精品亚洲av| 男人舔女人下体高潮全视频| 欧美激情 高清一区二区三区| 亚洲av成人av| 俺也久久电影网| 国产精品久久久久久人妻精品电影| 麻豆国产av国片精品| 成年女人毛片免费观看观看9| 制服人妻中文乱码| 看免费av毛片| 亚洲专区国产一区二区| 侵犯人妻中文字幕一二三四区| 日本成人三级电影网站| 亚洲精品中文字幕在线视频| 日韩免费av在线播放| 婷婷精品国产亚洲av在线| 亚洲国产毛片av蜜桃av| 国产又色又爽无遮挡免费看| 国内揄拍国产精品人妻在线 | 国产高清激情床上av| 久久天堂一区二区三区四区| 国产精品二区激情视频| 琪琪午夜伦伦电影理论片6080| 91成年电影在线观看| 黄频高清免费视频| 黄色视频,在线免费观看| 极品教师在线免费播放| 成人午夜高清在线视频 | 亚洲一区二区三区不卡视频| www日本在线高清视频| 黑人巨大精品欧美一区二区mp4| 每晚都被弄得嗷嗷叫到高潮| 此物有八面人人有两片| 亚洲国产毛片av蜜桃av| 在线永久观看黄色视频| 美女高潮到喷水免费观看| 午夜亚洲福利在线播放| 1024视频免费在线观看| 久久九九热精品免费| 午夜老司机福利片| 成人亚洲精品av一区二区| 国产精品一区二区免费欧美| 在线观看免费视频日本深夜| 亚洲自拍偷在线| 国产精品一区二区三区四区久久 | 在线观看一区二区三区| 日本五十路高清| 亚洲第一av免费看| 国产精品九九99| 夜夜爽天天搞| 99久久精品国产亚洲精品| 欧美日韩亚洲国产一区二区在线观看| 啦啦啦观看免费观看视频高清| 又黄又粗又硬又大视频| 亚洲精品国产区一区二| 美女大奶头视频| 欧美午夜高清在线| 极品教师在线免费播放| 午夜精品在线福利| 国内精品久久久久久久电影| 国产精品永久免费网站| 欧美日本视频| 老熟妇乱子伦视频在线观看| 久久香蕉精品热| 丝袜在线中文字幕| 日韩国内少妇激情av| 黑人欧美特级aaaaaa片| 香蕉久久夜色| 久久草成人影院| 国产精品久久电影中文字幕| 欧美国产日韩亚洲一区| 亚洲av片天天在线观看| 国产精品98久久久久久宅男小说| 亚洲 国产 在线| 黄片小视频在线播放| 成在线人永久免费视频| 一级片免费观看大全| 女警被强在线播放| 国产av一区在线观看免费| 欧美不卡视频在线免费观看 | 亚洲欧美日韩高清在线视频| 少妇熟女aⅴ在线视频| 久久精品91蜜桃| 亚洲片人在线观看| 亚洲av日韩精品久久久久久密| 国产伦人伦偷精品视频| 99riav亚洲国产免费| 美女 人体艺术 gogo| 午夜成年电影在线免费观看| 一级毛片女人18水好多| 欧美日韩瑟瑟在线播放| 每晚都被弄得嗷嗷叫到高潮| 18禁黄网站禁片免费观看直播| 岛国视频午夜一区免费看| 香蕉丝袜av| 禁无遮挡网站| 国产激情久久老熟女| 精品国产乱子伦一区二区三区| 日本熟妇午夜| www.自偷自拍.com| 亚洲成人国产一区在线观看| 日本免费a在线| 国产精品美女特级片免费视频播放器 | 18美女黄网站色大片免费观看| 久久这里只有精品19| 欧美久久黑人一区二区| 日本熟妇午夜| 亚洲av成人不卡在线观看播放网| 久久精品夜夜夜夜夜久久蜜豆 | 美女大奶头视频| 老汉色av国产亚洲站长工具| 国产成人精品无人区| 97超级碰碰碰精品色视频在线观看| 最近最新中文字幕大全电影3 | 午夜影院日韩av| 日韩三级视频一区二区三区| 国产成人影院久久av| 欧美日韩亚洲国产一区二区在线观看| 亚洲av中文字字幕乱码综合 | 免费看美女性在线毛片视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产aⅴ精品一区二区三区波| 美女国产高潮福利片在线看| 在线视频色国产色| 亚洲人成77777在线视频| 亚洲色图 男人天堂 中文字幕| 成人亚洲精品av一区二区| 久久久久久久久中文| 中文字幕最新亚洲高清| 欧美日韩瑟瑟在线播放| 午夜影院日韩av| 欧美黄色片欧美黄色片| 色播亚洲综合网| 我的亚洲天堂| 国产视频一区二区在线看| 久久精品夜夜夜夜夜久久蜜豆 | 麻豆久久精品国产亚洲av| 88av欧美| 免费在线观看亚洲国产| 久久精品国产综合久久久| 国产爱豆传媒在线观看 | 草草在线视频免费看| 日韩av在线大香蕉| 精品久久蜜臀av无| 两人在一起打扑克的视频| 黑人欧美特级aaaaaa片| 一二三四在线观看免费中文在| 一a级毛片在线观看| 狠狠狠狠99中文字幕| 无人区码免费观看不卡| 黄色毛片三级朝国网站| 不卡一级毛片| 99热只有精品国产| 日韩高清综合在线| 欧美国产日韩亚洲一区| 欧美激情久久久久久爽电影| 国产三级在线视频| 黑丝袜美女国产一区| 18禁黄网站禁片午夜丰满| 成人一区二区视频在线观看| 国产一级毛片七仙女欲春2 | 日韩一卡2卡3卡4卡2021年| 看黄色毛片网站| 伊人久久大香线蕉亚洲五| 亚洲熟妇熟女久久| 久99久视频精品免费| 亚洲 欧美一区二区三区| 黄色 视频免费看| 长腿黑丝高跟| 亚洲色图 男人天堂 中文字幕| 九色国产91popny在线| 女同久久另类99精品国产91| 国产蜜桃级精品一区二区三区| 一边摸一边抽搐一进一小说| 韩国av一区二区三区四区| 国产又爽黄色视频| 91av网站免费观看| 亚洲成a人片在线一区二区| netflix在线观看网站| 欧美又色又爽又黄视频| 国产一区二区在线av高清观看| 国产色视频综合| 欧美久久黑人一区二区| 国产午夜福利久久久久久| 女生性感内裤真人,穿戴方法视频| 99在线视频只有这里精品首页| 我的亚洲天堂| 一区二区三区高清视频在线| 女生性感内裤真人,穿戴方法视频| 人人妻人人澡人人看| 亚洲国产欧美网| 国产精品影院久久| 丝袜美腿诱惑在线| 中出人妻视频一区二区| 亚洲一区中文字幕在线| 国产精品香港三级国产av潘金莲| 国产精品久久久久久人妻精品电影| 日本三级黄在线观看| 亚洲专区国产一区二区| 久久精品国产清高在天天线| 18美女黄网站色大片免费观看| 观看免费一级毛片| 久久久久久免费高清国产稀缺| 免费高清视频大片| 日本一区二区免费在线视频| 久久久久久久久中文| 人人妻人人澡欧美一区二区| 少妇裸体淫交视频免费看高清 | 久久久水蜜桃国产精品网| 日本一区二区免费在线视频| 在线国产一区二区在线| 自线自在国产av| 欧美日韩乱码在线| svipshipincom国产片| 欧美三级亚洲精品| 国产午夜精品久久久久久| 操出白浆在线播放| 9191精品国产免费久久| 国产成人系列免费观看| 啪啪无遮挡十八禁网站| 91大片在线观看| 99久久久亚洲精品蜜臀av| 亚洲无线在线观看| 成年女人毛片免费观看观看9| 成年版毛片免费区| 成人免费观看视频高清| 中出人妻视频一区二区| 一级a爱视频在线免费观看| 亚洲精品色激情综合| 国产真实乱freesex| 亚洲一区二区三区不卡视频| 在线观看一区二区三区| 黄片大片在线免费观看| 国产99久久九九免费精品| 亚洲欧美日韩无卡精品| 亚洲五月天丁香| 丁香六月欧美| 亚洲第一av免费看| 十八禁人妻一区二区| 男男h啪啪无遮挡| 精品久久久久久,| 中亚洲国语对白在线视频| 亚洲人成网站高清观看| 韩国精品一区二区三区| 51午夜福利影视在线观看| 高清在线国产一区| 欧美又色又爽又黄视频| 欧美黑人巨大hd| 波多野结衣巨乳人妻| 亚洲片人在线观看| 欧美日韩一级在线毛片| x7x7x7水蜜桃| 成人欧美大片| 亚洲欧美日韩无卡精品| 日韩高清综合在线| 久久 成人 亚洲| 亚洲自拍偷在线| 久久天躁狠狠躁夜夜2o2o| 99精品在免费线老司机午夜| 91成人精品电影| 精品久久久久久久末码| 丁香六月欧美| 一a级毛片在线观看| 99精品久久久久人妻精品| 国产精品1区2区在线观看.| av有码第一页| 国产亚洲欧美精品永久| 亚洲国产欧美日韩在线播放| 国产成人精品久久二区二区91| 一级毛片女人18水好多| 91成人精品电影| 青草久久国产| 色综合婷婷激情| 色综合亚洲欧美另类图片| 国产成人av教育| 亚洲色图av天堂| 久久香蕉国产精品| 国产亚洲欧美精品永久| 国产成人欧美| 夜夜爽天天搞| 国产1区2区3区精品| 国产精品久久久久久精品电影 | 久久久久免费精品人妻一区二区 | 日韩视频一区二区在线观看| 亚洲第一电影网av| 悠悠久久av| 满18在线观看网站| 中文字幕久久专区| av欧美777| 久久久精品国产亚洲av高清涩受| 在线十欧美十亚洲十日本专区| 日本精品一区二区三区蜜桃| 色综合欧美亚洲国产小说| 亚洲精品国产区一区二| 日日干狠狠操夜夜爽| 亚洲在线自拍视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲av嫩草精品影院| 亚洲va日本ⅴa欧美va伊人久久| 久久久水蜜桃国产精品网| 欧美一级毛片孕妇| 老熟妇仑乱视频hdxx| av超薄肉色丝袜交足视频| 国产成人精品久久二区二区免费| 国产黄a三级三级三级人| 午夜久久久久精精品| 久久国产精品男人的天堂亚洲| 免费在线观看亚洲国产| 精品电影一区二区在线| 青草久久国产| 久久香蕉精品热| 久久精品成人免费网站| 国产精品亚洲美女久久久| 免费电影在线观看免费观看| 首页视频小说图片口味搜索| 丝袜在线中文字幕| 一本久久中文字幕| 日韩精品中文字幕看吧| 91成年电影在线观看| 免费观看精品视频网站| 草草在线视频免费看| 欧美丝袜亚洲另类 | 在线十欧美十亚洲十日本专区| 十八禁网站免费在线| 午夜成年电影在线免费观看| 波多野结衣高清无吗| 禁无遮挡网站| 成年版毛片免费区| 99国产综合亚洲精品| 脱女人内裤的视频| 日韩欧美一区二区三区在线观看| 亚洲免费av在线视频| 12—13女人毛片做爰片一| av超薄肉色丝袜交足视频| 欧美乱码精品一区二区三区| 国产精品二区激情视频| 99热这里只有精品一区 | 女生性感内裤真人,穿戴方法视频| 成人18禁在线播放| 搡老岳熟女国产| 久久久精品国产亚洲av高清涩受| 成人特级黄色片久久久久久久| 国产高清有码在线观看视频 | 制服诱惑二区| 国产精品99久久99久久久不卡| 久久中文字幕人妻熟女| 日日夜夜操网爽| 日韩欧美一区二区三区在线观看| 成人国语在线视频| 伊人久久大香线蕉亚洲五| 91国产中文字幕| 婷婷精品国产亚洲av| 免费女性裸体啪啪无遮挡网站| 久久国产亚洲av麻豆专区| 在线免费观看的www视频| 欧洲精品卡2卡3卡4卡5卡区| 无遮挡黄片免费观看| 人人妻人人澡人人看| 动漫黄色视频在线观看| 日本 欧美在线| 色老头精品视频在线观看| av在线天堂中文字幕| 看片在线看免费视频| 日本精品一区二区三区蜜桃| 国产精品永久免费网站| 精品国产一区二区三区四区第35| 少妇的丰满在线观看| 久久国产精品男人的天堂亚洲| 日本撒尿小便嘘嘘汇集6| 男人舔奶头视频| 久久香蕉激情| 久久精品91蜜桃| 俺也久久电影网| 国产精品免费视频内射| 成人午夜高清在线视频 | 亚洲成人国产一区在线观看| 午夜福利成人在线免费观看| 亚洲第一av免费看| e午夜精品久久久久久久| 身体一侧抽搐| 一边摸一边抽搐一进一小说| 亚洲一区中文字幕在线| 最近最新中文字幕大全免费视频| 精品国产国语对白av| videosex国产| 久久国产亚洲av麻豆专区| 久久久久久久久久黄片| 午夜久久久在线观看| 97人妻精品一区二区三区麻豆 | 欧美成人免费av一区二区三区| 2021天堂中文幕一二区在线观 | 欧美日韩黄片免| 亚洲欧美一区二区三区黑人| 天天一区二区日本电影三级| 精品免费久久久久久久清纯| 亚洲一区二区三区不卡视频| 成人亚洲精品一区在线观看| 亚洲精品av麻豆狂野| av有码第一页| 99热只有精品国产| 在线播放国产精品三级| 欧美黑人精品巨大| 欧美另类亚洲清纯唯美| 国产精品久久久av美女十八| x7x7x7水蜜桃| 亚洲美女黄片视频| 成年女人毛片免费观看观看9| 久久国产精品男人的天堂亚洲| 特大巨黑吊av在线直播 | x7x7x7水蜜桃| 人人妻,人人澡人人爽秒播| 非洲黑人性xxxx精品又粗又长| 男人舔奶头视频| 国产区一区二久久| 最好的美女福利视频网| 女人被狂操c到高潮| 丁香欧美五月| 国产精品久久电影中文字幕| 国产精品久久久久久精品电影 | 两个人免费观看高清视频| 亚洲欧洲精品一区二区精品久久久| 99热只有精品国产| 黄色毛片三级朝国网站| 色综合站精品国产| 韩国av一区二区三区四区| 午夜亚洲福利在线播放| 欧美绝顶高潮抽搐喷水| 欧美zozozo另类| 麻豆成人av在线观看| 两性夫妻黄色片| 亚洲 国产 在线| 首页视频小说图片口味搜索| 天天躁狠狠躁夜夜躁狠狠躁|