• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    INVARIANT SUBSPACES AND GENERALIZED FUNCTIONAL SEPARABLE SOLUTIONS TO THE TWO-COMPONENT b-FAMILY SYSTEM?

    2016-12-05 00:43:20LuYAN閆璐
    關(guān)鍵詞:振華

    Lu YAN(閆璐)

    Xingzhi College,Xi’an University of Finance and Economics,Xi’an 710038,ChinaE-mail:xiaolu 4002@163.com

    Zhenhua SHI(時(shí)振華) Hao WANG(王昊)

    School of Mathematics,Northwest University,Xi’an 710069,ChinaE-mail:andy szh@163.com;610191181@qq.com

    Jing KANG(康靜)?

    Center for Nonlinear Studies and School of Mathematics,Northwest University,Xi’an 710069,ChinaE-mail:jingkang@nwu.edu.cn

    INVARIANT SUBSPACES AND GENERALIZED FUNCTIONAL SEPARABLE SOLUTIONS TO THE TWO-COMPONENT b-FAMILY SYSTEM?

    Lu YAN(閆璐)

    Xingzhi College,Xi’an University of Finance and Economics,Xi’an 710038,China
    E-mail:xiaolu 4002@163.com

    Zhenhua SHI(時(shí)振華) Hao WANG(王昊)

    School of Mathematics,Northwest University,Xi’an 710069,China
    E-mail:andy szh@163.com;610191181@qq.com

    Jing KANG(康靜)?

    Center for Nonlinear Studies and School of Mathematics,Northwest University,Xi’an 710069,China
    E-mail:jingkang@nwu.edu.cn

    Invariant subspace method is exploited to obtain exact solutions of the twocomponent b-family system.It is shown that the two-component b-family system admits the generalized functional separable solutions.Furthermore,blow up and behavior of those exact solutions are also investigated.

    invariant subspace;generalized conditional symmetry;generalized functional separable solution;Camassa-Holm equation;two-component b-family system 2010 MR Subject Classification37K05;37K35;35Q35

    1 Introduction

    In this paper,we apply the invariant subspace method to construct solutions of the following two-component b-family system

    Furthermore,if one sets ρ=0 in system(1.2),it reduces to the CH equation

    which was derived by Camassa and Holm[3]as a model for describing unidirectional propagation of the shallow water waves over a flat bottom(see also[5]).Remarkably,the peaked solitons of the CH equation were discovered[3].Indeed,the CH equation can be derived by using the recursion operator of the KdV equation[4].In an intriguing paper by Olver,Rosenau[1],they proposed the so-called tri-Hamiltonian duality approach,which was used to recover the CH equation from the bi-Hamiltonian structure of the KdV equation.The CH equation(1.3)can also be derived from the shallow water wave equation by using the asymptotic methods[11-13]through the Kodama transformation.Because of the several nontrivial properties,the CH equation was studied in a huge number of literatures(see for example[14-19]and the references therein).Similarly,if one applies the tri-Hamiltonian duality approach[1]to the Ito equation[20]

    the resulting equation is the two-component CH equation(1.2).If ρ=0,and k1=3 in(1.1),it becomes Degasperis-Procesi equation[21,22]

    Its well-posedness and blow-up phenomena were also discussed[23].Note that the two-component CH equation(1.2)and the two-component b-family system (1.1)admit the symmetry v= u?u+x?x.So they possess the particular similarity solution of the form

    Furthermore,the perturbational method was used by Yuen[10,24,25]to construct exact solutions of the form

    to the two-component Camassa-Holm equation(1.2).In this paper,we shall prove that such solutions are associated with conditional symmetries of the system.The blow-up phenomena and behavior of solutions(1.6)and(1.7)were also discussed.

    The invariant subspace method is an effective method to construct exact solutions of nonlinear partial differential equations[26-28].Indeed,there were many examples of nonlinear evolution equations,whose exact solutions can be constructed by the invariant subspace method[26].In particular,the generalized functional separable solutions can be derived by using the invariant subspace method[29].The invariant subspace method is related to the generalized conditional symmetry(GCS)method[30,31].A key point for the invariant subspace method admitted by the evolutionary partial differential equations is the dimensional estimate[24,32].

    The object of this paper is to derive generalized functional separable solutions of(1.1)by using the invariant subspace method.The outline of the paper is as follows.In Section 2,we provide a brief account of the invariant subspace and the generalized conditional symmetry methods.The main results are presented and proved in Sections 3 and 4.

    2 Invariant Subspace Method

    Consider the systems of kth-order nonlinear PDEs

    are linearly independent.If a vector operator F satisfies[32]

    then the vector field F is said to admit the invariant subspace,which means that there existsuch that

    If the operator F[U]admits the subspace W,then system(2.1)possesses solutions of the form

    Notice that the invariant subspace W has the dimensionthen the system reduces to the-dimensional dynamical system.

    It was shown that the invariant subspace method can be explored by using the GCS method[29].The GCS method was introduced by Zhdanov[30]and Fokas and Liu[31],which was developed to deal with various nonlinear evolution equations,and a number of results were obtained(see[33-38]and the references therein).

    Let’s give a brief account of the generalized conditional symmetry(GCS)method[30,31]. Letbe an evolutionary vector field with the characteristic η(a smooth function of t,r,u,ur,···)and

    be a nonlinear evolution equation,where we use the following notations

    Definition 2.1The evolutionary vector field(2.2)is said to be a generalized symmetry of(2.3)if and only ifwhere L is the set of all differential consequences of the equation,that is

    Definition 2.2(see[30,31])The evolutionary vector field(2.2)is said to be a GCS of(2.3)if and only if V(ut-E)|L∩M=0,where L is given as in Definition 2.1,and M denotes the set of all differential consequences of equation η=0 with respect to r,that is

    Theorem 2.3(see[30,31])Equation(2.3)admits the CLBS(2.2)if there exists a function W(t,r,u,η)such that

    On the GCS of(2.5),we have the following result.

    Theorem 2.4System(2.5)admits the generalized conditional symmetry

    ProofWe can prove this theorem in terms of Theorem 2.4.A direct calculation,the details which we omit,verifies that η satisfies the following system

    It follows from Theorem 2.4 that system(2.5)admits the following formal exact solutions

    3 Solutions of System (1.1)

    In view of Theorem 2.1,we first have the following result.

    Theorem 3.1For the two-component b-family system (2.5),there exists a family of solutions

    In the following,we are concerned with the special case ofThe form of solutions and their blow-up phenomena are given in the next two theorems.

    Theorem 3.2Assume that the function a(s)is a solution of the Emden equation

    1)σ<0.

    2)σ>0;

    2.1)0<k<1.Solution(3.4)blows up if and only ifOtherwise,the solution exists globally.

    2.2)k≥1.Solution(3.4)exists globally.

    Theorem 3.3For the two-component b-family system(1.1)withAssume thatsatisfies(3.4)withThen the two-component b-family system(2.5)admits a family of solutions

    We now consider two cases regarding to the sign of σ.

    1)σ<0.

    1.1)0<k<1.Solution(3.5)blows up if and only ifIn the contrary case,it exists globally.

    1.2)k≥1.Solution exists globally.

    2)σ>0.

    2.1)0<k≤1.Solution(3.5)blows up in a finite time.

    2.2)k>1.Solution(3.5)blows up if and only ifOtherwise,it exists globally.

    Proof of Theorem 3.1We prove the theorem in three steps.

    Step 1Note that the velocity u is linear.The momentum equation(2.5)becomes

    Substituting the expression for u(t,x)in(2.6)into(3.6),we get

    which leads to

    Integrating(3.7)from 0 to x,we have

    and finally we get

    Step 2Next,we consider the mass equation in(2.5)

    Substituting(3.8)into(3.9),we arrive at

    which yields the equations involving

    Step 3As the third step,we solve the above system(3.10).First we consider the third equation in(3.10).Applying the Hubble’s transformation,

    where r is some constant to be determined later.Then the third equation in(3.10)is transformed to

    For simplicity,we set r=1+k1,so the above equation becomes

    Integrating the above equation,we find thatsatisfies the Emden equation(3.3)withare arbitrary constants.Next,for equation(3.10)aboutit can be further simplified in terms of the functionThanks to(3.11)and(3.3),the second equation in(3.10)reduces to the second equation in(3.2).

    Then the first equation in(3.10)becomes

    Let ρ(0,0)=β.Then the solution of(3.14)is

    It is inferred from(3.8)that the density function is given by

    4 The Generalized Functional Separable Solutions of the b-Family System

    To prove Theorems 3.2 and 3.3,we need the following lemmas.

    Lemma 4.1For the two-component b-family system(1.1),there exist the solutions

    Remark 4.2The solution constructed here depends on the auxiliary functionwhich satisfies the Emden equation and varies with choices of the four parameters

    The following three lemmas demonstrate the properties ofby which the corresponding blow-up and global existence of the analytical solution can be established.

    Lemma 4.3For the Emden equation

    (1)If λ<0,there exists a finite time s,such thatOtherwise the solution a(s)exists globally,and

    (2)If λ>0,the solution a(s)exists globally,and

    (3)If λ=0,a1<0,the solution a(s)vanishes at s=-a0/a1.Otherwise it exists globally and

    Lemma 4.4(see[10])For the Emden equation(4.1)with 0<k<1.

    (1)If λ<0,there exists a finite time s,such tha t

    (2)If λ>0,there exists a finite time s such that,if and only ifOtherwise,the solution exists globally and

    Lemma 4.5In the case of k=1,the solution of(4.1)satisfies

    (1)If λ<0,there exists a finite time s such that

    (2)If λ>0,the solution a(s)exists globally and there holds

    Proof of Lemma 4.3(k>1)

    (1)λ>0.The assumption λ>0 implies that the curve a(s)is convex.The existence of the solution guarantees that a(s)exists at least in some neighborhood of s=0.Multiplying equation(4.1)byand integrating the resulting equation leads to the energy conservation equation

    Therefore for any constant a1,the solution a(s)must increase after some finite time.Then there are two possibilities to consider:

    (1.1)a(s)exists only in some finite internal[0,s0]such that

    (1.2)a(s)exists globally,and

    We now claim that the first possibility does not exist.Because the time for traveling the intervalcan be estimated as

    Collecting the above analysis,we show that in this subcase the solutionexists globally, and

    (2)λ<0.First,the assumption λ<0 implies that the curveis concave upwards. Furthermore,in view of the energy conservation equation(4.1),we need to distinguish two subcase:E0≥0 and E0<0.

    (2.1)E≥0.It follows from(4.2)that

    (2.2)E0<0.Thanks to the energy conservation equation

    It follows from the analysis of the above two cases that if λ<0,there exists a finite time s.Such thatIf and only ifOtherwise,the solution exists globally and

    (3)λ=0.In this case,the Emden equation becomesIt is easy to show statement(3).Thus we complete the proof of Lemma 4.3.

    Proof of Lemma 4.5If k=1,it follows from the corresponding Emden equation

    (1)λ<0.By the assumption λ<0,we get lnwhich results inSo thatIt is clear that a(s)must vanish in some finite time s.Since

    (2)λ>0.First,we claim that if λ>0,the solution a(s)does not vanish at any s>0, that is a(s)>0 for any s>0.Indeed,if there exists a finite time s such thatthen,this contradicts the fact that the energy E0defined in equation(4.4)is finite.On the other hand,equation(4.4)implies the solution a(s)is uniformly bounded below. Moreover,

    Then three cases arise:

    (2b)a(s)only exists in some finite interval[0,s0],such that

    First,statement(2a)is not true since it contradicts to the Emden equation by noting that

    Next,from equation(4.4)and in view of,the time for traveling the intervalcan be estimated asTherefore statement(2b)is excluded,and we arrive at conclusion(2c).The proof is then completed.

    Now,we consider two cases on systemBy Theorems 3.2 and 3.3,the blow up and global existence for the analytic solutions of the corresponding system is given in the following theorem.

    Theorem 4.6For the 2-component b-family system(1.1),we have the following results:

    References

    [1]Olver P J,Rosenau P.Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support.Phys Rev E,1996,53:1900-1906

    [2]Constantin A,Ivanov R I.On an integrable two-component Camassa-Holm shallow water system.Phys Lett A,2008,372:7129-7132

    [3]Camassa R,Holm D.An integrable shallow water equation with peaked solitons.Phys Rev Lett,1993,71: 1661-1664

    [4]Fuchssteiner B,F(xiàn)okas A.Symplectic structures,their B¨acklund transformations and hereditary symmetries. Physica D,1981/1982,4:47-66

    [5]Constantin A,Lannes D.The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations.Arch Ration Mech Anal,2009,192:165-186

    [6]Chen M,Liu S Q,Zhang Y J.A two-component generalization of the Camassa-Holm equation and its solutions.Lett Math Phys,2006,75:1-14

    [7]Eschel J,Lechtenfeld O,Yin Z.Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation.Discrete Contin Dyn Syst Ser A,2007,19:493-513

    [8]Guan C X,Yin Z Y.Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system.J Diff Equat,2010,248:2003-2014

    [9]Gui G L,Liu Y.On the global existence and wave-breaking criteria for the two-component Camassa-Holm system.J Funct Anal,2010,258:4251-4278

    [10]Yuen M.Self-similar blow up solutions to the two-component Camassa-Holm equations.J Math Phys,2010,51:093524

    [11]Fokas A S,Liu Q M.Asymptotic integrability of water waves.Phys Rev Lett,1996,77:2347-2351

    [12]Dullin R,Gottwald G,Holm D D.An integrable shallow water equation with linear and nonlinear dispersion. Phys Rev Lett,2001,87:4501-4504

    [13]Johnson R S.Camassa-Holm,Korteweg-de Vries and related models for water waves.J Fluid Mech,2002,455:63-82

    [14]Fu Y G,Liu Z R,Tang H.Non-uniform dependence on initial data for the modified Camassa-Holm equation on the line.Acta Math Sci,2014,34B(6):1781-1794

    [15]Constantin A.Existence of permanent and breaking waves for a shallow water equation:a geometric approach.Ann Inst Fourier(Grenoble),2000,50:321-362

    [16]Constantin A,Escher J.Wave breaking for nonlinear nonlocal shallow water equations.Acta Math,1998,181:229-243

    [17]Constantin A,Escher J.Well-posedness,global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation.Comm Pure Appl Math,1998,51:475-504

    [18]Constantin A,Escher J.Global existence and blow-up for a shallow water equation.Ann Scuola Norm Sup Pisa,1998,26:303-328

    [19]Constantin A,Strauss W A.Stability of a class of solitary waves in compressible elastic rods.Phys Lett A,2000,270:140-148

    [20]Ito M.Symmetries and conservation laws of a coupled nonlinear wave equation.Phys Lett A,1982,91: 335-338

    [21]Degasperis A,Procesi M.Asymptotic integrability//Degasperis A,Gaeta G.Symmetry and Perturbation Theory.World Scientific,1999:23-37

    [22]Degasberis A,Holm D D,Hone A N W.A new integrable evolution equation with peakon solution.Theor Math Phys,2002,133:1461-1472

    [23]Liu Y,Yin Z Y.Global existence and blow-up phenomena for the Degasperis-Procesi equation.Comm Math Phys,2006,267:801-820

    [24]Yuen M.Self-similar blow up solutions to the Degasperis-Procesi shallow water system.Comm Non Sci Numer Simul,2011,16:3463-3469

    [25]Yuen M.Perturbed blow up solutions to the two-component Camassa-Holm equations.J Math Anal Appl,2012,390:596-602

    [26]Galaktionov V A,Svirshchevski S.Exact solutions and Invariant subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics.London:Chapman and Hall,2007

    [27]Galaktionov V A.Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities.Proc R Soc Edinburgh,1995,125:225-246

    [28]Svirshchevski S.Invariant linear spaces and exact solutions of nonlinear evolution equations.J Non Math Phys,1996,3:164-169

    [29]Ji L N,Qu C Z.Conditional Lie-B¨acklund symmetries and invariant subspaces to nonlinear diffusion equations with convection and source.Stud Appl Math,2013,131:266-301

    [30]Zhu C R,Qu C Z.Maximal dimension of invariant subspaces admitted by nonlinear vector differential operators.J Math Phys,2011,52:043507

    [31]Zhdanov R Z.Conditional Lie-B¨acklund symmetries and reductions of evolution equations.J Phys A:Math Gen,1995,128:3841-3850

    [32]Fokas A S,Liu Q M.Nonlinear interaction of traveling waves of nonintegrable equations.Phys Rev Lett,1994,72:3293-3296

    [33]Qu C Z,Ji L N,Wang L Z.Conditional Lie-B¨acklund symmetries and sign-invarints to quasi-linear diffusion equations.Stud Appl Math,2007,119:355-391

    [34]Qu C Z.Group classification and generalized conditional symmetry reduction of the nonlinear diffusionconvection equation with a nonlinear source.Stud Appl Math,1997,99:107-136

    [35]Qu,C Z.Exact solutions to nonlinear diffusion equations obtained by a generalized conditional symmetry method.IMA J Appl Math,1999,62:283-302

    [36]Ji L N,Qu C Z,Ye Y J.Solutions and symmetry reductions of the n-dimensional nonlinear convectiondiffusion equations.IMA J Appl Math,2010,75:17-55

    [37]Basarab-Horwath P,Zhdanov R Z.Initial-value problems for evolutionary partial differential equations and higher-order conditional symmetries.J Math Phys,2000,42:376-389

    [38]Zhdanov R Z,Andreitsev A Y.Non-classical reductions of initial-value problems for a class of nonlinear evolution equations.J Phys A:Math Gen,2000,33:5763-5781

    ?March 31,2015;revised November 24,2015.This work is supported by NSFC(11471260)and the Foundation of Shannxi Education Committee(12JK0850).

    ?Jing Kang

    猜你喜歡
    振華
    Real-time dynamics in strongly correlated quantum-dot systems
    家住西安
    PDCPD材料在商用車上的應(yīng)用
    “三農(nóng)”政策需要體現(xiàn)利益包容——對(duì)龔春明和梁振華商榷文的思考與回應(yīng)
    Cole-Hopf Transformation Based Lattice Boltzmann Model for One-dimensional Burgers’Equation?
    WSN Node Applied to Large-Scale Unattended Monitoring
    我的校園故事
    “杯”慘
    獻(xiàn)身民族教育事業(yè)的胡振華教授——祝賀胡振華教授從教60周年
    語言與翻譯(2014年1期)2014-07-10 13:06:14
    國醫(yī)大師李振華教授治呃逆驗(yàn)案1則
    久久久精品大字幕| 国产69精品久久久久777片| 国产色爽女视频免费观看| 欧美乱色亚洲激情| 伊人久久大香线蕉亚洲五| 最新中文字幕久久久久| 90打野战视频偷拍视频| 午夜激情欧美在线| 国产成人a区在线观看| 日本熟妇午夜| 国产真人三级小视频在线观看| 亚洲av日韩精品久久久久久密| 亚洲黑人精品在线| 亚洲人成伊人成综合网2020| 亚洲国产日韩欧美精品在线观看 | 一本久久中文字幕| 色播亚洲综合网| a在线观看视频网站| 婷婷丁香在线五月| 日韩精品中文字幕看吧| 国产一级毛片七仙女欲春2| 免费看a级黄色片| 美女黄网站色视频| 观看美女的网站| 男人和女人高潮做爰伦理| 成年免费大片在线观看| 两个人看的免费小视频| 欧美日本视频| 久久国产精品影院| 日本与韩国留学比较| 男女床上黄色一级片免费看| 国产精品女同一区二区软件 | 中文字幕av成人在线电影| 五月伊人婷婷丁香| 男女床上黄色一级片免费看| 国产伦人伦偷精品视频| 欧美极品一区二区三区四区| 黑人欧美特级aaaaaa片| 免费一级毛片在线播放高清视频| 国产成+人综合+亚洲专区| 亚洲人成网站在线播放欧美日韩| 伊人久久大香线蕉亚洲五| 一区福利在线观看| 国产精品久久久久久精品电影| 老汉色av国产亚洲站长工具| 久久久精品欧美日韩精品| 69人妻影院| 午夜老司机福利剧场| 久久久国产成人免费| 又爽又黄无遮挡网站| 黄色丝袜av网址大全| 99热精品在线国产| 好看av亚洲va欧美ⅴa在| 成人高潮视频无遮挡免费网站| 99视频精品全部免费 在线| 亚洲精品亚洲一区二区| 久久亚洲精品不卡| 狠狠狠狠99中文字幕| 色视频www国产| 亚洲中文日韩欧美视频| 精品久久久久久,| 欧美一区二区亚洲| 成熟少妇高潮喷水视频| 又黄又爽又免费观看的视频| 男女做爰动态图高潮gif福利片| 亚洲av一区综合| 国产视频内射| 亚洲无线观看免费| 国产真人三级小视频在线观看| 两个人视频免费观看高清| 桃色一区二区三区在线观看| 少妇高潮的动态图| 久久婷婷人人爽人人干人人爱| 一个人观看的视频www高清免费观看| 特大巨黑吊av在线直播| 亚洲av五月六月丁香网| 男女下面进入的视频免费午夜| 日本a在线网址| 国产精品亚洲av一区麻豆| 国产午夜精品论理片| 日本与韩国留学比较| 在线观看美女被高潮喷水网站 | 成熟少妇高潮喷水视频| 九九在线视频观看精品| 亚洲精品美女久久久久99蜜臀| 青草久久国产| 成人欧美大片| 日韩中文字幕欧美一区二区| 久久精品影院6| 成人性生交大片免费视频hd| 国内精品久久久久精免费| 精品国产超薄肉色丝袜足j| 中文字幕人妻丝袜一区二区| 国产精品爽爽va在线观看网站| 在线免费观看不下载黄p国产 | 一本精品99久久精品77| 人妻夜夜爽99麻豆av| 老汉色av国产亚洲站长工具| 美女高潮的动态| 香蕉久久夜色| 国产伦精品一区二区三区视频9 | 久久精品亚洲精品国产色婷小说| 久久亚洲精品不卡| 在线观看日韩欧美| 少妇熟女aⅴ在线视频| 无遮挡黄片免费观看| 少妇裸体淫交视频免费看高清| 又爽又黄无遮挡网站| 欧美日韩精品网址| 国产精品久久久人人做人人爽| 国产精品 国内视频| 又爽又黄无遮挡网站| 国内精品一区二区在线观看| 一区福利在线观看| av女优亚洲男人天堂| 中文字幕av在线有码专区| 日本黄色视频三级网站网址| 国产一区二区在线av高清观看| 国产中年淑女户外野战色| 亚洲国产欧美网| 精品久久久久久,| 91久久精品国产一区二区成人 | 亚洲精品日韩av片在线观看 | 韩国av一区二区三区四区| 亚洲自拍偷在线| 丝袜美腿在线中文| 亚洲国产中文字幕在线视频| 99久久久亚洲精品蜜臀av| 成年女人永久免费观看视频| 女人被狂操c到高潮| 少妇的逼水好多| 身体一侧抽搐| 岛国视频午夜一区免费看| 性色av乱码一区二区三区2| 欧美色欧美亚洲另类二区| 高清在线国产一区| 亚洲成av人片在线播放无| 亚洲欧美日韩东京热| 亚洲自拍偷在线| 超碰av人人做人人爽久久 | 亚洲国产精品合色在线| 国产精品综合久久久久久久免费| avwww免费| 搡老妇女老女人老熟妇| 99热6这里只有精品| 级片在线观看| 午夜日韩欧美国产| 少妇高潮的动态图| 国产野战对白在线观看| 18禁国产床啪视频网站| 亚洲av一区综合| 欧美日韩一级在线毛片| 成人鲁丝片一二三区免费| 淫妇啪啪啪对白视频| 国产乱人伦免费视频| 无遮挡黄片免费观看| 久久久久久大精品| 操出白浆在线播放| 小说图片视频综合网站| 久久欧美精品欧美久久欧美| 全区人妻精品视频| 3wmmmm亚洲av在线观看| 日本精品一区二区三区蜜桃| 麻豆国产97在线/欧美| 精品久久久久久久毛片微露脸| 听说在线观看完整版免费高清| 村上凉子中文字幕在线| 一进一出好大好爽视频| 嫩草影院精品99| 女人被狂操c到高潮| 亚洲专区国产一区二区| 女生性感内裤真人,穿戴方法视频| 两人在一起打扑克的视频| 日韩大尺度精品在线看网址| 伊人久久精品亚洲午夜| 欧美黑人欧美精品刺激| 51国产日韩欧美| 中文字幕高清在线视频| 久久亚洲精品不卡| 精品无人区乱码1区二区| 国产精品国产高清国产av| 中文字幕人妻丝袜一区二区| 欧美一级毛片孕妇| 精品不卡国产一区二区三区| 久久久精品欧美日韩精品| 色av中文字幕| 国产一级毛片七仙女欲春2| 黄色视频,在线免费观看| 午夜福利成人在线免费观看| 欧美一区二区精品小视频在线| 午夜亚洲福利在线播放| 人妻丰满熟妇av一区二区三区| 久久欧美精品欧美久久欧美| 亚洲五月婷婷丁香| 老司机深夜福利视频在线观看| 91麻豆精品激情在线观看国产| 熟女人妻精品中文字幕| 欧美日韩国产亚洲二区| 美女黄网站色视频| 色综合欧美亚洲国产小说| 手机成人av网站| 亚洲熟妇中文字幕五十中出| 欧美中文综合在线视频| 国产精品综合久久久久久久免费| 亚洲国产精品成人综合色| 国产又黄又爽又无遮挡在线| 村上凉子中文字幕在线| 亚洲五月婷婷丁香| 成人高潮视频无遮挡免费网站| 波多野结衣高清作品| 三级毛片av免费| 两性午夜刺激爽爽歪歪视频在线观看| 久久久成人免费电影| 久久午夜亚洲精品久久| 国产黄片美女视频| 国产精品自产拍在线观看55亚洲| 男女那种视频在线观看| 色在线成人网| 黄片大片在线免费观看| 成人永久免费在线观看视频| 亚洲av成人av| 国产久久久一区二区三区| 99久久久亚洲精品蜜臀av| 日日干狠狠操夜夜爽| 亚洲人成网站高清观看| 男女下面进入的视频免费午夜| 亚洲国产色片| 国产毛片a区久久久久| 国产精品久久久久久精品电影| 很黄的视频免费| 波野结衣二区三区在线 | svipshipincom国产片| 全区人妻精品视频| 99久久无色码亚洲精品果冻| 亚洲成av人片在线播放无| 亚洲激情在线av| 午夜激情欧美在线| 日本黄色视频三级网站网址| 99久久无色码亚洲精品果冻| 可以在线观看毛片的网站| 国产极品精品免费视频能看的| 欧美日韩中文字幕国产精品一区二区三区| 老司机午夜福利在线观看视频| 不卡一级毛片| av视频在线观看入口| 尤物成人国产欧美一区二区三区| 12—13女人毛片做爰片一| 亚洲狠狠婷婷综合久久图片| 亚洲在线观看片| 美女大奶头视频| 中国美女看黄片| netflix在线观看网站| 高清日韩中文字幕在线| 免费在线观看成人毛片| 国产高清视频在线播放一区| 给我免费播放毛片高清在线观看| 国内精品一区二区在线观看| 偷拍熟女少妇极品色| 亚洲av成人精品一区久久| 午夜福利欧美成人| 老司机午夜十八禁免费视频| 国内少妇人妻偷人精品xxx网站| 十八禁网站免费在线| 国产在线精品亚洲第一网站| 麻豆成人av在线观看| 老汉色av国产亚洲站长工具| 欧美性猛交╳xxx乱大交人| 十八禁网站免费在线| 国产精品影院久久| 一夜夜www| 中文在线观看免费www的网站| 精品人妻偷拍中文字幕| av在线天堂中文字幕| 欧美另类亚洲清纯唯美| 黄色成人免费大全| 色在线成人网| 高清毛片免费观看视频网站| 亚洲天堂国产精品一区在线| av天堂中文字幕网| avwww免费| tocl精华| 国产伦一二天堂av在线观看| 国产蜜桃级精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 99久久九九国产精品国产免费| 欧美黑人欧美精品刺激| 欧美丝袜亚洲另类 | 欧美日韩中文字幕国产精品一区二区三区| 久久久久性生活片| 国产伦一二天堂av在线观看| 国产不卡一卡二| 亚洲aⅴ乱码一区二区在线播放| 日韩有码中文字幕| 午夜免费男女啪啪视频观看 | 搡老妇女老女人老熟妇| 怎么达到女性高潮| 精品人妻偷拍中文字幕| 欧美中文综合在线视频| 国产伦一二天堂av在线观看| 在线免费观看的www视频| 日韩高清综合在线| 黄色丝袜av网址大全| 黄色成人免费大全| 黄片小视频在线播放| 青草久久国产| 国产亚洲精品一区二区www| 亚洲成人中文字幕在线播放| 久久性视频一级片| 国产精品电影一区二区三区| 亚洲国产精品sss在线观看| 免费看十八禁软件| 免费在线观看日本一区| 精品人妻1区二区| 国产精品自产拍在线观看55亚洲| 特大巨黑吊av在线直播| av在线蜜桃| 国产一区二区三区在线臀色熟女| 久久伊人香网站| 亚洲一区二区三区色噜噜| 在线观看一区二区三区| 亚洲av第一区精品v没综合| 色播亚洲综合网| 日日夜夜操网爽| 99国产精品一区二区三区| www日本黄色视频网| 国模一区二区三区四区视频| 波多野结衣巨乳人妻| 国内少妇人妻偷人精品xxx网站| 露出奶头的视频| 午夜激情福利司机影院| 亚洲av五月六月丁香网| 国产精品,欧美在线| 欧美日韩福利视频一区二区| 脱女人内裤的视频| 国产精品久久久久久亚洲av鲁大| 日日干狠狠操夜夜爽| 日韩大尺度精品在线看网址| 老司机深夜福利视频在线观看| 国产免费av片在线观看野外av| 国产精品嫩草影院av在线观看 | 精品不卡国产一区二区三区| 国产精品日韩av在线免费观看| aaaaa片日本免费| 一本综合久久免费| 久久精品国产自在天天线| 在线观看午夜福利视频| 观看免费一级毛片| 精品一区二区三区人妻视频| 99精品欧美一区二区三区四区| 一夜夜www| 高潮久久久久久久久久久不卡| 男女午夜视频在线观看| 九色成人免费人妻av| 热99re8久久精品国产| 国产黄片美女视频| 成年女人永久免费观看视频| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美 国产精品| 超碰av人人做人人爽久久 | 九九在线视频观看精品| 亚洲国产欧美人成| 尤物成人国产欧美一区二区三区| 欧美日本亚洲视频在线播放| 国产精品美女特级片免费视频播放器| 久久精品人妻少妇| 欧美日韩福利视频一区二区| 97碰自拍视频| 国产亚洲欧美98| av中文乱码字幕在线| 男插女下体视频免费在线播放| 欧美日韩综合久久久久久 | 美女免费视频网站| 成熟少妇高潮喷水视频| 久久精品国产亚洲av香蕉五月| 精品久久久久久成人av| 国产成人系列免费观看| 99久久精品国产亚洲精品| 午夜免费成人在线视频| 可以在线观看的亚洲视频| av福利片在线观看| 中国美女看黄片| 亚洲专区国产一区二区| 美女cb高潮喷水在线观看| 动漫黄色视频在线观看| 别揉我奶头~嗯~啊~动态视频| 手机成人av网站| 亚洲精品影视一区二区三区av| 白带黄色成豆腐渣| 俺也久久电影网| 亚洲精品在线美女| 国产美女午夜福利| 无遮挡黄片免费观看| 中出人妻视频一区二区| 少妇丰满av| 久久伊人香网站| 香蕉av资源在线| 国产aⅴ精品一区二区三区波| 久久久久久久久久黄片| 国产精品野战在线观看| av在线天堂中文字幕| 搞女人的毛片| 色精品久久人妻99蜜桃| 国产一级毛片七仙女欲春2| 精品欧美国产一区二区三| 国产精品综合久久久久久久免费| x7x7x7水蜜桃| 人人妻,人人澡人人爽秒播| 免费在线观看成人毛片| 国产成人系列免费观看| 久久伊人香网站| 免费电影在线观看免费观看| 午夜精品一区二区三区免费看| 亚洲熟妇熟女久久| 精品99又大又爽又粗少妇毛片 | 欧美av亚洲av综合av国产av| 亚洲男人的天堂狠狠| 91字幕亚洲| 国产成人av教育| 国产男靠女视频免费网站| 在线免费观看不下载黄p国产 | 亚洲精品在线美女| 成人性生交大片免费视频hd| 亚洲av成人不卡在线观看播放网| e午夜精品久久久久久久| 伊人久久大香线蕉亚洲五| 国产亚洲欧美98| 啦啦啦免费观看视频1| 特大巨黑吊av在线直播| 国产精品一及| 免费观看精品视频网站| 黄色视频,在线免费观看| 无限看片的www在线观看| 90打野战视频偷拍视频| 亚洲va日本ⅴa欧美va伊人久久| 99国产综合亚洲精品| 一本综合久久免费| 中亚洲国语对白在线视频| 久久久久国产精品人妻aⅴ院| 在线观看美女被高潮喷水网站 | 我的老师免费观看完整版| 国产精品久久久久久人妻精品电影| 99久久99久久久精品蜜桃| 午夜亚洲福利在线播放| 国产成人啪精品午夜网站| 午夜福利在线观看免费完整高清在 | 亚洲av二区三区四区| 免费人成视频x8x8入口观看| 好看av亚洲va欧美ⅴa在| 亚洲av熟女| 亚洲成人免费电影在线观看| 99精品久久久久人妻精品| 日韩欧美 国产精品| 热99re8久久精品国产| 91av网一区二区| 一卡2卡三卡四卡精品乱码亚洲| 在线视频色国产色| 日韩欧美在线二视频| 在线免费观看的www视频| 两个人看的免费小视频| 国产精品日韩av在线免费观看| 中文资源天堂在线| 国产伦人伦偷精品视频| 在线a可以看的网站| 女人十人毛片免费观看3o分钟| 国产精品99久久99久久久不卡| 国产精品精品国产色婷婷| 少妇熟女aⅴ在线视频| 亚洲精品久久国产高清桃花| 每晚都被弄得嗷嗷叫到高潮| 欧美丝袜亚洲另类 | 亚洲av成人不卡在线观看播放网| 久久草成人影院| 草草在线视频免费看| 亚洲第一电影网av| 一进一出好大好爽视频| 日日夜夜操网爽| 亚洲性夜色夜夜综合| 国产免费男女视频| 黄片大片在线免费观看| 伊人久久大香线蕉亚洲五| 欧美3d第一页| 久久这里只有精品中国| 国产久久久一区二区三区| АⅤ资源中文在线天堂| 国产亚洲精品一区二区www| 老鸭窝网址在线观看| 在线观看66精品国产| 99精品久久久久人妻精品| 亚洲欧美日韩无卡精品| 两人在一起打扑克的视频| 国内揄拍国产精品人妻在线| 淫妇啪啪啪对白视频| 嫩草影院精品99| 亚洲色图av天堂| 男插女下体视频免费在线播放| 在线观看av片永久免费下载| 成年女人毛片免费观看观看9| 丁香欧美五月| 亚洲国产精品久久男人天堂| 国产一区二区亚洲精品在线观看| 色老头精品视频在线观看| 国产成人影院久久av| 亚洲精品亚洲一区二区| 国产久久久一区二区三区| 哪里可以看免费的av片| 日本熟妇午夜| 亚洲av免费高清在线观看| 午夜影院日韩av| 国产av一区在线观看免费| 亚洲av美国av| 中文字幕av在线有码专区| 亚洲欧美日韩卡通动漫| 小说图片视频综合网站| 久9热在线精品视频| 在线视频色国产色| 精品人妻一区二区三区麻豆 | 亚洲人成网站高清观看| 久久久久久久午夜电影| 色综合婷婷激情| 狠狠狠狠99中文字幕| 久久精品91蜜桃| 欧美丝袜亚洲另类 | 免费观看精品视频网站| 亚洲性夜色夜夜综合| 国产老妇女一区| 日韩有码中文字幕| 国产一区在线观看成人免费| 欧美最黄视频在线播放免费| 久久久久久久精品吃奶| 精品一区二区三区视频在线观看免费| 性欧美人与动物交配| 男女下面进入的视频免费午夜| 啦啦啦韩国在线观看视频| av视频在线观看入口| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩亚洲国产一区二区在线观看| 天堂动漫精品| 中文字幕高清在线视频| 99久久精品热视频| 国产成人a区在线观看| 婷婷精品国产亚洲av| 欧美一区二区亚洲| 欧美+日韩+精品| 亚洲18禁久久av| 久久久久精品国产欧美久久久| 男女做爰动态图高潮gif福利片| 99riav亚洲国产免费| 在线观看免费视频日本深夜| 欧美黑人巨大hd| 一本综合久久免费| 51午夜福利影视在线观看| 老熟妇乱子伦视频在线观看| 欧美zozozo另类| 国产精品1区2区在线观看.| 久久久精品欧美日韩精品| 国产亚洲精品一区二区www| 欧美日韩乱码在线| 757午夜福利合集在线观看| 99国产综合亚洲精品| 日韩精品中文字幕看吧| a在线观看视频网站| 一级黄色大片毛片| 午夜老司机福利剧场| 天堂网av新在线| 女生性感内裤真人,穿戴方法视频| 最近最新中文字幕大全电影3| 国产黄a三级三级三级人| 天堂网av新在线| 九九热线精品视视频播放| 99久久99久久久精品蜜桃| 99在线人妻在线中文字幕| 免费观看精品视频网站| 97超视频在线观看视频| 成人一区二区视频在线观看| 有码 亚洲区| 亚洲无线观看免费| 亚洲精华国产精华精| 国产毛片a区久久久久| 嫁个100分男人电影在线观看| 精品一区二区三区人妻视频| 1024手机看黄色片| 嫩草影视91久久| 欧美中文日本在线观看视频| 村上凉子中文字幕在线| 久久精品国产99精品国产亚洲性色| 日韩成人在线观看一区二区三区| 亚洲avbb在线观看| 国产精品免费一区二区三区在线| 免费一级毛片在线播放高清视频| 亚洲av电影在线进入| 国产亚洲精品一区二区www| 狠狠狠狠99中文字幕| 久久久久精品国产欧美久久久| 一二三四社区在线视频社区8| 日韩欧美在线乱码| 五月玫瑰六月丁香| 免费一级毛片在线播放高清视频| 一个人免费在线观看的高清视频| 99国产精品一区二区三区| 亚洲av第一区精品v没综合| 成人国产综合亚洲| 午夜福利在线观看吧| 国产乱人伦免费视频| 毛片女人毛片| 久久久久久九九精品二区国产| av女优亚洲男人天堂| 男人舔奶头视频| 在线看三级毛片| 97人妻精品一区二区三区麻豆| 国产成人啪精品午夜网站| 亚洲18禁久久av| 丁香六月欧美| 免费大片18禁| 又黄又粗又硬又大视频| 最近最新免费中文字幕在线|