• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Rapid, Non-invasive Method for Anatomical Observations of Tadpole Vertebrae in Vivo

    2018-06-28 03:17:40GuochengSHUShanXIONGWenyanZHANGJianpingJIANGChengLIandFengXIE
    Asian Herpetological Research 2018年2期

    Guocheng SHU, Shan XIONG, Wenyan ZHANG, Jianping JIANG, Cheng LI* and Feng XIE*

    1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

    2 University of Chinese Academy of Sciences, Beijing 100049, China

    1. Introduction

    The larval period is an important part of amphibian life history and plays a significant role during the transition from the aquatic to the terrestrial stage. However, at the end of the last century, the tadpoles of approximately two-thirds of the nearly 3 300 known anuran species with a larval phase had not been described (McDiarmid and Altig, 1999), and this knowledge gap is critical to our understanding of the diversity and complexity of the life history traits of amphibians, especially their developmental biology. Thus, tadpole biology is a discipline within amphibian research that needs to be strengthened. Some aspects of this lack of tadpole research are due to limited methodological approaches.

    To obtain an accurate visualization of internal threedimensional (3D) structures, researchers mainly utilize conventional or modified methods, such as serial histological sectioning (Ro?ková and Ro?ek, 2005) and gross dissection (Zhanget al., 2016). For example, the bone-cartilage double-staining technique has been widely used in comparative skeletal anatomy studies of small vertebrates since the last century (Hanken and Wassersug,1981; Simons and Van Horn, 1971; Wassersug, 1976;Williams, 1941), but these methods are typically timeconsuming and destructive to the specimens under examination. Recently, non-invasive visualization methods have come to the forefront including X-ray microcomputed tomography (micro-CT), which can overcome these weaknesses and visualize the internal anatomy and structural complexity of organisms in the micrometer (μm) or nanometer (nm) ranges by relying on differences in the photon attenuation levels of these tissue types (Broeckhovenet al., 2017; Chaoet al.,2005; du Plessiset al., 2017; Ritman, 2004, 2011). This approach has been applied in biomedical studies, such as investigations of the skeleton, organs and vascular tree of live mammals, to obtain information on the status or progression of disease (Campbell and Sophocleous,2014; Ritman, 2004). Micro-CT also provides detailed anatomical interpretations to inform developmental,systematic, and functional morphological research in invertebrates and vertebrates (Gignacet al., 2016; Porro and Richards, 2017; Scherreret al., 2017). Applications include species identification (Boistelet al., 2011;Faulwetteret al., 2013; Paraparet al., 2017; Scherzet al.,2014) and exploring ecological or evolutionary questions in certain taxa (Broeckhoven and du Plessis, 2017). In herpetology, this tool has been widely used to conduct research in adult amphibians and reptiles (Chenet al.,2012; Fortunyet al., 2015; Kimet al., 2017; Lauridsenet al., 2011; Scherzet al., 2015; Vasquezet al., 2008),but non-invasive micro-CT has not yet been integrated into studies of the developmental biology and osteology of tadpoles. Therefore, we report the use of micro-CT for examining the structure of tadpole vertebrae with the hope of making this modern tool more accessible to the broadest range of morphological researchers across the widest range of fields.

    The aims of this study are to 1) investigate the feasibility of micro-CT to examine the structure of tadpole vertebraein vivo, 2) compare the merits and defects of micro-CT with those of conventional methods(bone-cartilage double-staining) in the study of tadpole vertebrae, 3) determine the effects of scanning parameters on image quality, and 4) recommend guidelines for the use of micro-CT in the anatomical study of tadpole vertebrae.

    2. Materials and Methods

    2.1. Sample preparationWe used 53 tadpole specimens representing three anuran amphibian species from three genera of Megophryidae (Table S1) that were preserved at the Herpetological Museum of the Chengdu Institute of Biology (CIB), CAS. Specimens were first fixed in 10%formalin and then transferred to neutral buffered 10%formalin (20 individuals) or 70% ethanol (33 individuals)prior to scanning (Table S1). We staged the tadpoles based on the approach of Gosner (1960).

    2.2. Micro-CT scanningA Quantum GX micro-CT Imaging System (PerkinElmer Health Sciences, USA)was used to acquire high-resolution 3D images of tadpole vertebral structure, located at the Chengdu Institute of Biology (Chengdu, China); this imaging system uses a cone beam X-ray source and a flat-panel X-ray detector to produce high-resolution 3D images of bone structures and the surrounding soft tissues (www.PerkinElmer.com). To prevent the specimens from drying during scanning, all samples were transferred into 2-ml polypropylene pipette tips (tube’s choosing was based on the tadpole size) with 10% formalin or 70% ethanol and then fastened to the sample bed for scanning. In the high-resolution mode,we chose a 72-mm acquisition field of view (FOV) and a 45-mm reconstruction FOV, which allowed for a 9-μm voxel size resolution under a small region (subvolume)reconstruction (www.PerkinElmer.com). When we compared the results of the two methods (micro-CT scan and double-staining), scanning was conducted for 4 min at a voltage of 70 kV and a current of 80 μA, which produced 458 projection images for every specimen.To detect the effects of scanning parameters (including voltage, current and scan time), we set different levels for each parameter according to the instrument design.Voltage levels were set at 30 kV, 50 kV, 70 kV or 90 kV;current levels were set at 20 μA, 40 μA, 60 μA or 80 μA;and scan times were set at 8 s, 18 s, 2 min, 4 min, 14 min and 57 min. Skeletal images were reconstructed using these projection images under the Quantum GX micro-CT Imaging System, and surface meshes of the skeleton were produced by regulating the threshold in the volume rendering control panel, which controlled voxel intensity in the 3D reconstruction. The images were exported in BMP (1024 × 1024 pixels) and AVI formats.

    2.3. Bone-cartilage double-stainingPost-scanning, 32 of the 53 scanned specimens (Table S1) were eviscerated and then cleared and stained with alcian blue and alizarin red following the protocol of Hanken and Wassersug(1981).

    2.4. Statistical analysisThe data set was tested for normality prior to analysis, and the Wilcoxon Signed-Rank test was applied to test for inter-method variations(micro-CT and bone-cartilage double-staining) in the determination of the number of tadpole vertebrae.Statistical tests were performed using R software 3.4.2 (R Development Core Team, 2017).

    3. Results

    3.1. Comparison between micro-CT and bone-cartilage double-stainingThe results showed that the two methods(micro-CT and bone-cartilage double-staining) could both clearly display the tadpole vertebrae in the sampled species and that there were no significant differences in the detected number of vertebrae of the tadpoles of the three species (Table 1, Figure 1). The bones were stained purplish red and the cartilage was stained dark blue (Figure 1A, 1C, 1E, 1G, 1I, 1K, 1M, 1O, 1Q and 1S), and after staining, more than half of the tadpoles were bent. Additionally, the bone staining was darker with advancement in developmental stage, especially in the bones (Figure 1 from K to S). The micro-CT could both visualize the bone and discriminate the incompletely ossified cartilage from other tissues (Figure 1 from B to J and from L to T), and the specimens remained in their original positions after scanning. However, the micro-CT seemed unable to distinguish the cartilage located in the head or arthrosis (Figure 1I, 1J, 1S and 1T).

    The quality of the CT image differed with the developmental stages of the tadpoles, with the rendering quality of the vertebrae improving with development stage. For example, the images of the vertebrae of the tadpoles at stage 40 were more complete and clearer than those at stage 27 (Figure 1B and 1J). Nevertheless, the results of the double-staining technique showed little association with developmental stage (Figure 1A, 1C and 1I).

    We also found that the degree of ossification of vertebrae varied with development stages within species and differed in species at the same stage. Normally, the later development stage is always with the higher degree of ossification within the species. That is, the bony staining color is redder in the higher degree of ossification of vertebrae in this study (Figure 1 from K to S).However, this trend seemed to be not true among species.For example, the degree of ossification of vertebrae inX.sangzhiensiswas higher than that inB. carinensisat the same developmental stage (Figure 1C and 1M), and even the degree of ossification of vertebrae inX. sangzhiensisat an early development stage was higher than that ofB.carinensisat a later development stage (Figure 1C and 1K). Similarly, the number of vertebrae changed with developmental stages. In general, the number of vertebrae increased first and then decreased within species (Figure 1 from L to K). However, there was a large variation among species, for instance, the number of vertebrae ofX. sangzhiensiswas more than that ofB. carinensisat the same developmental stage (Figure 1D and 1N).

    In addition, it was easy to obtain clear 3D images of a tadpole skeleton using micro-CT, such as the three directional views of the vertebrae of theX. sangzhiensistadpole and to acquire detailed information about the vertebrae without destroying the specimens (Figure 2).

    3.2. Factors affecting image qualityWe found that the voltage, current and scan time affected image quality.Generally, the image quality increased with increasing voltage (Figure 3A). For instance, at 30 kV, the micro-CT could not distinguish the vertebrae from polypropylene pipette tips (Figure 3, AI and A1), but at 70 kV, the vertebrae of the tadpole were clearly displayed. At 90 kV,the details of the vertebrae could be observed, but it was not possible to differentiate the vertebrae from ethanol(the CT values of the two objects were similar) (Figure 3,AIV and A4). Similar results were observed at different currents, but the impact of the current was less than that of the voltage setting. The image quality was similar under different currents when voltage and scan time were consistent (Figure 3B). Additionally, the image quality increased with scan time (from 8 s to 4 min), although the trend seemingly declined at 14 min (Figure 4IV).As shown in the results, the red arrows indicate that the boundaries of the vertebrae were more clearly displayed with increasing scan time (Figure 4 from 1 to 4), but the image quality did not be obviously improved after scanning for 14 min or longer (Figure 4V, 4VI, 4-5, 4-6).

    But beyond that, a stark difference in image quality was revealed between the two preservation methods(70% ethanol or 10% formalin); the image was sharper when the specimens were preserved in 70% ethanol(Figure 5). Furthermore, micro-CT could hardly discern the skulls of tadpoles preserved in formalin, suggesting that preservation has an important effect on scan image quality.

    4. Discussion

    The tadpole skeleton consists of cartilage and bone,but the cartilage accounts for a larger portion during metamorphosis (McDiarmid and Altig, 1999). During this stage, the vertebrae are primarily composed of cartilage with little or no calcium, most of which cannot be stained by alizarin red, so alcian blue or other dyes (such as methylene blue and toluidine blue) have been applied in the double-staining procedure to reveal cartilage in the last several decades (Depew, 2014; Dingerkus and Uhler, 1977; Dinggerkus, 1981; Hanken and Wassersug,1981; Kelly and Bryden, 1983; Redfernet al., 2007;Wassersug, 1976; Yamada, 1991). However, this most popular and traditional method is destructive and can distort specimens. Our results show that micro-CT can discern the bone and cartilage from other soft tissues and can produce a 3D image of the vertebrae, although it cannot directly distinguish bone from cartilage without the help of contrast agents. Moreover, it is non-invasive and can allow researchers to reuse specimens for different research purposes, which is especially important for rare species. Obviously, the method provides an alternative approach to study tadpole vertebrae.

    Figure 1 Comparison of the two methods for displaying tadpole vertebrae. The white backgrounds are the results of bone-cartilage doublestaining (upper), and the black backgrounds are the corresponding micro-CT results (lower) for the same specimens. Specimen cartilage was stained dark blue, and bone stained purplish red. All images present ventral views of the tadpoles. N represents the number of vertebrae. A, B,C, D, I and J: the tadpoles of B. carinensis; E , F, G and H: the tadpoles of A. shapingensis; and from K to T: the tadpoles of X. sangzhiensis.Scale bar: 5 mm.

    Table 1 Comparison of the two methods for examining the number of vertebrae in larval megophryids (Wilcoxon Signed-Rank test).

    Figure 2 Micro-CT representations of the skeletal anatomy of the X. sangzhiensis tadpole (stage 35). A and B: dorsal view of tadpole vertebrae. C and D: ventral view of tadpole vertebrae. E and F: lateral view of tadpole vertebrae. Left-side scale bar: 5 mm. Right-side scale bar: 2 mm.

    Figure 3 Renderings of the X. sangzhiensis tadpole (stage 34) vertebrae under different scanning voltages or currents. Left histograms(from I to IV) for each parameter show the distributions of voxel values on a relative linear scale. The X-axis represents the CT value (or voxel color table and opacity), and the Y-axis represents the voxel intensity. The ethanol and soft tissues background peak is marked by a solid vertical red line, and the mean of the object voxel distribution is marked by a solid vertical green line. The other peaks represent the voxel distributions of other objects, such as the peak to the left, which represents pore space and air. Images on the right (from 1 to 4) are the scanning results for each parameter. A) The effects of voltage on the scan image. From top to bottom, the respective parameters are 30 kV-88 μA-4 min, 50 kV-88 μA-4 min, 70 kV-88 μA-4 min and 90 kV-88 μA-4 min. B) The effects of current on scan image. From 1-4, the respective parameters are 90 kV-20 μA-4 min, 90 kV-40 μA-4 min, 90 kV-60 μA-4 min and 90 kV-80 μA-4 min. Scale bar: 5 mm.

    Figure 4 Renderings of the X. sangzhiensis tadpole (stage 34) vertebrae with different scan times. Left histogram (from I to VI) for each parameter shows the distribution of pixel grayscale values on a relative linear scale. The X-axis represents the CT value (or voxel color table and opacity), and the Y-axis represents the voxel intensity. The ethanol and soft tissues background peak is marked by a solid vertical red line, and the mean of the object voxel distribution is marked by a solid vertical green line. The other peaks represent the voxel distributions of other objects, such as the peak on the left, which represents pore space and air. The images on the right are the scanning results for each parameter. The red arrows indicate the boundary between the two vertebrae. From top to bottom, the respective parameters were 90 kV-88 μA-8 s, 90 kV-88 μA-18 s, 90 kV-88 μA-2 min, 90 kV-88 μA-4 min, 90 kV-88 μA-14 min and 90 kV-88 μA-57 min. Scale bar: 5 mm.

    In this study, micro-CT seemingly could not render cartilage located in the head and appendages, and we speculate that the densities of these cartilages are much less than those of vertebrae due to the lack of calcium.In particular, articular cartilage is mainly composed of proteoglycans, collagens and chondrocytes (Karhulaet al., 2017), whose densities are similar to those of other soft tissues, so micro-CT cannot distinguish them. In addition, the main skeleton of the head in a tadpole is chondrocranium which is a cartilaginous case that protects the brain and supports the sense and jaw apparatus (Cannatella, 1999). Based on the results of both double-staining and micro-CT, the skeleton of the head showed a later ossification time than the vertebrae.In fact, the head has not completely ossified at the end of metamorphosis climax. And, the first sign of appendicular skeletal development usually appears after stage 37 in megophryids (Handriganet al., 2007). Thus, it is more effective to study the vertebrae than other parts of the skeleton by micro-CT in megophryid tadpole.Furthermore, the scan image quality increases with developmental stage, mainly due to the different degrees of vertebral calcification. Scherzet al. (2015) reported that micro-CT scanning can nicely render highly calcified structures, especially bone, because tadpoles have relatively higher ossification levels at later developmental stages. So, micro-CT scanning is more suitable for tadpoles at later stages.

    Figure 5 Scanned images of A. shapingensis tadpoles (stage 37) stored in 70% ethanol (A) and in 10% formalin (B). Scale bar: 2 mm.

    Indeed, the non-mineralized structures (such as soft tissues) in small vertebrates or invertebrates can also be visualized by micro-CT with the help of contrast agents(Descampset al., 2014; Gignacet al., 2016; Metscher,2009a), such as PTA (1% (w/v) phosphotungstic acid in water) and IKI (1% iodine metal (I2) + 2% potassium iodide (KI) in water); Some soft tissues ofXenopus laevistadpoles have been successfully studied using micro-CT in combination with a contrast agent (PTA) (Descampset al., 2014; Metscher, 2009b). Thus, we can also combine with the contrast agent to explore the anatomy and osteology of tadpole when conducting CT scan.

    The degree of ossification of vertebrae has drastic variation among species at the same developmental stage. As shown in this study, the degree of ossification ofX. sangzhiensisat the same or an earlier stage was higher than that inB. carinensis. Meanwhile, the number of vertebrae in the former is much more than that in the latter. This difference may be mainly related to the heterochronous arrest of bony development. Trueb(1973) reported that heterochrony is operational in the maintenance of osteological differences between the sexes in hylids. E. M. T. Stephenson (1960) and N. G.Stephenson (1965) also argued that the heterochronous changes would result in some types of osteological differences among closely related species. Thus, we speculate that the degree of ossification of vertebrae varied with species also resulted from the heterochrony of bony development. Furthermore, axial and appendicular skeletal development usually starts in quick succession and then proceeds together in anurans (Maglia 2003).However, Handriganet al. (2007) found that much of vertebral column development occurred before the onset of ossification in the limbs in megophryids. We also revealed a similar phenomenon that the degree of ossification of vertebrae is different between species at the same developmental stage (or the same development level of the external limb). So, the Gosner staging table that is based primarily on limb development is not always an appropriate standard for all species as megophryid tadpole (Handriganet al., 2007).

    For tadpole scanning, the voltage played a key role among the scanning parameters, but it is inadvisable to choose an overly high or low voltage since these scanning parameters can increase the overlapping intensities between the void and solid phases, which will reduce the degree of differentiation. Similar results were observed when comparing different currents or scan time, so we recommend moderate scanning parameters(such as 70 kV-80 μA-4 min) when scanning tadpoles.In addition, micro-CT performed poorly when using specimens stored in formalin preservative because formalin can decalcify the skeleton, especially bone(Heyeret al., 1994), diminishing the contrast between the skeleton and soft tissues. Therefore, we suggest that specimens to scan should be preserved in 70% ethanol,or formalin preservative should be kept neutral to reduce decalcification.

    Bone-cartilage double-staining is a critical tool for evolutionary and developmental biologists to evaluate the ontogeny of the skeleton (Depew, 2009) because it can clearly distinguish differences between bone and cartilage. However, this process is time-consuming and complex, requires specialized chemicals, and is ultimately destructive to the specimens, preventing future uses(Hanken and Wassersug, 1981; Simons and Van Horn,1971; Wassersug, 1976; Williams, 1941). These issues are especially impactful for rare specimens that must be utilized for a variety of studies, but micro-CT can avoid these drawbacks due to its non-invasive nature. First, we can dissect tadpole vertebraein vivowithout damaging the samples, which is very important for preserving rare specimens. Second, it is convenient and efficient to scan a large number of samples. Furthermore, we can reconstruct a particular structure or slice(s) at a higher resolution(du Plessiset al., 2017). It is also possible to repeatedly change the scanning parameters until a satisfactory image is obtained, and the multiple output files (including video format) from micro-CT can be viewed using different software.

    5. Conclusion

    This study demonstrated that micro-CT is a rapid, noninvasive, reliable and efficient method for studying the vertebrae of tadpoles and can increase specimen utilization. Correspondingly, it also provides an alternative approach to study vertebrae in tadpole biology.Ethanol preservative and moderate scanning parameters are recommended in tadpole scan. Furthermore, we suggest that micro-CT, alone or in combination with bone-cartilage double-staining, be more widely applied in herpetological research to promote the development of the field.

    Acknowledgements The project is supported by the National Key Program of Research and Development,Ministry of Science and Technology (No. 2017YFC05 05202 granted to Jianping JIANG) and the National Natural Science Foundation of China (No. 31172055 granted to Cheng LI and No. 31172174 granted to Feng XIE). We are grateful to the Herpetological Museum of the Chengdu Institute of Biology for facilitating our examination of the specimens and to Nicholas C. WU for proof reading the manuscript.

    Boistel R., Swoger J., Kr?i? U., Fernandez V., Gillet B., Reynaud E. G. 2011. The future of three-dimensional microscopic imaging in marine biology. Mar Biol,32(4): 438–452

    Broeckhoven C., Plessis A., Roux S. G., Mouton P. L. F. N., Hui C. 2017. Beauty is more than skin deep: A non-invasive protocol for in vivo anatomical study using micro-CT. Methods Ecol Evol, 8(3): 358–369

    Campbell G. M., Sophocleous A. 2014. Quantitative analysis of bone and soft tissue by micro-computed tomography:Applications toex vivoandin vivostudies. Bonekey Rep, 3: 564

    Cannatella D. 1999. Architecture: Cranial and axial musculoskeleton. In McDiarmid R. W., Altig R. (Eds.), Tadpoles:the biology of anuran larvae. Chicago, USA: University of Chicago Press, 52–81

    Chao W., Harteneck B. D., Liddle J. A., Anderson E. H.,Attwood D. T. 2005. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 435(7046): 1210–1213

    Chen Y., Lin G., Chen Y., Fok A., Slack J. M. 2012. Microcomputed tomography for visualizing limb skeletal regeneration in youngXenopusfrogs. Anat Rec, 295(10): 1562–1565

    Depew M. J. 2009. Analysis of skeletal ontogenesis through differential staining of bone and cartilage. In Westendorf (Eds.),Molecular Embryology:Methods and Protocols. Totowa, USA:Humana Press. 37–4

    Descamps E., Buytaert J., De Kegel B., Dirckx J., Adriaens D.2012. A qualitative comparison of 3D visualization inXenopus laevisusing a traditional method and a non-destructive method.Belg J Zool, 142(2): 99–111

    Dingerkus G., Uhler L. D. 1977. Enzyme clearing of Alcian blue stained whole small vertebrates for demonstration of cartilage.Stain Technol, 52: 229–232

    Dingerkus G. 1981. The use of various alcohols for Alcian blue in toto staining of cartilage. Stain Technol, 56: 128–129

    Dodd M. H. I., Dodd J. M. 1976. The biology of metamorphosis.Physiol Amphibia, 3: 467–599

    Du Plessis A., Broeckhoven C., Guelpa A., Le Roux S. G. 2017.Laboratory X-ray micro-computed tomography: A user guideline for biological samples. GigaScience, 6(6): 1–11

    Faulwetter S., Vasileiadou A., Kouratoras M., Dailianis T.,Arvanitidis C. 2013. Micro-computed tomography: Introducing new dimensions to taxonomy. ZooKeys, 263: 1

    Fortuny J., Marcé-Nogué J., Heiss E., Sanchez M., Gil L.,Galobart à. 2015. 3D bite modeling and feeding mechanics of the largest living amphibian, the Chinese giant salamanderAndrias davidianus(Amphibia: Urodela). PLoS One, 10(4):e0121885

    Gignac P. M., Kley N. J., Clarke J. A., Colbert M. W., Morhardt A. C., Cerio D., Cost I. N., Cox P. G., Daza J. D., Early C.M., Echols M. S., Henkelman R. M., Herdina A. N., Holliday C. M., Li Z., Mahlow K., Merchant S., Müller J., Orsbon C.P., Paluh D. J., Thies M. L., Tsai H. P., Echols M. S. 2016.Diffusible iodine based contrast enhanced computed tomography(diceCT): An emerging tool for rapid, high resolution, 3D imaging of metazoan soft tissues. J Anat, 228(6): 889–909

    Gosner K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16(3):183–190

    Handrigan G. R., Haas A., Wassersug R. J. 2007. Bony-tailed tadpoles: The development of supernumerary caudal vertebrae in larval megophryids (Anura). Evol Dev, 9(2): 190–202

    Hanken J., Wassersug R. 1981. The visible skeleton. Funct Photo,16(4): 22–26

    Heyer R., Donnelly M. A., Foster M., Mcdiarmid R. 1994.Measuring and monitoring biological diversity: Standard methods for amphibians. Washington, USA: Smithsonian Institution Press. 289–297

    Karhula S. S., Finnil? M. A., Lammi M. J., Yl?rinne J. H.,Kauppinen S., Rieppo L., Pritzker K. P. H., Nieminen H. J.,Saarakkala S. 2017. Effects of articular cartilage constituents on phosphotungstic acid enhanced micro-computed tomography.PLoS One, 12(1): e0171075

    Kelly W. L., Bryden M. M. 1983. A modified differential stain for cartilage and bone in whole mount preparations of mammalian fetuses and small vertebrates. Stain Technol, 58:131–134

    Kim E., Sung H., Lee D., Kim G., Nam D., Kim E. 2017.Nondestructive skeletal imaging ofHyla suweonensisusing Micro-computed tomography. Asian Herpetol Res, 88(4): 235–243

    Lauridsen H., Hansen K., Wang T., Agger P., Andersen J. L.,Knudsen P. S., Maglia, A. M. 2003. Skeletal development ofPelobates cultripesand comparisons of the osteology of pelobatoid frogs. Sci Pap Univ Kansas Nat Hist Mus, 30: 1–13

    McDiarmid R. W., Altig R. 1999. Tadpoles: the biology of anuran larvae. Chicago, USA: University of Chicago Press. 52–90

    Metscher B. D. 2009a. MicroCT for developmental biology:A versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn, 238(3): 632–640

    Metscher B. D. 2009b. MicroCT for comparative morphology:simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physio, 9(1): 11

    Mizutani R., Suzuki Y. 2012. X-ray microtomography in biology.Micron, 43(2): 104–115

    Parapar J., Candás M., Cunha-Veira X., Moreira J. 2017.Exploring annelid anatomy using micro-computed tomography:A taxonomic approach. Zool Anz, 270: 19–42

    Porro L. B., Richards C. T. 2017, Digital dissection of the model organismXenopus laevisusing contrast-enhanced computed tomography. J Anat, 231: 169–191

    Rasmussen A. S., Uhrenholt L., Pedersen M. 2011. Inside out:modern imaging techniques to reveal animal anatomy. PLoS One, 6(3): e17879

    Redfern B. G., David W. L., Spence S. 2007. An alternative Alcian blue dye variant for the evaluation of fetal cartilage. Birth Defects Res B,80(3): 171–176

    Ritman E. L. 2004. Micro-computed tomography–current status and developments. Annu Rev Biomed Eng, 6: 185–208

    Ritman E. L. 2011. Current status of developments and applications of micro-CT. Annu Rev Biomed Eng, 13: 531–552

    Ro?ková H., Ro?ek Z. 2005. Development of the pelvis and posterior part of the vertebral column in the Anura. J Anat,206(1): 17–35

    R Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: http://www.R-project.org (accessed 28 September 2017).

    Scherrer R., Hurtado A., Machado E. G., Debiais-Thibaud M. 2017. MicroCT survey of larval skeletal mineralization in the Cuban garAtractosteus tristoechus(Actinopterygii;Lepisosteiformes). MorphoMuseuM, 3(3):e3

    Scherz M. D., Ruthensteiner B., Vences M., Glaw F. 2014. A new microhylid frog, genusRhombophryne, from northeastern Madagascar, and a re-description ofR. serratopalpebrosausing micro-computed tomography. Zootaxa, 3860(6): 547–560

    Scherz M. D., Ruthensteiner B., Vieites D. R., Vences M., Glaw F. 2015. Two new microhylid frogs of the genusRhombophrynewith superciliary spines from the Tsaratanana Massif in northern Madagascar. Herpetologica, 71(4): 310–321

    Sephenson M. T. 1960. The skeletal characters of Leiopelma harniltoni McCulloch, with particular reference to the effects of heterochrony on the genus. Trans Roy Soc, 88 (3): 473–488

    Sephenson N. G. 1965. Heterochronous changes among Australian leptodactylid frogs. Proc Zod Soc, 144 (3): 339–350

    Simons E. V., Van Horn J. R. 1971. A new procedure for wholemount Alcian blue staining of the cartilaginous skeleton of chicken embryos, adapted to the clearing procedure in potassium hydroxide. Acta Morphol Neerl-Scand, 8: 281–292

    Trueb L. 1973. Bones, frogs, and evolution. In Vial J. L. (Eds.)Evolutionary biology of anurans. Columbia: University of Missouri Press, 65–132

    Vasquez S. X., Hansen M. S., Bahadur A. N., Hockin M. F.,Kindlmann G. L., Nevell L., Isabel Q. Wu., David J. G.,David M. W., Greg M. J., Christopher R. J., Johnl L. V.,Mario R. C., Johnson C. R. 2008. Optimization of volumetric computed tomography for skeletal analysis of model genetic organisms. Anat Rec. 291(5): 475–487

    Wassersug R. J. 1976. A procedure for differential staining of cartilage and bone in whole formalin-fixed vertebrates. Stain Technol, 51(2): 131–134

    Williams T. W. 1941. Alizarin red S and toluidine blue for differentiating adult or embryonic bone and cartilage. Stain Technol, 16: 23–25

    Yamada T. 1991. Selective staining methods for cartilage of rat fetal specimens previously treated with alizarin red S.Teratology, 43(6): 615–619

    Zhang M., Chen X., Chen X. 2016. Osteology ofQuasipaa robertingeri(Anura: Dicroglossidae). Asian Herpetol Res, 7(4):242–250

    国产精品无大码| 亚洲欧美日韩另类电影网站| 色哟哟·www| 久久久久国产一级毛片高清牌| 国产一区二区在线观看av| 日韩伦理黄色片| 色婷婷av一区二区三区视频| 人体艺术视频欧美日本| 亚洲精品美女久久av网站| 一区二区日韩欧美中文字幕| 欧美亚洲日本最大视频资源| 国产精品99久久99久久久不卡 | 国产 一区精品| 高清黄色对白视频在线免费看| 久久精品人人爽人人爽视色| 亚洲av日韩在线播放| 国产成人精品无人区| 超色免费av| 国产黄频视频在线观看| 18在线观看网站| 日本色播在线视频| 五月伊人婷婷丁香| 日韩av在线免费看完整版不卡| 色网站视频免费| 波野结衣二区三区在线| 岛国毛片在线播放| 精品人妻熟女毛片av久久网站| 考比视频在线观看| 午夜福利,免费看| 午夜免费观看性视频| 91精品三级在线观看| 久久av网站| 日韩在线高清观看一区二区三区| 久久久国产欧美日韩av| 久久精品久久久久久久性| 最近2019中文字幕mv第一页| 性色avwww在线观看| 99久久精品国产国产毛片| 国产综合精华液| 高清不卡的av网站| av卡一久久| 精品国产国语对白av| 国产精品久久久久久av不卡| 亚洲综合精品二区| 中文字幕av电影在线播放| 男男h啪啪无遮挡| 狂野欧美激情性bbbbbb| 精品国产超薄肉色丝袜足j| 亚洲图色成人| 国产精品香港三级国产av潘金莲 | 99香蕉大伊视频| 视频区图区小说| 日本猛色少妇xxxxx猛交久久| 一级片'在线观看视频| 国产精品女同一区二区软件| xxxhd国产人妻xxx| 精品午夜福利在线看| 免费久久久久久久精品成人欧美视频| 日本wwww免费看| 国产 一区精品| 亚洲美女黄色视频免费看| 男女边摸边吃奶| 在线观看免费日韩欧美大片| 在线观看免费日韩欧美大片| 久久久久精品久久久久真实原创| 亚洲av成人精品一二三区| 少妇人妻 视频| 各种免费的搞黄视频| 久久久久精品久久久久真实原创| 日本色播在线视频| xxx大片免费视频| 可以免费在线观看a视频的电影网站 | 中文字幕亚洲精品专区| 亚洲国产欧美日韩在线播放| 国产日韩欧美视频二区| 另类精品久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久av美女十八| 美女午夜性视频免费| 国产精品久久久av美女十八| 国产又爽黄色视频| 亚洲图色成人| 国产亚洲一区二区精品| 激情视频va一区二区三区| 丁香六月天网| videos熟女内射| 国产亚洲精品第一综合不卡| 国产爽快片一区二区三区| 国产成人aa在线观看| 韩国av在线不卡| 精品少妇一区二区三区视频日本电影 | 两个人免费观看高清视频| 秋霞伦理黄片| 亚洲国产日韩一区二区| videosex国产| 国产在线视频一区二区| 久久女婷五月综合色啪小说| 久久久国产精品麻豆| 最黄视频免费看| 91在线精品国自产拍蜜月| 另类精品久久| 老司机影院毛片| 色婷婷av一区二区三区视频| 春色校园在线视频观看| 午夜福利乱码中文字幕| 国产精品无大码| 色视频在线一区二区三区| 久久久精品区二区三区| 九草在线视频观看| 日本vs欧美在线观看视频| 丝袜美足系列| 欧美97在线视频| 国产福利在线免费观看视频| 激情五月婷婷亚洲| 激情视频va一区二区三区| 伦精品一区二区三区| 大香蕉久久成人网| 天堂8中文在线网| 晚上一个人看的免费电影| 欧美激情极品国产一区二区三区| 人人妻人人澡人人看| av卡一久久| 午夜福利视频在线观看免费| 免费观看在线日韩| 熟女少妇亚洲综合色aaa.| 777久久人妻少妇嫩草av网站| 两个人免费观看高清视频| 国产极品天堂在线| 一二三四中文在线观看免费高清| 精品人妻一区二区三区麻豆| 男女边摸边吃奶| av天堂久久9| 欧美亚洲日本最大视频资源| 欧美日韩一区二区视频在线观看视频在线| 男女边吃奶边做爰视频| 精品99又大又爽又粗少妇毛片| 国产男女超爽视频在线观看| 夫妻午夜视频| 999久久久国产精品视频| 精品国产一区二区三区久久久樱花| 亚洲av男天堂| 国产精品免费视频内射| 看十八女毛片水多多多| 啦啦啦在线观看免费高清www| 一二三四在线观看免费中文在| kizo精华| 国产麻豆69| 99久国产av精品国产电影| 成年女人在线观看亚洲视频| 免费播放大片免费观看视频在线观看| 午夜激情av网站| 国产探花极品一区二区| 成人国语在线视频| 少妇人妻精品综合一区二区| 波野结衣二区三区在线| 伦理电影免费视频| 免费黄网站久久成人精品| 国产精品av久久久久免费| 啦啦啦在线观看免费高清www| 99热全是精品| 国产有黄有色有爽视频| 中国国产av一级| 久久久久久久大尺度免费视频| 免费高清在线观看日韩| 男女高潮啪啪啪动态图| 亚洲精品一区蜜桃| 亚洲激情五月婷婷啪啪| 91精品国产国语对白视频| videos熟女内射| 亚洲一区二区三区欧美精品| av卡一久久| 一区福利在线观看| 一区在线观看完整版| 午夜老司机福利剧场| 久久狼人影院| 久久久久精品久久久久真实原创| 水蜜桃什么品种好| 女性生殖器流出的白浆| av一本久久久久| 中文字幕亚洲精品专区| a级毛片在线看网站| 免费观看无遮挡的男女| 秋霞伦理黄片| 99久久中文字幕三级久久日本| 久久久久精品性色| 伦理电影大哥的女人| 欧美精品国产亚洲| 熟妇人妻不卡中文字幕| 男女啪啪激烈高潮av片| 亚洲精品av麻豆狂野| 久久久精品区二区三区| 亚洲精品成人av观看孕妇| 日韩制服骚丝袜av| 亚洲国产欧美在线一区| 伦理电影免费视频| 在现免费观看毛片| 1024香蕉在线观看| 日韩大片免费观看网站| 亚洲精品中文字幕在线视频| 久久精品国产亚洲av高清一级| 精品第一国产精品| 欧美在线黄色| 婷婷色综合大香蕉| 侵犯人妻中文字幕一二三四区| 国产探花极品一区二区| 伦理电影免费视频| 男人添女人高潮全过程视频| 制服诱惑二区| 亚洲精品成人av观看孕妇| 免费高清在线观看日韩| av国产精品久久久久影院| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品电影小说| 99国产精品免费福利视频| 日韩大片免费观看网站| www.自偷自拍.com| 亚洲人成电影观看| 中文乱码字字幕精品一区二区三区| 久久鲁丝午夜福利片| 考比视频在线观看| 亚洲精品久久久久久婷婷小说| 亚洲成人手机| 人妻一区二区av| 一级毛片 在线播放| 日韩中文字幕欧美一区二区 | 国产一区有黄有色的免费视频| 黄片无遮挡物在线观看| 丝袜脚勾引网站| 国产白丝娇喘喷水9色精品| www.精华液| 黑人巨大精品欧美一区二区蜜桃| 国产精品成人在线| 亚洲av免费高清在线观看| 在线天堂中文资源库| 国产亚洲午夜精品一区二区久久| 国产亚洲av片在线观看秒播厂| 久久99精品国语久久久| av国产久精品久网站免费入址| 亚洲人成网站在线观看播放| 高清av免费在线| 三上悠亚av全集在线观看| 天天操日日干夜夜撸| 中文字幕av电影在线播放| 考比视频在线观看| 2018国产大陆天天弄谢| 久久久久久久亚洲中文字幕| 精品国产一区二区久久| 亚洲精品中文字幕在线视频| 欧美亚洲 丝袜 人妻 在线| 人妻人人澡人人爽人人| 人人妻人人澡人人爽人人夜夜| 久久影院123| 波多野结衣av一区二区av| 国产一区二区三区av在线| 色婷婷久久久亚洲欧美| 亚洲经典国产精华液单| 高清不卡的av网站| 高清视频免费观看一区二区| 欧美少妇被猛烈插入视频| 久久精品国产鲁丝片午夜精品| 街头女战士在线观看网站| 春色校园在线视频观看| 99国产综合亚洲精品| 在线观看美女被高潮喷水网站| 欧美在线黄色| 日韩三级伦理在线观看| 伊人久久国产一区二区| av福利片在线| 国产一级毛片在线| 99精国产麻豆久久婷婷| 男女边吃奶边做爰视频| 亚洲三级黄色毛片| 亚洲美女黄色视频免费看| 中文字幕av电影在线播放| 亚洲精华国产精华液的使用体验| 国产精品免费大片| 97在线人人人人妻| 日韩一卡2卡3卡4卡2021年| 婷婷色av中文字幕| av网站免费在线观看视频| videossex国产| 在线精品无人区一区二区三| 国产男女内射视频| 欧美国产精品va在线观看不卡| 亚洲人成网站在线观看播放| 亚洲精品美女久久av网站| 2018国产大陆天天弄谢| 精品一区二区三卡| 各种免费的搞黄视频| 水蜜桃什么品种好| 国产福利在线免费观看视频| 在现免费观看毛片| 亚洲男人天堂网一区| 又粗又硬又长又爽又黄的视频| 狠狠精品人妻久久久久久综合| 国产欧美亚洲国产| 亚洲精品av麻豆狂野| 免费在线观看完整版高清| 性少妇av在线| 久久精品国产亚洲av天美| 成人手机av| 热re99久久国产66热| 亚洲,欧美,日韩| √禁漫天堂资源中文www| 另类精品久久| 亚洲色图 男人天堂 中文字幕| 国产成人aa在线观看| 精品酒店卫生间| 黄色怎么调成土黄色| 一区二区三区乱码不卡18| 考比视频在线观看| 男女高潮啪啪啪动态图| 三上悠亚av全集在线观看| 国产一区二区三区av在线| 欧美成人午夜精品| 久久久久久久久久人人人人人人| 国产av国产精品国产| 欧美老熟妇乱子伦牲交| 99热网站在线观看| 伊人久久国产一区二区| 七月丁香在线播放| av卡一久久| 国产欧美亚洲国产| 91精品国产国语对白视频| 在线观看一区二区三区激情| 成年女人毛片免费观看观看9 | a级毛片在线看网站| 色婷婷久久久亚洲欧美| 免费女性裸体啪啪无遮挡网站| 国产精品一区二区在线不卡| 国产伦理片在线播放av一区| 亚洲欧洲精品一区二区精品久久久 | 久久久久国产一级毛片高清牌| av在线app专区| 交换朋友夫妻互换小说| 亚洲国产精品成人久久小说| 欧美人与善性xxx| 国产视频首页在线观看| 午夜免费男女啪啪视频观看| 女人精品久久久久毛片| 涩涩av久久男人的天堂| 日日撸夜夜添| 久久久久久免费高清国产稀缺| 亚洲激情五月婷婷啪啪| 中文字幕av电影在线播放| 精品99又大又爽又粗少妇毛片| 久久免费观看电影| 好男人视频免费观看在线| 午夜免费观看性视频| 最黄视频免费看| 欧美成人精品欧美一级黄| 久久99蜜桃精品久久| 最近2019中文字幕mv第一页| av.在线天堂| 99久久精品国产国产毛片| 你懂的网址亚洲精品在线观看| 成人影院久久| 亚洲久久久国产精品| 天堂8中文在线网| 午夜影院在线不卡| 日本猛色少妇xxxxx猛交久久| 成年女人在线观看亚洲视频| 少妇人妻久久综合中文| 国产在线一区二区三区精| 精品一区二区三区四区五区乱码 | 精品福利永久在线观看| 少妇 在线观看| 久久免费观看电影| 超碰成人久久| 电影成人av| 成人18禁高潮啪啪吃奶动态图| 巨乳人妻的诱惑在线观看| 免费不卡的大黄色大毛片视频在线观看| 免费看av在线观看网站| 哪个播放器可以免费观看大片| 99久国产av精品国产电影| 亚洲av日韩在线播放| 国产片特级美女逼逼视频| 久久久久国产网址| 9191精品国产免费久久| 国产有黄有色有爽视频| 欧美日韩国产mv在线观看视频| 亚洲欧美色中文字幕在线| 国产97色在线日韩免费| 精品国产一区二区三区四区第35| 国产欧美日韩综合在线一区二区| 黑人巨大精品欧美一区二区蜜桃| 亚洲一级一片aⅴ在线观看| 午夜福利视频在线观看免费| 国产麻豆69| 极品少妇高潮喷水抽搐| 七月丁香在线播放| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人看| 伊人久久国产一区二区| 中文字幕人妻熟女乱码| 欧美成人午夜免费资源| 国产精品亚洲av一区麻豆 | 伦精品一区二区三区| 欧美日韩视频高清一区二区三区二| 欧美97在线视频| 夫妻午夜视频| 国产精品香港三级国产av潘金莲 | 天天影视国产精品| 国产男女内射视频| 尾随美女入室| 国产精品亚洲av一区麻豆 | 成年美女黄网站色视频大全免费| 久久 成人 亚洲| 国产高清不卡午夜福利| 国产老妇伦熟女老妇高清| 女性生殖器流出的白浆| 久久国内精品自在自线图片| 天天操日日干夜夜撸| 99久久综合免费| 亚洲成人av在线免费| 国产精品久久久久成人av| 捣出白浆h1v1| 搡老乐熟女国产| 伊人久久国产一区二区| 久久精品人人爽人人爽视色| 欧美激情极品国产一区二区三区| 精品视频人人做人人爽| 波多野结衣一区麻豆| 久久午夜综合久久蜜桃| 精品人妻一区二区三区麻豆| 99香蕉大伊视频| 在现免费观看毛片| 国产熟女欧美一区二区| 久久精品久久精品一区二区三区| 亚洲av在线观看美女高潮| 最新的欧美精品一区二区| 国产成人a∨麻豆精品| 欧美97在线视频| 交换朋友夫妻互换小说| 伦理电影免费视频| 日韩,欧美,国产一区二区三区| 成人影院久久| 亚洲中文av在线| 亚洲国产最新在线播放| 国产探花极品一区二区| 久久国产亚洲av麻豆专区| 久久久久久久久久人人人人人人| www日本在线高清视频| 精品国产乱码久久久久久男人| 男人爽女人下面视频在线观看| 亚洲av国产av综合av卡| 日韩 亚洲 欧美在线| 两性夫妻黄色片| 韩国精品一区二区三区| 日产精品乱码卡一卡2卡三| 欧美亚洲日本最大视频资源| 亚洲av男天堂| 日韩一区二区视频免费看| 亚洲av中文av极速乱| 国语对白做爰xxxⅹ性视频网站| 国产成人精品无人区| 中国国产av一级| 大香蕉久久网| 天天躁日日躁夜夜躁夜夜| 免费在线观看完整版高清| 少妇猛男粗大的猛烈进出视频| 美女脱内裤让男人舔精品视频| 女性被躁到高潮视频| 亚洲欧美精品自产自拍| 少妇熟女欧美另类| 日韩不卡一区二区三区视频在线| 三上悠亚av全集在线观看| 国产精品亚洲av一区麻豆 | 国产精品久久久av美女十八| 在线观看国产h片| 在线天堂中文资源库| 色视频在线一区二区三区| 国产高清不卡午夜福利| 最近2019中文字幕mv第一页| 一级毛片黄色毛片免费观看视频| 九色亚洲精品在线播放| 26uuu在线亚洲综合色| 午夜影院在线不卡| 成年女人毛片免费观看观看9 | 亚洲精品,欧美精品| 日韩制服丝袜自拍偷拍| 777米奇影视久久| 午夜福利,免费看| 久久人人爽av亚洲精品天堂| 国产精品一区二区在线观看99| 成年人午夜在线观看视频| 久久久久久久久久人人人人人人| 一二三四在线观看免费中文在| 婷婷色综合大香蕉| 在线观看一区二区三区激情| 日韩中文字幕视频在线看片| 亚洲男人天堂网一区| 亚洲欧美一区二区三区久久| 天天躁夜夜躁狠狠久久av| 国产黄色视频一区二区在线观看| 69精品国产乱码久久久| 国产成人精品一,二区| 日韩大片免费观看网站| 尾随美女入室| 午夜福利影视在线免费观看| 2022亚洲国产成人精品| 热re99久久精品国产66热6| av片东京热男人的天堂| 1024香蕉在线观看| 丝袜美足系列| 丝袜美腿诱惑在线| 少妇 在线观看| 日韩不卡一区二区三区视频在线| h视频一区二区三区| 中文精品一卡2卡3卡4更新| 亚洲第一青青草原| 9191精品国产免费久久| 亚洲精品自拍成人| 一级黄片播放器| 亚洲欧洲国产日韩| 久久婷婷青草| 一区二区三区四区激情视频| 色94色欧美一区二区| 美女国产高潮福利片在线看| av福利片在线| 丰满饥渴人妻一区二区三| 国产一区二区在线观看av| 少妇被粗大的猛进出69影院| 卡戴珊不雅视频在线播放| 午夜福利在线免费观看网站| 午夜激情av网站| 最新中文字幕久久久久| 久久婷婷青草| 成人影院久久| 精品国产乱码久久久久久男人| 韩国高清视频一区二区三区| 日韩av在线免费看完整版不卡| 国产深夜福利视频在线观看| 国产精品欧美亚洲77777| 国产在线免费精品| 午夜日韩欧美国产| 男女啪啪激烈高潮av片| 国产乱人偷精品视频| 久久午夜综合久久蜜桃| 欧美人与善性xxx| 2021少妇久久久久久久久久久| 午夜av观看不卡| 欧美av亚洲av综合av国产av | 午夜老司机福利剧场| 国产伦理片在线播放av一区| 免费在线观看视频国产中文字幕亚洲 | 久久ye,这里只有精品| 亚洲三级黄色毛片| 91精品国产国语对白视频| 久久免费观看电影| 十八禁高潮呻吟视频| 亚洲综合色惰| 熟女av电影| 久久国内精品自在自线图片| 婷婷色综合大香蕉| 亚洲欧美一区二区三区国产| 少妇人妻 视频| 午夜免费男女啪啪视频观看| 国语对白做爰xxxⅹ性视频网站| 免费观看在线日韩| 久久久久久人人人人人| 日韩av免费高清视频| av有码第一页| 又黄又粗又硬又大视频| 制服诱惑二区| 一区福利在线观看| 王馨瑶露胸无遮挡在线观看| 最近中文字幕2019免费版| 亚洲成国产人片在线观看| 久久这里有精品视频免费| 国产精品亚洲av一区麻豆 | 国产精品av久久久久免费| 丰满饥渴人妻一区二区三| 国产男人的电影天堂91| 国产欧美亚洲国产| 少妇 在线观看| 18禁裸乳无遮挡动漫免费视频| 欧美日本中文国产一区发布| 国产精品久久久久久精品电影小说| 亚洲欧美成人综合另类久久久| 1024香蕉在线观看| 热99国产精品久久久久久7| 69精品国产乱码久久久| 国产av一区二区精品久久| 一本久久精品| 视频在线观看一区二区三区| 国产精品熟女久久久久浪| 女人高潮潮喷娇喘18禁视频| 最新的欧美精品一区二区| 日日爽夜夜爽网站| 波野结衣二区三区在线| 99久久精品国产国产毛片| 黄色 视频免费看| 天天躁夜夜躁狠狠躁躁| 国产精品.久久久| 观看美女的网站| 极品少妇高潮喷水抽搐| 国产熟女午夜一区二区三区| 欧美精品亚洲一区二区| 在线精品无人区一区二区三| 国产精品女同一区二区软件| 亚洲伊人色综图| 18禁裸乳无遮挡动漫免费视频| 欧美日韩精品成人综合77777| 韩国av在线不卡| 青草久久国产| 日本欧美国产在线视频| 精品福利永久在线观看| 我的亚洲天堂| av有码第一页| 人妻人人澡人人爽人人| 日本91视频免费播放| 精品久久蜜臀av无|