• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cole-Hopf Transformation Based Lattice Boltzmann Model for One-dimensional Burgers’Equation?

    2018-05-14 01:05:20XiaoTongQi亓?xí)酝?/span>BaoChangShi施保昌andZhenHuaChai柴振華
    Communications in Theoretical Physics 2018年3期
    關(guān)鍵詞:振華

    Xiao-Tong Qi(亓?xí)酝?Bao-Chang Shi(施保昌)and Zhen-Hua Chai(柴振華)?

    1School of Mathematics and Statistics,Huazhong University of Science and Technology,Wuhan 430074,China

    2Hubei Key Laboratory of Engineering Modeling and Scienti fic Computing,Huazhong University of Science and Technology,Wuhan 430074,China

    1 Introduction

    Burgers’equation is a fundamental partial differential equation,and has gained increasing attention in the study of physical phenomenons in many fields,such as fl uid mechanics,[1]nonlinear acoustics,[2]traffic fl ow,[3]and so on.This equation is originally introduced by Bateman in 1915,[4]and later in 1947,it is also proposed by Burgers in a mathematical modeling of turbulence,[5]after whom such an equation is widely used as the Burgers’equation.

    Over past decades,many numerical methods have been proposed to solve Burgers’equation,[6?15]including the finite-difference(FD)method,[6?10]finite-element method,[11?12]boundary elements method,and direct variational methods.[13]Actually,these available approaches can be classi fied into two categories.The first one is to directly solve the nonlinear Burgers’equation[14]with the developed numerical methods. However,as pointed out in Ref.[15],in this approach,it is more difficult to balance the convection and the diffusion terms,which usually gives rise to nonlinear propagation effects and the appearance of dissipation layers.To overcome these problems,Cole[16]and Hopf[17]introduced the socalled the Cole-Hopf transformation to eliminate the nonlinear convection term in Burgers’equation,and consequently,the Burgers’equation can be converted to the linear diffusion equation.Then the second indirect approach,i.e.,the Cole-Hopf transformation based method,is also proposed to solve the converted linear diffusion equation.[10,13,15,18?19]

    The lattice Boltzmann(LB)method,as a promising technique in computational fl uid dynamics,has attracted widespread concern in recent years.[20?23]Unlike traditional numerical methods,the LB method has some distinct characteristics,including intrinsical parallelism,simplicity for programming,numerical efficiency and ease in incorporating complex boundaries.Except its applications in computational fl uid dynamics,the LB method has also been extended to solve some nonlinear partial differential equations,[24]such as Poisson equation,[25]wave equation,[26]diffusion equation,[27?28]and convectiondiffusion equation.[29?36]Recently,some LB models have been proposed for the Burgers’equation,[37?45]however,there are some nonlinear terms in the local equilibrium distribution function,[37?45]which are more complex and may also generate unstable solution.To overcome the problems inherited in these available LB models for Burgers’equation,a new Cole-Hopf transformation based LB model would be developed in this work.

    The rest of the paper is organized as follows.In Sec.2,the Cole-Hopf transformation based LB model for Burgers’equation is proposed.In Sec.3,some numerical simulations are performed to test present LB model,and finally some conclusions are given in Sec.4.

    2 Lattice Boltzmann Model for Burgers’Equation

    In this section,the Burgers’equation is first linearized by the Cole-Hopf transformation,and then the LB model for converted linear diffusion equation is developed.

    We first consider the following one-dimensional Burgers’equation,

    Now,we present an LB model for the linear diffusion equation(5).For simplicity but without losing generality,we only consider a simple D1Q3(three-discrete velocities in one dimension)lattice model,and three-discrete velocities in this lattice model can be given by

    We now perform a detailed Chapman-Enskog analysis to derive converted linear diffusion from present LB model.In the Chapman-Enskog analysis,the distribution function,the time and space derivatives can be expended as

    the linear diffusion equation(5)can be recovered exactly.

    Finally,we would like to point out that,after computing?with present LB model,we also need to adopt Eq.(4)to calculate velocityu,and for this reason,some other special methods are also needed to compute?x?.Actually in previous studies,the term?x?is usually calculated by the traditional nonlocal FD schemes(e.g.,Ref.[46]).However in the framework of LB method,it can also be computed by the non-equilibrium part of the distribution function with a second-order convergence rate.[35?36,47]If we multiplyεon both sides of Eq.(22),and utilize the relation,one can derive an expression for computing

    The initial value of equilibrium distribution functioncan be directly obtained through the initial condition(6),while the non-equilibrium partis unknown,and must be determined before performing any simulations.Based on Eq.(14),the initial value of nonequilibrium partcan be evaluated by

    where Eqs.(9),(16),and(20)have been used.Actually,once the initial condition of?is given,one can determineand also the initial value of distribution functionfi.In addition,it should be noted that the termcan not be neglected in the initialization since it is not equal to zero,and also plays an important role in the computation of the term?x?and velocityu.

    In summary,we developed a Cole-Hopf transformation based LB model for Burgers’equation and the algorithm can be found in the Appendix.

    3 Numerical Results and Discussion

    In this section,we conducted several numerical tests to validate present LB model,and to evaluate the accuracy of present model,the following global relative error(GRE)is adopted,

    where the Fourier coefficients are given by

    Fig.1 Numerical and analytical solutions at different time((a)ν=1.0,(b)ν=0.01;solid lines:analytical results,symbols:numerical results).

    Table 1 A comparison between present LB model and some existing numerical methods(ν=1.0).

    Table 2 A comparison between present LB model and some existing numerical methods(ν=0.01).

    In our simulations,the computational domain is fixed to be[0,2],and the half bounce-back scheme is adopted for Neumann boundary conditions.[33,47?48]

    We first carried out some simulations under different diffusion coefficients,and presented the result in Fig.1.As seen from this figure,the numerical results agree well with the corresponding analytical solutions.Then we also conducted a comparison between present LB model and some existing numerical methods,which are fully implicit finite-difference method(IFDM),[6]Douglas finite-difference method(DFDM),[8]B-spline finite element method(BFEM),[12]local discontinuous Galerkin method(LDG),[18]a mixed finite difference and boundary element method(BEM)[49]and Adomian’s decomposition method(ADM).[50]Based on the results listed in Tables 1 and 2,one can find that all numerical results are very close to the exact solutions,while the present model seems more accurate,especially for the case with a large diffusion coefficient.

    Fig.2 Numerical and analytical solutions under different diffusion coefficients((a)ν=1.0,(b)ν=1.0×10?2,(c)ν=1.0×10?4,(d)ν=1.0×10?6;solid lines:analytical results,symbols:numerical results).

    Table 3 GREs of two LB models for Example 2(?x=0.01,T=1.0).

    Example 2To further examine the accuracy of our LB model,we also consider the example with the following initial condition

    The exact solution to this problem can be expressed as[51]

    whereσis a parameter.

    Similarly,with the help of Cole-Hopf transformation,we can also derive the exact solution to Eq.(1),

    Fig.3 GREs of present LB model for Example 2(?x=1/10,1/20,1/25,1/40,1/50,1/80,1/100),the slope of the inserted line is 2.0,which indicates the present LB model has a second-order convergence rate.

    In the following simulations,σis set to be 2,and the periodic boundary condition is adopted.We first performed some simulations,and presented the results in Fig.2 where ?x=0.01,T=1.0,andνis varied from 1.0 to 1.0×10?6.From this figure,it is clear that the numerical results are in agreement with the exact solutions.Then a comparison between present LB model and the traditional one[38]is also conducted,and the results are shown in Table 3 where?x=0.025,T=1.0,andνis varied from 1.0 to 1.0×10?3.From this table,one can find that the present LB model is more accurate than the traditional one in solving the Burgers’equation.Finally,to test the convergence rate of present LB model,we also carried out some simulations,and measured the GREs under different lattice sizes.Based on the results shown in Fig.3 whereν=1.0(1/τ=0.8)andν=0.01(1/τ=1.97),we can conclude that the present LB model has a second-order convergence rate in space.

    4 Conclusions

    In this paper,a new Cole-Hopf transformation based LB model is proposed for Burgers’equation.Compared to some available LB models,the present LB model is more accurate since the difficulty and error caused by nonlinear convection term can be avoided.On the other hand,the present LB model is also more efficient since a linear equilibrium distribution function is adopted.In addition,the numerical results also show that the present LB model has a second-order convergence rate in space.

    In the next work,we would consider the Cole-Hopf transformation based LB models for two and threedimensional Burgers’equations.

    Appdenix

    In this appendix,we would present the algorithm of Cole-Hopf transformation based LB model.

    #1.Computethrough Eq.(4).

    #2.Computefi(x,0)at all points by Eq.(26),and the initial value of non-equilibrium partis calculated through Eq.(28).

    #3.Conduct the collision process,and obtain the post-collision distribution functionat all points.

    #4. Perform propagation at all points and derive

    #5.Compute?xfrom Eq.(25),and calculatethrough Eq.(4).

    #6.Implement steps#3–#5,and output the results at the speci fied timeT.

    [1]L.Debnath,Sir James Lighthill and Modern Fluid Mechanics,Imperial College Press,London(2008).

    [2]D.G.Crighton,Annu.Rev.Fluid Mech.11(2003)11.

    [3]T.Nagatani,Rep.Prog.Phys.65(2002)1331.

    [4]H.Bateman,Mon.Weather Rev.43(1915)163.

    [5]J.M.Burgers,Adv.Appl.Mech.1(1947)171.

    [6]BahadIr and A.Re fik,Int.J.Appl.Math.1(1999)897.

    [7]W.Y.Liao,Appl.Math.Comput.206(2008)755.

    [8]K.Pandey,L.Verma,and A.K.Verma,Appl.Math.Comput.215(2009)2206.

    [9]Q.J.Li,Z.Zheng,and S.Wang,J.Appl.Math.14(2012)2607.

    [10]S.Kutluay,A.R.Bahadir,and A.?zde?s,J.Comput.Appl.Math.103(1999)251.

    [11]J.Caldwell,P.Wanless,and A.E.Cook,Appl.Math.Model.5(1981)189.

    [12]S.Kutluay,A.Esen,and I.Dag,J.Comput.Appl.Math.167(2004)21.

    [13]T.Ozis and A.Ozdes,J.Comput.Appl.Math.71(1996)163.

    [14]W.Liao and J.Zhu,Int.J.Comput.Math.88(2011)2575.

    [15]M.K.Kadalbajoo and A.Awasthi,Appl.Math.Comput.182(2006)1430.

    [16]J.D.Cole,Q.Appl.Math.9(1951)225.

    [17]E.Hopf,Commun.Pure Appl.Math.3(1950)201.

    [18]R.P Zhang,X.Yu,and G.Zhao,Appl.Math.Comput.218(2012)8773.

    [19]L.Shao,X.L.Feng,and Y.N.He,Math.Comput.Model.54(2011)2943.

    [20]T.Krüger,H.Kusumaatmaja,A.Kuzmin,et al.,The Lattice Boltzmann Method—Princples and Practice,Springer,Switzerland(2017).

    [21]S.Chen and G.Doolen,Annu.Rev.Fluid.Mech.30(1998)329.

    [22]Z.L.Guo and C.Shu,Lattice Boltzmann Method and Its Applications in Engineering,World Scienti fic,Singapore(2013).

    [23]S.Succi,The Lattice Boltzmann Equation for Fluid Dynamics and Beyond,Oxford University Press,Oxford(2001).

    [24]Z.H.Chai,B.C.Shi,and L.Zheng,Chaos,Solitons&Fractals 36(2008)874.

    [25]Z.H.Chai and B.C.Shi,Appl.Math.Model.32(2008)2050.

    [26]G.W.Yan,J.Comput.Phys.161(2000)61.

    [27]D.Wolf-Gladrow,J.Stat.Phys.79(1995)1023.

    [28]C.Huber,B.Chopard,and M.Manga,J.Comput.Phys.229(2010)7956.

    [29]B.C.Shi,B.Deng,R.Du,and X.W.Chen,Comput.Math.Appl.55(2008)1568.

    [30]Z.H.Chai,B.C.Shi,and Z.L.Guo,J.Sci.Comput.69(2016)355.

    [31]H.L.Wang,B.C.Shi,H.Liang,and Z.H.Chai,Appl.Math.Comput.309(2017)334.

    [32]J.Huang and W.A.Yong,J.Comput.Phys.300(2015)70.

    [33]H.Yoshida and M.Nagaoka,J.Comput.Phys.229(2010)7774.

    [34]Q.H.Li,Z.H.Chai,and B.C.Shi,J.Sci.Comput.61(2014)308.

    [35]Z.H.Chai and T.S.Zhao,Phys.Rev.E 90(2014)013305.

    [36]Z.H.Chai and T.S.Zhao,Phys.Rev.E.87(6)(2013)063309.

    [37]X.M.Yu and B.C.Shi,Chin.Phys.15(2006)1441.

    [38]Y.Gao,L.H.Le,and B.C.Shi,Appl.Math.Comput.219(2013)7685.

    [39]H.L.Lai and C.F.Ma,Physica A 395(2014)445.

    [40]Q.H.Li,Z.H.Chai,and B.C.Shi,Appl.Math.Comput.250(2015)948-957.

    [41]J.Y.Zhang and G.W.Yan,Physica A 387(2008)4771.

    [42]Y.B.He and X.H.Tang,J.Stat.Mech.-Theory Exp.2016(2016)023208.

    [43]Y.L.Duan and R.X.Liu,J.Comput.Appl.Math.206(2007)432.

    [44]F.Liu and W.Shi,Commun.Nonlinear Sci.Numer.Simul.16(2011)150.

    [45]A.C.Velivelli and K.M.Bryden,Physica A 362(2006)139.

    [46]J.Wang,D.Wang,P.Lallemand,et al.,Comput.Math.Appl.65(2013)262.

    [47]Z.H.Chai,C.S.Huang,B.C.Shi,and Z.L.Guo,Int.J.Heat Mass Transf.98(2016)687.

    [48]I.Ginzburg,Adv.Water Resour.28(2005)1196.

    [49]A.R.Bahadir and M.Saglam,Appl.Math.Comput.160(2005)663.

    [50]S.Abbasbandy and M.T.Darvishi,Appl.Math.Comput.163(2005)1265.

    [51]W.L.Wood,Int.J.Numer.Meth.Eng.22(2006)797.

    猜你喜歡
    振華
    Real-time dynamics in strongly correlated quantum-dot systems
    家住西安
    PDCPD材料在商用車上的應(yīng)用
    “三農(nóng)”政策需要體現(xiàn)利益包容——對龔春明和梁振華商榷文的思考與回應(yīng)
    INVARIANT SUBSPACES AND GENERALIZED FUNCTIONAL SEPARABLE SOLUTIONS TO THE TWO-COMPONENT b-FAMILY SYSTEM?
    WSN Node Applied to Large-Scale Unattended Monitoring
    我的校園故事
    “杯”慘
    獻(xiàn)身民族教育事業(yè)的胡振華教授——祝賀胡振華教授從教60周年
    語言與翻譯(2014年1期)2014-07-10 13:06:14
    國醫(yī)大師李振華教授治呃逆驗案1則
    久久人妻福利社区极品人妻图片 | 中文精品一卡2卡3卡4更新| 最近最新中文字幕大全免费视频 | 亚洲精品一区蜜桃| 超碰成人久久| 一区二区三区四区激情视频| 大片免费播放器 马上看| 欧美 亚洲 国产 日韩一| 2021少妇久久久久久久久久久| 国产精品久久久久成人av| 亚洲精品日本国产第一区| 妹子高潮喷水视频| 三上悠亚av全集在线观看| 伊人久久大香线蕉亚洲五| 嫩草影视91久久| 国产在线观看jvid| 另类亚洲欧美激情| 国产一区二区三区综合在线观看| 久久女婷五月综合色啪小说| 成人亚洲欧美一区二区av| 亚洲欧美精品自产自拍| 日本色播在线视频| 色网站视频免费| 欧美精品一区二区免费开放| 亚洲精品久久午夜乱码| 午夜精品国产一区二区电影| 人人妻人人澡人人爽人人夜夜| 久久性视频一级片| www.熟女人妻精品国产| 久久人人爽人人片av| 80岁老熟妇乱子伦牲交| 亚洲精品日韩在线中文字幕| 欧美久久黑人一区二区| 国产无遮挡羞羞视频在线观看| 18禁国产床啪视频网站| 国产精品 国内视频| 777米奇影视久久| 日韩免费高清中文字幕av| 嫩草影视91久久| 日韩熟女老妇一区二区性免费视频| 后天国语完整版免费观看| 制服人妻中文乱码| 国产一级毛片在线| 美女高潮到喷水免费观看| 波多野结衣一区麻豆| 天堂8中文在线网| 天堂俺去俺来也www色官网| 久久毛片免费看一区二区三区| 永久免费av网站大全| 少妇的丰满在线观看| 国产在视频线精品| 一区福利在线观看| 嫁个100分男人电影在线观看 | 亚洲成人国产一区在线观看 | 纯流量卡能插随身wifi吗| 精品少妇黑人巨大在线播放| 精品国产乱码久久久久久小说| 久久青草综合色| 婷婷成人精品国产| 欧美日本中文国产一区发布| 国产极品粉嫩免费观看在线| 国语对白做爰xxxⅹ性视频网站| 亚洲国产精品国产精品| 成人亚洲精品一区在线观看| 少妇的丰满在线观看| 超碰成人久久| 18禁国产床啪视频网站| 视频区图区小说| 真人做人爱边吃奶动态| videos熟女内射| 美女高潮到喷水免费观看| 操出白浆在线播放| 无限看片的www在线观看| 国产亚洲av片在线观看秒播厂| 国产高清不卡午夜福利| 亚洲成国产人片在线观看| 老司机深夜福利视频在线观看 | 国产成人精品无人区| 精品欧美一区二区三区在线| 一二三四在线观看免费中文在| 精品人妻在线不人妻| 久久影院123| 日韩 亚洲 欧美在线| 国产主播在线观看一区二区 | 精品国产超薄肉色丝袜足j| 蜜桃在线观看..| 国产黄色免费在线视频| 亚洲精品av麻豆狂野| 天天躁夜夜躁狠狠躁躁| 满18在线观看网站| 国产视频首页在线观看| 国产一级毛片在线| 欧美激情高清一区二区三区| 激情五月婷婷亚洲| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美在线一区二区| 国产成人一区二区三区免费视频网站 | 十分钟在线观看高清视频www| 亚洲av电影在线观看一区二区三区| 爱豆传媒免费全集在线观看| 国产精品九九99| 欧美日韩亚洲综合一区二区三区_| 国产av精品麻豆| 这个男人来自地球电影免费观看| 国产麻豆69| 欧美中文综合在线视频| 美国免费a级毛片| 婷婷成人精品国产| 美女中出高潮动态图| 久久精品人人爽人人爽视色| 只有这里有精品99| 狂野欧美激情性xxxx| 黄片播放在线免费| 久久这里只有精品19| 欧美黄色片欧美黄色片| 中文字幕人妻丝袜制服| 国产欧美日韩综合在线一区二区| 欧美大码av| 丰满少妇做爰视频| 少妇 在线观看| 亚洲成人免费av在线播放| kizo精华| 国产有黄有色有爽视频| 成人黄色视频免费在线看| 美女扒开内裤让男人捅视频| 一区二区三区乱码不卡18| 欧美亚洲日本最大视频资源| 精品人妻在线不人妻| 免费观看人在逋| 精品国产乱码久久久久久小说| 黑人欧美特级aaaaaa片| 午夜激情av网站| 免费黄频网站在线观看国产| 欧美激情极品国产一区二区三区| 亚洲精品自拍成人| 中文精品一卡2卡3卡4更新| 99久久99久久久精品蜜桃| 一区二区三区激情视频| 人妻 亚洲 视频| 男女之事视频高清在线观看 | 中文字幕最新亚洲高清| 亚洲精品一区蜜桃| 超色免费av| 日日夜夜操网爽| 久久久国产欧美日韩av| 丝袜人妻中文字幕| 午夜福利视频精品| 国产xxxxx性猛交| 亚洲精品久久久久久婷婷小说| 日日摸夜夜添夜夜爱| 涩涩av久久男人的天堂| 亚洲激情五月婷婷啪啪| www.熟女人妻精品国产| 国产av国产精品国产| 日本wwww免费看| 国产一区亚洲一区在线观看| 国产免费视频播放在线视频| 久久精品久久久久久久性| 熟女av电影| 精品福利永久在线观看| 又粗又硬又长又爽又黄的视频| 精品高清国产在线一区| 亚洲一区中文字幕在线| 999久久久国产精品视频| 午夜免费男女啪啪视频观看| 久热这里只有精品99| av视频免费观看在线观看| 波野结衣二区三区在线| 人人妻人人澡人人看| 国产精品 欧美亚洲| 美女福利国产在线| 中文字幕亚洲精品专区| 乱人伦中国视频| 欧美国产精品一级二级三级| 久久午夜综合久久蜜桃| 无限看片的www在线观看| 日韩中文字幕欧美一区二区 | 国产成人精品久久久久久| 最新在线观看一区二区三区 | 在线观看人妻少妇| 国产成人精品在线电影| 久9热在线精品视频| 久久人人爽av亚洲精品天堂| 午夜两性在线视频| av视频免费观看在线观看| 国产精品久久久久久人妻精品电影 | 男人爽女人下面视频在线观看| 丁香六月天网| 夫妻性生交免费视频一级片| 电影成人av| 国产欧美日韩一区二区三 | 老司机亚洲免费影院| 精品人妻一区二区三区麻豆| 80岁老熟妇乱子伦牲交| 欧美日韩综合久久久久久| 国产精品秋霞免费鲁丝片| 少妇猛男粗大的猛烈进出视频| 欧美 亚洲 国产 日韩一| 色视频在线一区二区三区| 午夜激情av网站| 好男人电影高清在线观看| 男女床上黄色一级片免费看| 大陆偷拍与自拍| 免费在线观看黄色视频的| 国产精品一区二区免费欧美 | 在现免费观看毛片| 少妇精品久久久久久久| 人体艺术视频欧美日本| 精品一区二区三区四区五区乱码 | 国产xxxxx性猛交| 高清黄色对白视频在线免费看| 亚洲国产欧美在线一区| 一本综合久久免费| 国产日韩欧美在线精品| 久久99一区二区三区| 欧美少妇被猛烈插入视频| 亚洲一区中文字幕在线| av电影中文网址| 亚洲 欧美一区二区三区| 啦啦啦啦在线视频资源| 国产91精品成人一区二区三区 | 欧美精品av麻豆av| 在现免费观看毛片| 在现免费观看毛片| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久| 中文字幕av电影在线播放| 丝袜在线中文字幕| 亚洲,欧美精品.| 91国产中文字幕| 欧美另类一区| 水蜜桃什么品种好| 宅男免费午夜| 欧美成狂野欧美在线观看| 人人妻人人添人人爽欧美一区卜| 免费看av在线观看网站| 老汉色av国产亚洲站长工具| 最黄视频免费看| 精品高清国产在线一区| 涩涩av久久男人的天堂| 久久人妻熟女aⅴ| 大片电影免费在线观看免费| 黄色视频在线播放观看不卡| 国产av一区二区精品久久| 1024视频免费在线观看| 亚洲av电影在线观看一区二区三区| 少妇 在线观看| 免费黄频网站在线观看国产| 亚洲欧美中文字幕日韩二区| 亚洲图色成人| 国产亚洲欧美在线一区二区| 欧美人与性动交α欧美精品济南到| 欧美精品一区二区免费开放| 王馨瑶露胸无遮挡在线观看| 国产午夜精品一二区理论片| 一区二区三区精品91| 中文字幕高清在线视频| 日韩 欧美 亚洲 中文字幕| 最新的欧美精品一区二区| 精品高清国产在线一区| 男人添女人高潮全过程视频| 久久国产精品大桥未久av| 精品久久久久久电影网| 中文字幕av电影在线播放| 中文字幕制服av| 老司机影院毛片| 中文精品一卡2卡3卡4更新| 国产精品免费视频内射| 热99久久久久精品小说推荐| 亚洲熟女精品中文字幕| 热re99久久国产66热| 波多野结衣av一区二区av| 精品福利永久在线观看| 黄片播放在线免费| 嫩草影视91久久| 国产福利在线免费观看视频| 丰满人妻熟妇乱又伦精品不卡| 飞空精品影院首页| 欧美日韩亚洲综合一区二区三区_| 国产激情久久老熟女| 婷婷成人精品国产| 精品久久久久久久毛片微露脸 | 久久久亚洲精品成人影院| 青春草亚洲视频在线观看| 国产xxxxx性猛交| 国产一区二区在线观看av| 国产精品久久久久久精品古装| 一级片免费观看大全| 又黄又粗又硬又大视频| 成人亚洲欧美一区二区av| 精品少妇久久久久久888优播| 久久久精品免费免费高清| 爱豆传媒免费全集在线观看| 久久久国产欧美日韩av| 日韩大片免费观看网站| 女人高潮潮喷娇喘18禁视频| 国产成人一区二区三区免费视频网站 | 亚洲国产看品久久| 精品久久蜜臀av无| 欧美精品高潮呻吟av久久| 精品国产一区二区久久| www.自偷自拍.com| 国产成人av教育| 久久久久久免费高清国产稀缺| 国产精品 国内视频| 婷婷色综合www| 波野结衣二区三区在线| 91精品伊人久久大香线蕉| 欧美人与善性xxx| 免费av中文字幕在线| 天天影视国产精品| 中文精品一卡2卡3卡4更新| 涩涩av久久男人的天堂| 亚洲欧美成人综合另类久久久| 国产成人欧美| 别揉我奶头~嗯~啊~动态视频 | 一二三四社区在线视频社区8| 久久ye,这里只有精品| 青春草视频在线免费观看| 如日韩欧美国产精品一区二区三区| 亚洲成人手机| 欧美97在线视频| 丁香六月天网| 80岁老熟妇乱子伦牲交| 两性夫妻黄色片| 久久人人爽av亚洲精品天堂| 久久久久国产一级毛片高清牌| 热99久久久久精品小说推荐| 国产极品粉嫩免费观看在线| 亚洲自偷自拍图片 自拍| 国产免费又黄又爽又色| 国产黄频视频在线观看| 人妻人人澡人人爽人人| 国产欧美日韩一区二区三 | 免费在线观看完整版高清| 两人在一起打扑克的视频| 精品福利观看| 黄色一级大片看看| 免费av中文字幕在线| 久久久国产欧美日韩av| 别揉我奶头~嗯~啊~动态视频 | 另类精品久久| 精品国产乱码久久久久久男人| 亚洲av电影在线观看一区二区三区| 精品亚洲乱码少妇综合久久| 一级片免费观看大全| 精品少妇内射三级| 精品人妻在线不人妻| 精品久久久久久电影网| 久久国产精品影院| 波野结衣二区三区在线| www.熟女人妻精品国产| 亚洲国产精品国产精品| 18在线观看网站| 夜夜骑夜夜射夜夜干| 久久久久精品人妻al黑| 日本猛色少妇xxxxx猛交久久| 精品亚洲成a人片在线观看| 欧美人与性动交α欧美精品济南到| 久久人人爽人人片av| 久久99一区二区三区| 91精品国产国语对白视频| 在线观看人妻少妇| 最新的欧美精品一区二区| 在线观看免费高清a一片| 欧美在线黄色| 两性夫妻黄色片| 亚洲欧美中文字幕日韩二区| 成人免费观看视频高清| 久久午夜综合久久蜜桃| 女人高潮潮喷娇喘18禁视频| 国产精品偷伦视频观看了| 久久精品亚洲熟妇少妇任你| 亚洲av电影在线进入| 久久综合国产亚洲精品| 欧美黑人精品巨大| 最新在线观看一区二区三区 | 91精品三级在线观看| 国产男人的电影天堂91| 美女视频免费永久观看网站| 男女下面插进去视频免费观看| 国产成人a∨麻豆精品| 欧美激情 高清一区二区三区| 久久这里只有精品19| 男人舔女人的私密视频| 麻豆av在线久日| 欧美 亚洲 国产 日韩一| 成人亚洲精品一区在线观看| 制服人妻中文乱码| 乱人伦中国视频| 一区二区三区精品91| 丝袜脚勾引网站| 午夜福利在线免费观看网站| 国产av国产精品国产| 久久亚洲精品不卡| 久久久久视频综合| 中文字幕制服av| 国产色视频综合| 黄色视频在线播放观看不卡| 久久中文字幕一级| 午夜免费鲁丝| 一区福利在线观看| 国产成人91sexporn| 久热爱精品视频在线9| 国产三级黄色录像| 亚洲av男天堂| 99热网站在线观看| 妹子高潮喷水视频| 亚洲精品久久久久久婷婷小说| 国产在视频线精品| 亚洲久久久国产精品| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| 欧美精品一区二区免费开放| 国产精品一二三区在线看| 国产亚洲精品久久久久5区| 在线观看免费高清a一片| 亚洲男人天堂网一区| 夫妻午夜视频| 亚洲成人免费av在线播放| 在线观看免费午夜福利视频| 国产精品一区二区精品视频观看| 国产精品一区二区在线观看99| 国产高清国产精品国产三级| 天天躁狠狠躁夜夜躁狠狠躁| 午夜av观看不卡| 久久久久国产精品人妻一区二区| 欧美激情高清一区二区三区| 国产99久久九九免费精品| 欧美变态另类bdsm刘玥| 美女扒开内裤让男人捅视频| tube8黄色片| 日韩制服骚丝袜av| 男人舔女人的私密视频| 十八禁人妻一区二区| 女性被躁到高潮视频| 叶爱在线成人免费视频播放| 久久 成人 亚洲| 国产伦理片在线播放av一区| 国产成人啪精品午夜网站| 国产亚洲av片在线观看秒播厂| 又大又黄又爽视频免费| 免费看av在线观看网站| 久久99精品国语久久久| 亚洲午夜精品一区,二区,三区| 少妇裸体淫交视频免费看高清 | 男女边吃奶边做爰视频| 国产野战对白在线观看| 男女边吃奶边做爰视频| 国产欧美日韩精品亚洲av| 王馨瑶露胸无遮挡在线观看| 国产成人精品久久久久久| 久久久久国产精品人妻一区二区| 中文字幕人妻熟女乱码| 99久久人妻综合| 中文精品一卡2卡3卡4更新| 国产不卡av网站在线观看| 精品一区在线观看国产| 国产精品香港三级国产av潘金莲 | 乱人伦中国视频| av福利片在线| 国产麻豆69| 亚洲三区欧美一区| 人成视频在线观看免费观看| 国语对白做爰xxxⅹ性视频网站| 成人免费观看视频高清| 国产成人影院久久av| 久久人人爽人人片av| 叶爱在线成人免费视频播放| 国产成人精品久久二区二区免费| 老汉色av国产亚洲站长工具| 9色porny在线观看| 国产91精品成人一区二区三区 | 人妻一区二区av| 中国国产av一级| 亚洲视频免费观看视频| 高清av免费在线| 欧美在线黄色| 中文字幕人妻丝袜一区二区| 18禁裸乳无遮挡动漫免费视频| 成人国产一区最新在线观看 | 最近手机中文字幕大全| 久久精品熟女亚洲av麻豆精品| 一级片'在线观看视频| 成年动漫av网址| 又粗又硬又长又爽又黄的视频| 国产一区有黄有色的免费视频| 少妇的丰满在线观看| 午夜免费成人在线视频| 一区二区av电影网| 中文字幕亚洲精品专区| 亚洲欧洲国产日韩| 婷婷成人精品国产| 一区在线观看完整版| 亚洲五月色婷婷综合| 美女大奶头黄色视频| 五月天丁香电影| 久久精品国产亚洲av高清一级| 欧美性长视频在线观看| 成年美女黄网站色视频大全免费| 婷婷色综合www| 性色av乱码一区二区三区2| 亚洲自偷自拍图片 自拍| 少妇裸体淫交视频免费看高清 | 纯流量卡能插随身wifi吗| 国产精品一国产av| 老司机靠b影院| 日本色播在线视频| 女人被躁到高潮嗷嗷叫费观| 只有这里有精品99| 夜夜骑夜夜射夜夜干| 51午夜福利影视在线观看| 天堂俺去俺来也www色官网| 观看av在线不卡| 欧美成人精品欧美一级黄| 观看av在线不卡| 国产真人三级小视频在线观看| 国产人伦9x9x在线观看| 亚洲国产精品999| 精品第一国产精品| 飞空精品影院首页| 三上悠亚av全集在线观看| 国产福利在线免费观看视频| 一本综合久久免费| 国产福利在线免费观看视频| 欧美日韩精品网址| 1024视频免费在线观看| 日本欧美国产在线视频| 老鸭窝网址在线观看| 性色av一级| 黄色片一级片一级黄色片| 欧美av亚洲av综合av国产av| 2018国产大陆天天弄谢| 国产主播在线观看一区二区 | 亚洲国产成人一精品久久久| 国产极品粉嫩免费观看在线| 18禁观看日本| 视频区图区小说| av线在线观看网站| 女人精品久久久久毛片| 国产亚洲精品第一综合不卡| 国产欧美日韩综合在线一区二区| 丝瓜视频免费看黄片| 一级毛片 在线播放| 天天影视国产精品| 欧美中文综合在线视频| 热99久久久久精品小说推荐| 精品一区二区三区av网在线观看 | 国产成人精品久久二区二区免费| 色网站视频免费| 国产精品免费大片| 深夜精品福利| 国产成人av激情在线播放| 国产男女超爽视频在线观看| 亚洲自偷自拍图片 自拍| 母亲3免费完整高清在线观看| 一本久久精品| 精品福利永久在线观看| 国产日韩欧美视频二区| 久久精品亚洲av国产电影网| 热re99久久精品国产66热6| 久久精品久久久久久噜噜老黄| 韩国精品一区二区三区| 国产97色在线日韩免费| 日韩视频在线欧美| 黑人猛操日本美女一级片| 男女床上黄色一级片免费看| av在线播放精品| 国产男女超爽视频在线观看| 2021少妇久久久久久久久久久| 天天躁夜夜躁狠狠久久av| 性色av一级| 国产国语露脸激情在线看| 十八禁高潮呻吟视频| 精品欧美一区二区三区在线| 午夜福利一区二区在线看| 亚洲情色 制服丝袜| 国产一区二区激情短视频 | 夫妻性生交免费视频一级片| 成人影院久久| 欧美亚洲日本最大视频资源| 又大又黄又爽视频免费| 欧美在线黄色| 国产视频首页在线观看| 亚洲国产精品999| 欧美日韩国产mv在线观看视频| 美女大奶头黄色视频| 麻豆乱淫一区二区| 欧美精品一区二区大全| 婷婷色av中文字幕| 国产成人91sexporn| 午夜福利乱码中文字幕| 亚洲国产中文字幕在线视频| 80岁老熟妇乱子伦牲交| 欧美精品av麻豆av| 岛国毛片在线播放| 国语对白做爰xxxⅹ性视频网站| 久久精品成人免费网站| 秋霞在线观看毛片| 嫁个100分男人电影在线观看 | 国产色视频综合| 97在线人人人人妻| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美一区视频在线观看| 中文字幕最新亚洲高清| 性高湖久久久久久久久免费观看| 亚洲自偷自拍图片 自拍| 欧美日韩成人在线一区二区| 美女国产高潮福利片在线看| 只有这里有精品99| 久久久久久免费高清国产稀缺| 极品人妻少妇av视频| 91成人精品电影| 黑人猛操日本美女一级片| 国产亚洲欧美在线一区二区|