• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Real-time dynamics in strongly correlated quantum-dot systems

    2023-12-15 11:48:14YongXiCheng程永喜ZhenHuaLi李振華JianHuaWei魏建華andHongGangLuo羅洪剛
    Chinese Physics B 2023年12期
    關(guān)鍵詞:振華建華

    Yong-Xi Cheng(程永喜), Zhen-Hua Li(李振華), Jian-Hua Wei(魏建華), and Hong-Gang Luo(羅洪剛)

    1Department of Science,Taiyuan Institute of Technology,Taiyuan 030008,China

    2Lanzhou Center for Theoretical Physics,Key Laboratory of Theoretical Physics of Gansu Province,and Key Laboratory of Quantum Theory and Applications of the Ministry of Education,Lanzhou University,Lanzhou 730000,China

    3Beijing Computational Science Research Center,Beijing 100193,China 4Department of Physics,Renmin University of China,Beijing 100872,China

    Keywords: quantum dots,mesoscopic transport,decoherence

    1.Introduction

    Quantum dots are small regions defined in a semiconductor material with a size of order 100 nm.[1]The wide range of novel physical phenomena of quantum dots lead to a very active and fruitful research topic, such as artificial atoms,coherent time-dependent effect of single-molecule magnets,[2,3]Kondo effect and non-Fermi-liquid behavior,[4]and bulk Kondo insulators.[5]Strongly correlated quantumdot systems are of great interests because of their fundamental physics as well as potential applications.[6]And strongly correlated electron materials exhibit fascinating collective behavior which has long challenged our understanding.[7]The notable phenomena of the strongly correlated quantum-dot systems are helpful,such as quantum criticality in heavy fermion systems,[8]Mott metal-insulator transition in transition metal oxides,[9]and high-temperature superconductivity in copper oxides.[10]While the prominent one is the dynamical properties of the strongly correlated quantum-dot systems, both of excited states near the Fermi energy and at highly excited energies.[7]

    The practical importance of real-time dynamics in quantum-dot systems for quantum computing was emphasized by Elzermanet al.,[11]the temporal response to gate-voltage pulses for a single-shot is used to detect the spin configuration of a quantum dot in an external magnetic field.[11,12]Quantum dynamics is discussed in terms of quantum information theory, which indeed facilitates discussions between physicists, chemists, mathematicians, and quantum engineers.[13]The real-time dynamical property in quantum-dot systems is primely important for understanding the quantum transport through the nanodevices and successfully be used to track individual glycine receptors in the neuronal membrane of living cells in biology.[14]

    Recent theoretical and experimental efforts aimed at observing and modeling nonequilibrium dynamical physics.The Keldysh technique[15]is succeeding in nonequilibrium dynamics.This approach to calculate the current bowing into and out of the interacting region treats the contacts as the systems separately in equilibrium in the distant past, possibly with different chemical potentials.[15-17]Jeremy Tayloret al.provided the first principle density functional theory for modeling quantum-dot dynamical properties.[18]Ping Zhang studied the dynamics of double quantum dots with the help of the Floquet formalism.The dynamical localization can be built up near the multi-photon resonances due to the structure exchange of the Floquet states at the avoided crossing.[19]However, the above mentioned methods are not capable enough to treat the strongly correlated effect accurately.The time-dependent density-matrix renormalizationgroup method (TD-DMRG) works well for one-dimensional quantum systems in finite size and short time, but is unsuitable for tackling long time scales own to the accumulated error proportional to the time elapsed.[20-23]Wilson’s numerical renormalization-group method is a prominent numerical tool for describing the equilibrium Kondo regime.[24,25]Furthermore,Anders and Schiller developed a time-dependent numerical renormalization-group approach(TD-NRG)to investigate the nonequilibrium dynamics of quantum-dot systems.[12]But there is also a deviation in occupancy from the new equilibrium state at the large time due to the difference between the time-evolved density matrix in a finite-size system and the equilibrium density matrix.[12]Overall,when considering both the electron-electron interaction of quantum-dot and the finite bandwidth of leads for practical cases, the accurate description of the long-time dynamical behaviors of quantum-dot systems is still an open question.

    In this work, we study the real-time dynamics of quantum-dot systems by means of the hierarchical equations of motion approach(HEOM).[26-30]We consider respectively single quantum-dot system and serial coupling double quantum-dot system.The transient behavior of real-time dynamics and time-dependent occupancy response of a sudden change of gate voltage are presented.These results are closely relevant for experiments involving potentially important technological applications of quantum dots and quantum wires.[20]

    The paper is organized as follows.In Section 2 we briefly review the HEOM approach, give the common formalism for real-time dynamics in quantum-dot systems, and present the relevant results for electron occupancy.Then we exhibit the time-dependent occupancy for the resonant-level model driven by a gate voltage,the results are consistent with by the exact analytical solution (EAS) of Keldysh formalism in Ref.[12].In Section 3 with taking into account the strongly correlated electron-electron interaction(U),firstly, we investigate the time-dependent occupancy in single quantum-dot systems with different factors, then the time-dependent occupancy in serial coupling double quantum-dot system.Distinct time evolution phenomena which can be realized experimentally are presented.In Section 4 we will give a summary of our work.

    2.General formalism of HEOM in quantum-dot system

    The hierarchical equations of motion approach (HEOM)is potentially useful for addressing quantum-dot systems especially for the interacting strong correlation systems.The outstanding characterizing both equilibrium and nonequilibrium properties achieved in our previous work are referred to Refs.[26,31-33].The HEOM approach has been employed to study dynamical properties, for instance, the dynamical Coulomb blockade and dynamical Kondo memory phenomena in quantum dots.[29,30]It is essential to adopt an appropriate truncated level to close the coupled equations.The numerical results are considered to be quantitatively accurate with increasing the truncated level and converge.In Ref.[31], it has been demonstrated that the HEOM approach achieves the same level of accuracy as the latest NRG method for the prediction of various dynamical properties at equilibrium and nonequilibrium.[34]Here,we solve the real-time dynamics problem and focus on the nonequilibrium dynamics of quantum-dot systems based on the HEOM.The local quantum dot constitutes the open system of primary interest, and the surrounding reservoirs of itinerant electrons are treated as environment.The total Hamiltonian for the quantum-dot systems

    Now, to test our method, we consider a resonant-level model(RLM),describing the hybridization of a localized level with a band of spinless conduction electrons calculated in Ref.[12] by TD-NRG approach and EAS in the wide band limit.The total Hamiltonian of the system

    We calculate the occupancynμ(t) =〈 ?d??d〉(t) of the RLM.It can be solved exactly in closed analytical form using the Keldysh formalism in the wide band limit.[12]

    Figure 1 depicts the calculated time-dependent occupancynμ(t)at different temperatures by the HEOM approach in response to a sudden change in the energy of the level fromE0μ=0 toE1μ=-?, and the converged tier level (L=4) is adopted.To compare the results of the EAS and TD-NRG approach described in Fig.2(b)in Ref.[12],we adopt the same parameters.Furthermore,we calculate the time-dependent occupancynμ(t) at seven different temperaturesT/?=0.015,T/?= 0.03,T/?= 0.1,T/?= 0.5,T/?= 1,T/?= 2,andT/?=5.In comparison with the results in Ref.[12],we find that at short-time scale,all three methods(HEOM,EAS,and TD-NRG)give the perfect solution of the time-dependent occupancy.In particular,nμ(t →0+) coincides with the initial equilibrium state occupancy of RLM.The value of occupancy isnμ(0)=0.5 for all the temperatures at the time oft=0.While,at the large-time scale,there is a deviation from the new equilibrium occupancy between the EAS and the TDNRG approach.Anderset al.presented an explanation for the occupancy deviation.The long-time deviations innμ(t)using TD-NRG approach stem from a difference between the time-evolved density matrix in the finite logarithmic discrete state and the equilibrium density matrix ?ρwhen approachedΛ →1+.[12]

    Fig.1.Time-dependent occupancy nμ(t) of the RLM versus time t calculated by the HEOM approach at different temperatures T/?=0.015,0.03,0.1,0.5,1,2,5 for the log10 abscissas.The inset is the timedependent occupancy nμ(t) for the linear abscissas.The parameters adopted are E0μ =0,E1μ =-?,and W =20?.

    Not only the short-time dynamics but also the long-time behavior is well described by our HEOM approach.The occupancynμ(t) of the new equilibrium state at the temperatureT/?= 0.1,T/?= 0.5,T/?= 1, andT/?= 5 are 0.75, 0.71, 0.65, and 0.55, those are the same values calculated by EAS.But the TD-NRG approach cannot get the same results.The occupancy deviation is developed at large-time scale.Those are greatly reduced by averaging over the differentz’s in TD-NRG approach.[12]Obviously,part of our calculations also cover the same parameters of Fig.2(b)in Ref.[12].The HEOM accurately reproduces the exact results by EAS at all the time scales at different temperatures.Our result exhibits the same dynamical behavior in short-time scale with EAS, and avoids the deviation in long-time scale appearing in TD-NRG.For more comparisons between those methods,please see our previous work in Ref.[35].Moreover,HEOM is an accurate and universal approach and is capable of addressing a variety of equilibrium and nonequilibrium, static and dynamical properties of strongly correlated quantum-dot systems.The method is essentially nonperturbative.In practical implements,an appropriate truncated level is taken to meet the limited computation resource.However, the high precision can be achieved by the convergence with increasing the truncation level.[35-37]

    3.Occupancy of strongly correlated quantumdot systems

    In this section we present two applications of the formalism developed above.Firstly, we investigate the timedependent occupancy with several factors in the strongly correlated single quantum-dot system by using HEOM approach,such as temperature and bandwidth of the leads.As the electron-electron interaction (U) is taken into account in the Hamiltonian of the device, the physical properties of realtime dynamics approach to the actual case.It is helpful to understand the Kondo effect, Mott metal-insulator, hightemperature superconductivity, and so on.To better understand and explore the real-time dynamical properties of the many-body systems,we also focus on the serial coupling double quantum-dot system case.The physical properties of dynamics under different temperatures and tunneling couplings between the two dots are presented.

    3.1.Single quantum-dot system

    We first consider the single quantum-dot systems modeled by the Hamiltonian

    Here, ?d?σand ?dσdenote the creation and annihilation operators for spin-up and spin-down electrons on the dot,Uis the electron-electron interaction, and ?nσ=↑,↓= ?d?σ?dσis the number operator.To investigate the relaxation in the spin,we consider the following stepwise change in the energy of the levelEμ(t)=θ(-t)E0μ+θ(t)E1μ.We begin with a degenerate spin stateE0μ=?/2.At the timet=0, the energy of the level is shifted toE1μ=-U/2-?/2.The resulting time evolution of the quantum-dot occupancy isnμ(t)=〈?n↑+?n↓〉(t).[12]

    Figure 2 depicts the occupancynμ(t) of the single quantum-dot system for the different values of electronelectron interactionU.With the electron-electron interactionUincreases, the quantum-dot system changes into a strongly correlated regime.The initial occupancy of the system at the timet=0 decreases with the electron-electron interactionU.The time scales for the relaxation of system are clearly visible.Thenμ(t) equilibrates on a time scaletch∝1/?, and the Rabi-type oscillations are developed for|E1μ|>?.The Rabi-type oscillations are enhanced by the electron-electron interactionU,and the time when the occupancy oscillates becomes earlier with the system correlating strongly.Fort ?tch,the quantum-dot system will get a new steady state,and the occupancy must saturate at its new equilibrium valuenμ(t)=1(Fig.2(a)).[12]To emphasize the real-time dynamical behavior of the quantum-dot system, we slice thenμ(t) curve forU=18?in Fig.2(b).We find that the occupancynμ(t) of the quantum-dot system firstly shows a distinct oscillating behavior and finally reaches a new equilibrium steady state value scaling with the time.

    Fig.2.Time-dependent occupancy of the single quantum-dot system versus time t at different values of U/?= 2, 4, 6, 8, 10, 12, 18.The parameters adopted are T =0.015?, W =20?, E0μ =?/2, and E1μ =-U/2-?/2.

    To compare with the RLM, we calculate the timedependent occupancynμ(t)of the single quantum-dot system for different temperatures.Figure 3 plots the dynamical behavior of the occupancy under the same electron-electron interactionU=18?and bandwidthW=20?.Unlike the RLM,the occupancy of the strongly correlated single quantum-dot system oscillates at the low temperature(see the lines ofT=0.015?,T=0.03?,T=0.1?,T=0.5?in Fig.3).Because the strongly correlated system changes into the Kondo regime at low temperatures, the Kondo memory effects are expected to be more prominent.So the occupancynμ(t) at the initial equilibrium state shows a nonmonotonic transition behavior.The occupancynμ(t)firstly decreases and then increases with increasing temperature.At high temperaturesT= 1?andT=2?,the oscillation vanishes and the occupancy increases linearly with the timetbefore the system gets the new equilibrium state.In RLM,the oscillation behavior is absent and the occupancy increases linearly with the timetfor all the temperatures.The values of the occupancy in new equilibrium state decrease monotonously with the temperature increasing(Fig.1).While in the strongly correlated single quantum-dot system, the values of the occupancy in new equilibrium state saturate almost atnμ=1.

    Fig.3.Time-dependent occupancy of the single quantum-dot system versus time t at different values of T/?=0.015, 0.03, 0.1, 0.5, 1,2.The parameters adopted are W =20?,E0μ =?/2,E1μ =-U/2-?/2,and U =18?.

    The real-time dynamical properties of the quantum-dot system are presented by EAS approach,only applicable in the case ofU=0, with the calculation of the wideband limit approximation.Here we can study the dynamical properties of the quantum-dot system in a finite bandwidth.In Fig.4, we show the evolution of the time-dependent occupancynμ(t)-tcurves at several bandwidthsWin Kondo regime.We find that the narrow bandwidth enhances the Rabi-type oscillation of the occupancy.At large bandwidth, the occupancynμ(t) oscillates several times and gets a new equilibrium state quickly after the time scales for the relaxationtch∝1/?.At the narrower bandwidth,the occupancynμ(t)displays very sharp oscillations and owns a larger oscillation frequency.This behavior mainly results from the bandwidth enhancement of the capacitive contributions from the accumulation and depletion of electrons layering on either side of the quantum-dot system leads.[35]The narrow bandwidth does not have sufficient time to follow the stepwise change in the energy of the level.The temporal coherence of electrons tunneling through the quantum-dot system leads to the oscillations more obviously with decreasing the bandwidth.Moreover, the initial equilibrium state occupancy of the single quantum-dot system also increases with the bandwidth.Those outstanding behaviors of real-time dynamics in narrow bandwidth cannot be acquired by TD-NRG with wideband limit approximation.

    Summarizing Figs.2-4, one can conclude that the Rabitype oscillation of the occupancy is strongly dependent on the electron-electron interactionU,temperatureT,and bandwidthW.The Rabi-type oscillation can be enhanced by strong electron-electron interactionU, low temperatureT, and narrow bandwidthW.

    Fig.4.Time-dependent occupancy of the single quantum-dot system versus time t at different bandwidths W/?=20, 12, 4, 2.The parameters adopted are T =0.015?,E0μ =?/2,E1μ =-U/2-?/2,and U =18?.

    3.2.Double quantum-dot system

    Double quantum-dot systems can be considered to some extent as artificial molecules,it is useful for the study of many novel phenomena involving the strong Coulomb interaction,antiferromagnetic spin coupling, and time-dependent coherence for realizing solid state quantum bits.[19,38-40]The coherent dynamics of a single charge qubit in a double quantumdot system is discussed with full one-qubit manipulation.[13]Several experiments on photon-assisted tunneling through the double quantum-dot system have been carried out.[19]Here,we focus on the real-time dynamical properties through the serial coupling double quantum-dot system.The Hamiltonian for the system

    Here,we firstly focus on the different temperaturesTfor non-interaction and then finite interactions between the two dots, respectively.Figure 5 depicts the time-dependent occupancy of the serial coupling double quantum-dot system versus timetat different values ofT/?=0.015,0.1,0.5,1 for the electron-electron interaction between the two dotsU12=0(a) andU12=4?(b).We find that the Rabi-type oscillation of the occupancy is distinct forU12=0 at low temperatures.This oscillating behavior is suppressed by increasing temperatures.This Rabi-type oscillation vanishes and the occupancy grows monotonically and linearly with time at high temperatures.The above transition behaviors are equal to the single quantum-dot system case.Moreover,the occupancy of the serial coupling double quantum-dot system in new equilibrium state reachesnμ=2 as the double value of the single quantumdot system(Fig.5(a)).However,the oscillating behavior of the occupancy vanishes atU12=4?.The occupancy increases monotonically with time for all the temperatures (Fig.5(b)).Here, the coherence bonding state forming between the two quantum dots dominates the dynamical transport behavior of the serial coupling double quantum-dot system.It causes the oscillation of the occupancy disappearing atU12=4?.

    Fig.5.Time-dependent occupancy of the serial coupling double quantum-dot system versus time t at different values of T/?=0.015,0.1,0.5,1 for the electron-electron interaction between the two dots U12 = 0 (a) and U12 = 4?(b).The parameters adopted are W =18?,E0μ =?/2,E1μ =-U/2-?/2,and U1=U2=-2Eμ.

    To further understand how the electron-electron interaction between the two dotsU12affects the real-time dynamical properties of the serial coupling double quantum-dot system, we then calculate the time-dependent occupancynμ(t)of the serial coupling double quantum-dot system with differentU12.Figure 6 presents the numerical result of occupancynμ(t) for the serial coupling double quantum-dot system.We find that the Rabi-type oscillations of the occupancynμ(t)are strongly dependent on the electron-electron interaction between the two dotsU12.The oscillating behavior of the serial coupling double quantum-dot system is suppressed by the electron-electron interaction between the two dotsU12.AtU12=0, the occupancy owns a distinct oscillating behavior associated with a larger amplitude.This behavior becomes faintish with increasing the electron-electron interaction between the two dotsU12.TheU12-dependent oscillating behavior of the serial coupling double quantum-dot system can be understood as follows.When a stepwise changes the energy level, it accompanies the change of the electron numbers.However, with increasing the electron-electron interactionU12, the variation of the electron number at either of the dots is suppressed.So the Rabi-type oscillation of the serial coupling double quantum-dot system becomes attenuated with increasingU12.Moreover, the frequency of Rabi-type oscillations decreases sharply fromU12=0 toU12=2?.AtU12=2?,the occupancynμ(t)only owns a wriggle behavior as timetincreases.

    Fig.6.Time-dependent occupancy nμ(t)-t curves of the serial coupling double quantum-dot system with different electron-electron interactions between the two dots U12.The parameters adopted are T =0.015?, E0μ =?/2, E1μ =-U/2-?/2, U1 =U2 =-2Eμ, and W =2?.

    Fig.7.Time-dependent occupancy nμ(t)-t curves of the serial coupling double quantum-dot system with different bandwidths W for the electron-electron interaction between the two dots U12 = 0 (a) and U12 =4?(b).The parameters adopted are T =0.015?, E0μ =?/2,E1μ =-U/2-?/2,and U1=U2=-2Eμ.

    Finally,we explore the oscillating behavior of occupancy of the serial coupling double quantum-dot system with different bandwidths of the leadsWat two values of the electronelectron interaction between the two dotsU12.Figure 7 shows the time-dependent occupancynμ(t) of the serial coupling double quantum-dot system with different bandwidthsWfor the electron-electron interaction between the two dotsU12=0(a) andU12= 4?(b), respectively.We find that the distinct oscillating behavior of occupancy at narrower bandwidth becomes attenuated with increasing the bandwidth for bothU12=0 andU12=4?.For the electron-electron interaction between the two dotsU12=0,the frequency of Rabi-type oscillations decreases regularly.However,the oscillation shows an irregular transition behavior forU12=4?.Here, both the bandwidthWand the electron-electron interaction between the two dotsU12manipulate the oscillating behavior of the serial coupling double quantum-dot system.It leads that the frequency of Rabi-type oscillations decreases sharply with increasing the bandwidth.

    4.Summary

    In summary,we calculated accurately the time-dependent occupancy of the strongly correlated single quantum-dot system and serial coupling double quantum-dot system subject to a sudden change of gate voltage.The Rabi-type oscillation of the strongly correlated single quantum-dot system can be enhanced by strong electron-electron interaction, low temperature, and narrow bandwidth.Moreover, the timedependent occupancy of the serial coupling double quantumdot system shows an irregular transition behavior, when both the bandwidth and the electron-electron interaction between the two dots manipulate the oscillating behavior.The oscillating behavior of the serial coupling double quantum-dot system is suppressed by the electron-electron interaction between the two dots.Those characteristics of strongly correlated quantum-dot systems may be observed in experiments.And we believe our results are helpful for investigating the real-time dynamical properties of driven quantum many-body systems and will lead to significant new insights in the future.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.11804245,11747098,11774418,12247101,and 12047501),the Scientific and Technologial Innovation Programs of Higher Education Institutions of Shanxi Province, China (Grant No.2021L534), and the Fund from the Ministry of Science and Technology of China (Grant No.2022YFA1402704).

    猜你喜歡
    振華建華
    家住西安
    倒立奇奇
    變來(lái)變?nèi)サ臉?shù)
    米沙在書(shū)里
    可怕的事
    Cole-Hopf Transformation Based Lattice Boltzmann Model for One-dimensional Burgers’Equation?
    變變變
    阿嗚想做貓
    WSN Node Applied to Large-Scale Unattended Monitoring
    “杯”慘
    91在线观看av| 咕卡用的链子| 亚洲熟女毛片儿| 日本欧美视频一区| 18禁美女被吸乳视频| 午夜老司机福利片| 真人做人爱边吃奶动态| 久久久久久人人人人人| 女性生殖器流出的白浆| 亚洲人成电影免费在线| 国产成人av激情在线播放| 精品少妇一区二区三区视频日本电影| 日韩欧美一区视频在线观看| 国产精品久久视频播放| 中文字幕最新亚洲高清| 黄网站色视频无遮挡免费观看| 国产精品香港三级国产av潘金莲| 男女之事视频高清在线观看| 欧美一级毛片孕妇| 欧美 亚洲 国产 日韩一| 老熟女久久久| 久久人妻福利社区极品人妻图片| 首页视频小说图片口味搜索| 国产精品乱码一区二三区的特点 | 曰老女人黄片| 国产免费av片在线观看野外av| 久久99一区二区三区| 久久这里只有精品19| 国产精品电影一区二区三区 | 亚洲精品在线美女| 99re在线观看精品视频| 天堂中文最新版在线下载| 精品久久久久久电影网| 少妇猛男粗大的猛烈进出视频| 久久久久久免费高清国产稀缺| 久热这里只有精品99| 亚洲七黄色美女视频| 女人精品久久久久毛片| 亚洲成人手机| 欧美亚洲日本最大视频资源| 免费在线观看完整版高清| 色精品久久人妻99蜜桃| av网站在线播放免费| 热99国产精品久久久久久7| 新久久久久国产一级毛片| 成人免费观看视频高清| 一级作爱视频免费观看| av国产精品久久久久影院| 999精品在线视频| 男女床上黄色一级片免费看| 1024视频免费在线观看| 欧洲精品卡2卡3卡4卡5卡区| 激情在线观看视频在线高清 | 精品久久久久久久久久免费视频 | 91字幕亚洲| 啦啦啦 在线观看视频| 91国产中文字幕| av天堂久久9| 久热爱精品视频在线9| 国产高清激情床上av| 交换朋友夫妻互换小说| av网站在线播放免费| 手机成人av网站| 在线观看免费视频网站a站| 久久99一区二区三区| 一级片'在线观看视频| 国产精品久久久久成人av| 村上凉子中文字幕在线| 俄罗斯特黄特色一大片| 久久久久久亚洲精品国产蜜桃av| 好看av亚洲va欧美ⅴa在| 新久久久久国产一级毛片| 香蕉丝袜av| 成人国语在线视频| 高清欧美精品videossex| 精品亚洲成国产av| 欧美激情高清一区二区三区| 欧美黄色淫秽网站| 亚洲一区二区三区不卡视频| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕另类日韩欧美亚洲嫩草| 欧美黄色淫秽网站| 热99国产精品久久久久久7| 日韩 欧美 亚洲 中文字幕| 久久久久久久精品吃奶| 成熟少妇高潮喷水视频| 黄色毛片三级朝国网站| 欧美大码av| 国产野战对白在线观看| 丁香欧美五月| 少妇裸体淫交视频免费看高清 | 欧美黄色淫秽网站| 欧美性长视频在线观看| 国产又色又爽无遮挡免费看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲专区国产一区二区| 精品国产美女av久久久久小说| 十八禁人妻一区二区| 人人澡人人妻人| 国产一区二区三区视频了| 亚洲精品粉嫩美女一区| 欧美日韩福利视频一区二区| 精品国内亚洲2022精品成人 | 黄频高清免费视频| 午夜亚洲福利在线播放| av电影中文网址| www日本在线高清视频| 国产成人精品久久二区二区免费| 日韩免费av在线播放| 日韩熟女老妇一区二区性免费视频| 国产麻豆69| 搡老熟女国产l中国老女人| 国产日韩欧美亚洲二区| 午夜亚洲福利在线播放| 国产成人啪精品午夜网站| 国产精品免费视频内射| 亚洲美女黄片视频| 不卡一级毛片| 午夜精品久久久久久毛片777| 欧美日韩一级在线毛片| 中文欧美无线码| 午夜精品在线福利| 免费不卡黄色视频| www.精华液| 精品少妇久久久久久888优播| 王馨瑶露胸无遮挡在线观看| a级毛片黄视频| 久久久久久免费高清国产稀缺| 天天躁夜夜躁狠狠躁躁| 亚洲精品一二三| 一级片免费观看大全| 国产高清videossex| 亚洲精品在线美女| 久久久国产精品麻豆| 国产97色在线日韩免费| 成年人午夜在线观看视频| 国产一卡二卡三卡精品| 别揉我奶头~嗯~啊~动态视频| 精品高清国产在线一区| 久久国产乱子伦精品免费另类| 大型av网站在线播放| www.熟女人妻精品国产| 亚洲精品在线美女| 国产精品一区二区在线观看99| 在线av久久热| 一级a爱视频在线免费观看| 丰满的人妻完整版| 国产色视频综合| 色播在线永久视频| 欧美丝袜亚洲另类 | 久久久久视频综合| 美女国产高潮福利片在线看| 亚洲成人国产一区在线观看| 久久久国产成人免费| 99久久99久久久精品蜜桃| 99re在线观看精品视频| 嫁个100分男人电影在线观看| 欧美最黄视频在线播放免费 | 国产蜜桃级精品一区二区三区 | 涩涩av久久男人的天堂| 男女下面插进去视频免费观看| 正在播放国产对白刺激| 久久久久久免费高清国产稀缺| 人人妻人人澡人人爽人人夜夜| 91麻豆av在线| 国产99白浆流出| 精品国产一区二区三区久久久樱花| 大片电影免费在线观看免费| 久久香蕉精品热| 亚洲精品国产精品久久久不卡| 最新在线观看一区二区三区| 99国产精品一区二区三区| 国产淫语在线视频| 两性夫妻黄色片| 亚洲av片天天在线观看| 国产不卡一卡二| 男人的好看免费观看在线视频 | 久久精品国产a三级三级三级| 高清黄色对白视频在线免费看| 最新美女视频免费是黄的| www.自偷自拍.com| 交换朋友夫妻互换小说| 一级毛片女人18水好多| tube8黄色片| 在线观看午夜福利视频| 精品高清国产在线一区| 国产主播在线观看一区二区| tocl精华| 精品久久久精品久久久| 国产av一区二区精品久久| 精品熟女少妇八av免费久了| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美av亚洲av综合av国产av| 国产黄色免费在线视频| 久久国产亚洲av麻豆专区| 国产又色又爽无遮挡免费看| 免费观看a级毛片全部| 欧美国产精品va在线观看不卡| 亚洲精品一二三| 精品无人区乱码1区二区| 97人妻天天添夜夜摸| 国产欧美日韩精品亚洲av| 首页视频小说图片口味搜索| 九色亚洲精品在线播放| 天天影视国产精品| 精品国产超薄肉色丝袜足j| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品久久二区二区免费| 日韩免费av在线播放| 黄频高清免费视频| 我的亚洲天堂| 男女午夜视频在线观看| 又大又爽又粗| 热re99久久国产66热| 国产蜜桃级精品一区二区三区 | 欧美精品亚洲一区二区| 身体一侧抽搐| 真人做人爱边吃奶动态| 777久久人妻少妇嫩草av网站| 精品亚洲成a人片在线观看| 免费观看人在逋| 极品人妻少妇av视频| 免费观看精品视频网站| 亚洲精品在线美女| 成人免费观看视频高清| 国产国语露脸激情在线看| 亚洲精品av麻豆狂野| 美女视频免费永久观看网站| 亚洲中文av在线| 国产区一区二久久| 日韩免费高清中文字幕av| av在线播放免费不卡| 中亚洲国语对白在线视频| 免费av中文字幕在线| 精品少妇一区二区三区视频日本电影| 99re6热这里在线精品视频| 精品无人区乱码1区二区| 亚洲一区二区三区不卡视频| 一级a爱片免费观看的视频| 国产精品久久久久久人妻精品电影| 欧美中文综合在线视频| 欧美成人午夜精品| 国产亚洲精品第一综合不卡| 久久中文字幕一级| 少妇的丰满在线观看| 水蜜桃什么品种好| 国产91精品成人一区二区三区| 欧美乱妇无乱码| 男男h啪啪无遮挡| 十八禁高潮呻吟视频| 亚洲性夜色夜夜综合| 精品熟女少妇八av免费久了| 日日摸夜夜添夜夜添小说| 精品一区二区三区视频在线观看免费 | 一区在线观看完整版| 亚洲情色 制服丝袜| 亚洲三区欧美一区| 在线免费观看的www视频| 男人的好看免费观看在线视频 | 后天国语完整版免费观看| 精品国产乱子伦一区二区三区| 午夜视频精品福利| 国产午夜精品久久久久久| 99久久国产精品久久久| av电影中文网址| 成年动漫av网址| 如日韩欧美国产精品一区二区三区| 免费一级毛片在线播放高清视频 | 脱女人内裤的视频| 12—13女人毛片做爰片一| 国产熟女午夜一区二区三区| 最新在线观看一区二区三区| 欧美精品啪啪一区二区三区| 久热这里只有精品99| 亚洲色图综合在线观看| 午夜精品国产一区二区电影| 成人免费观看视频高清| 女人被狂操c到高潮| 国产精品乱码一区二三区的特点 | 亚洲一区二区三区不卡视频| 午夜福利欧美成人| 中亚洲国语对白在线视频| xxx96com| 丝瓜视频免费看黄片| 久久人妻福利社区极品人妻图片| 校园春色视频在线观看| 国产精品98久久久久久宅男小说| 亚洲成av片中文字幕在线观看| 亚洲人成电影免费在线| 女人爽到高潮嗷嗷叫在线视频| 精品一品国产午夜福利视频| 黄片大片在线免费观看| 高潮久久久久久久久久久不卡| 久久精品国产a三级三级三级| 久久人妻熟女aⅴ| 夫妻午夜视频| 国产高清视频在线播放一区| 久久国产精品大桥未久av| 国产成人啪精品午夜网站| 亚洲精品中文字幕在线视频| 91成年电影在线观看| 久久久久视频综合| 日韩中文字幕欧美一区二区| 亚洲av电影在线进入| 欧美黄色淫秽网站| 久久国产精品影院| 亚洲av成人av| 成人av一区二区三区在线看| 精品一品国产午夜福利视频| 在线观看免费日韩欧美大片| 亚洲午夜理论影院| 韩国精品一区二区三区| 久久久国产精品麻豆| 国产欧美日韩一区二区精品| 大码成人一级视频| 亚洲国产精品合色在线| 久久天堂一区二区三区四区| 两人在一起打扑克的视频| 国产亚洲av高清不卡| 美女高潮到喷水免费观看| 欧美一级毛片孕妇| 建设人人有责人人尽责人人享有的| 美女高潮到喷水免费观看| 操出白浆在线播放| 老司机深夜福利视频在线观看| 精品人妻在线不人妻| 欧美色视频一区免费| 色播在线永久视频| 好男人电影高清在线观看| 免费观看人在逋| 国产片内射在线| 身体一侧抽搐| 日韩视频一区二区在线观看| 国产亚洲欧美98| 亚洲欧美精品综合一区二区三区| 午夜免费观看网址| e午夜精品久久久久久久| 一边摸一边做爽爽视频免费| 老司机影院毛片| 亚洲成a人片在线一区二区| 天天躁日日躁夜夜躁夜夜| avwww免费| 十八禁人妻一区二区| 91老司机精品| 身体一侧抽搐| 人人妻人人爽人人添夜夜欢视频| 香蕉国产在线看| 国产日韩一区二区三区精品不卡| 亚洲五月色婷婷综合| 黄色女人牲交| 超色免费av| 亚洲欧洲精品一区二区精品久久久| www日本在线高清视频| 国产av一区二区精品久久| 久久香蕉激情| 丁香六月欧美| 国产高清视频在线播放一区| 欧美黄色片欧美黄色片| 麻豆av在线久日| 亚洲欧洲精品一区二区精品久久久| 一边摸一边做爽爽视频免费| 亚洲精品一二三| 在线观看免费日韩欧美大片| 日日爽夜夜爽网站| 三上悠亚av全集在线观看| 色94色欧美一区二区| 女警被强在线播放| 精品高清国产在线一区| 亚洲少妇的诱惑av| 中文字幕另类日韩欧美亚洲嫩草| 在线av久久热| 欧美性长视频在线观看| av在线播放免费不卡| 啪啪无遮挡十八禁网站| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 两个人免费观看高清视频| 亚洲一区二区三区欧美精品| 国产人伦9x9x在线观看| 亚洲熟女毛片儿| 亚洲熟妇中文字幕五十中出 | 黄频高清免费视频| 国产亚洲欧美精品永久| 黑人巨大精品欧美一区二区mp4| 少妇被粗大的猛进出69影院| 久久香蕉激情| 久久精品亚洲精品国产色婷小说| 成年人免费黄色播放视频| 自拍欧美九色日韩亚洲蝌蚪91| 黑人巨大精品欧美一区二区蜜桃| 精品国产一区二区三区久久久樱花| 成人18禁高潮啪啪吃奶动态图| 国产日韩欧美亚洲二区| 欧美日韩一级在线毛片| av免费在线观看网站| 国产精品av久久久久免费| 人人妻人人添人人爽欧美一区卜| 午夜福利欧美成人| 很黄的视频免费| 欧美日韩黄片免| 母亲3免费完整高清在线观看| 韩国av一区二区三区四区| 日韩三级视频一区二区三区| 夫妻午夜视频| 久久狼人影院| x7x7x7水蜜桃| 黄色 视频免费看| 男女下面插进去视频免费观看| 久久青草综合色| 天天影视国产精品| 免费在线观看黄色视频的| 国产精品1区2区在线观看. | tocl精华| 久热爱精品视频在线9| 黄色视频,在线免费观看| 丰满迷人的少妇在线观看| 午夜福利视频在线观看免费| 精品熟女少妇八av免费久了| 国产精品一区二区精品视频观看| 国产av精品麻豆| 国产成人免费无遮挡视频| 美女高潮喷水抽搐中文字幕| 一级片'在线观看视频| 久久精品国产a三级三级三级| bbb黄色大片| 极品少妇高潮喷水抽搐| 欧美黄色淫秽网站| 日韩精品免费视频一区二区三区| 国产人伦9x9x在线观看| 捣出白浆h1v1| 黑人操中国人逼视频| 国产伦人伦偷精品视频| 国产乱人伦免费视频| 另类亚洲欧美激情| 国产在线精品亚洲第一网站| 日韩熟女老妇一区二区性免费视频| 久久精品国产综合久久久| 亚洲av第一区精品v没综合| 国产精品99久久99久久久不卡| a在线观看视频网站| 老司机靠b影院| 精品久久久久久电影网| 国产精品香港三级国产av潘金莲| 久久影院123| 老汉色av国产亚洲站长工具| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品无人区| 国产视频一区二区在线看| 后天国语完整版免费观看| 黑人巨大精品欧美一区二区蜜桃| 777米奇影视久久| 久久精品aⅴ一区二区三区四区| 欧美久久黑人一区二区| 露出奶头的视频| 国产精品乱码一区二三区的特点 | 国产精品av久久久久免费| 亚洲一区中文字幕在线| 香蕉国产在线看| 老熟女久久久| 欧美中文综合在线视频| 国产欧美日韩精品亚洲av| 王馨瑶露胸无遮挡在线观看| 免费人成视频x8x8入口观看| 日本黄色视频三级网站网址 | av在线播放免费不卡| 国产片内射在线| 国产一区二区三区综合在线观看| 亚洲专区字幕在线| 国产成人影院久久av| 成人av一区二区三区在线看| 夜夜夜夜夜久久久久| 国产主播在线观看一区二区| 亚洲精品久久午夜乱码| 久久中文字幕一级| 亚洲五月色婷婷综合| 在线观看日韩欧美| 无遮挡黄片免费观看| av一本久久久久| 日韩三级视频一区二区三区| 超碰成人久久| 成人手机av| 自线自在国产av| 成人三级做爰电影| 一二三四社区在线视频社区8| 亚洲成人手机| 日韩人妻精品一区2区三区| 亚洲国产欧美日韩在线播放| 狂野欧美激情性xxxx| 欧美老熟妇乱子伦牲交| 美女福利国产在线| 亚洲av日韩在线播放| 黄网站色视频无遮挡免费观看| 国产成人av教育| 国产不卡一卡二| 人妻丰满熟妇av一区二区三区 | 怎么达到女性高潮| 中文字幕另类日韩欧美亚洲嫩草| 中文亚洲av片在线观看爽 | 成年动漫av网址| 怎么达到女性高潮| 日本a在线网址| 黄色成人免费大全| 国产成人一区二区三区免费视频网站| av在线播放免费不卡| 精品少妇久久久久久888优播| 久久人妻福利社区极品人妻图片| 一二三四在线观看免费中文在| 欧美色视频一区免费| 欧美av亚洲av综合av国产av| 丰满迷人的少妇在线观看| 久久精品人人爽人人爽视色| 手机成人av网站| 一级作爱视频免费观看| 日韩 欧美 亚洲 中文字幕| 黄色怎么调成土黄色| 99国产综合亚洲精品| 又紧又爽又黄一区二区| 黄色片一级片一级黄色片| 美女午夜性视频免费| 91老司机精品| 一夜夜www| 超碰97精品在线观看| 国产麻豆69| 国产免费av片在线观看野外av| 免费一级毛片在线播放高清视频 | 成在线人永久免费视频| 国产精品免费视频内射| bbb黄色大片| 久久亚洲精品不卡| 美女福利国产在线| 亚洲精品自拍成人| 亚洲伊人色综图| 亚洲欧洲精品一区二区精品久久久| 视频区欧美日本亚洲| 国产精品国产高清国产av | 免费少妇av软件| 亚洲欧美日韩高清在线视频| 久久精品国产亚洲av高清一级| 精品国产超薄肉色丝袜足j| 免费在线观看亚洲国产| 国产一卡二卡三卡精品| 久久精品国产综合久久久| 18禁裸乳无遮挡免费网站照片 | 制服诱惑二区| 欧美在线黄色| 日日爽夜夜爽网站| a级毛片在线看网站| 18禁观看日本| 久久久久精品国产欧美久久久| 人人妻人人澡人人爽人人夜夜| 欧美日韩精品网址| 18禁黄网站禁片午夜丰满| 午夜福利一区二区在线看| 精品国产国语对白av| 嫁个100分男人电影在线观看| 久久久国产欧美日韩av| 午夜免费鲁丝| 交换朋友夫妻互换小说| 国产深夜福利视频在线观看| 伦理电影免费视频| 日韩欧美免费精品| 丝袜在线中文字幕| 婷婷丁香在线五月| 在线天堂中文资源库| 又黄又爽又免费观看的视频| 女警被强在线播放| 欧美午夜高清在线| 一本大道久久a久久精品| 成人黄色视频免费在线看| 久久国产精品男人的天堂亚洲| 亚洲精品av麻豆狂野| 麻豆av在线久日| 国产野战对白在线观看| 怎么达到女性高潮| 老鸭窝网址在线观看| 国产精品亚洲一级av第二区| 久9热在线精品视频| av中文乱码字幕在线| 午夜久久久在线观看| 亚洲第一青青草原| 一级毛片高清免费大全| 亚洲精品中文字幕一二三四区| 国产精品99久久99久久久不卡| 欧美乱妇无乱码| 乱人伦中国视频| 大片电影免费在线观看免费| 久久精品国产清高在天天线| av国产精品久久久久影院| 极品教师在线免费播放| 欧美日韩av久久| 91国产中文字幕| 自线自在国产av| 少妇的丰满在线观看| 日韩欧美一区二区三区在线观看 | 一二三四在线观看免费中文在| av片东京热男人的天堂| 亚洲熟妇中文字幕五十中出 | 另类亚洲欧美激情| 又黄又粗又硬又大视频| 久99久视频精品免费| 国产一卡二卡三卡精品| 在线十欧美十亚洲十日本专区| 99久久国产精品久久久| 亚洲,欧美精品.| 国产精品国产高清国产av | 国产蜜桃级精品一区二区三区 | 国产精品偷伦视频观看了| 精品一区二区三卡| 一级毛片高清免费大全| 国产精华一区二区三区| 一区福利在线观看| 搡老熟女国产l中国老女人| 制服诱惑二区| 国产蜜桃级精品一区二区三区 | 成人手机av|