• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FIXED POINTS OF α-TYPE F-CONTRACTIVE MAPPINGS WITH AN APPLICATION TO NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION?

    2016-12-05 00:44:05DhananjayGOPALDepartmentofAppliedMathematicsHumanitiesNationalInstituteofTechnologySurat395007GujaratIndiaEmaildgashdsvnitacingopaldhananjayyahooin

    Dhananjay GOPALDepartment of Applied Mathematics&Humanities,S.V.National Institute of Technology,Surat-395007,Gujarat,IndiaE-mail:dg@ashd.svnit.ac.in;gopaldhananjay@yahoo.in

    Mujahid ABBASDepartment of Mathematics and Applied Mathematics,University of Pretoria,Lynnwood Road,Pretoria 0002,South Africa;Department of Mathematics,King AbdulAziz University,P.O.Box 80203 Jeddah 21589,Saudi ArabiaE-mail:Mujahid.Abbas@up.ac.za;abbas.muajahid@gmail.com

    Deepesh Kumar PATELDepartment of Mathematics Visvesvaraya National Institute of Technology,Nagpur-440010,Maharashtra,IndiaE-mail:deepesh456@gmail.com

    Calogero VETROUniversit`a degli Studi di Palermo,Dipartimento di Matematica e Informatica,Via Archirafi,34-90123 Palermo,ItalyE-mail:calogero.vetro@unipa.it

    FIXED POINTS OF α-TYPE F-CONTRACTIVE MAPPINGS WITH AN APPLICATION TO NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION?

    Dhananjay GOPAL?
    Department of Applied Mathematics&Humanities,S.V.National Institute of Technology,Surat-395007,Gujarat,India
    E-mail:dg@ashd.svnit.ac.in;gopaldhananjay@yahoo.in

    Mujahid ABBAS
    Department of Mathematics and Applied Mathematics,University of Pretoria,Lynnwood Road,Pretoria 0002,South Africa;Department of Mathematics,King AbdulAziz University,P.O.Box 80203 Jeddah 21589,Saudi Arabia
    E-mail:Mujahid.Abbas@up.ac.za;abbas.muajahid@gmail.com

    Deepesh Kumar PATEL
    Department of Mathematics Visvesvaraya National Institute of Technology,Nagpur-440010,Maharashtra,India
    E-mail:deepesh456@gmail.com

    Calogero VETRO
    Universit`a degli Studi di Palermo,Dipartimento di Matematica e Informatica,Via Archirafi,34-90123 Palermo,Italy
    E-mail:calogero.vetro@unipa.it

    In this paper,we introduce new concepts of α-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in[21,22]and different from α-GF-contractions given in[8].Then,sufficient conditions for the existence and uniqueness of fixed point are established for these new types of contractive mappings,in the setting of complete metric space.Consequently,the obtained results encompass various generalizations of the Banach contraction principle.Moreover,some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.

    fixed points;nonlinear fractional differential equations;periodic points

    2010 MR Subject Classification37C25;34A08

    1 Introduction

    The contraction mapping principle appeared in explicit form in Banach’s thesis in 1922[3],where it was used to establish the existence of a solution for an integral equation.Since then,because of its simplicity and usefulness,this fixed point theorem became a very popular tool in solving existence problems in many branches of mathematical analysis.Consequently,it was largely studied and generalized;see[4-7,11,14,17,20]and others.

    Recently,Wardowski[21,22]introduced the concepts of F-contraction and F-weak contraction to generalize the Banach’s contraction in many ways,see also[19].On the other hand,Hussain et al.[8]introduced the concept of α-GF-contraction as a generalization of F-contraction and obtained some interesting fixed point results.

    Following this direction of research,we introduce new concepts of α-type F-contractive mappings and prove some fixed point and periodic point theorems concerning such contractions. Moreover,some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.

    2 Preliminaries

    The aim of this section is to present some notions and results used in the paper.Throughout the article N,R+and R will denote the set of natural numbers,non-negative real numbers and real numbers respectively.

    Definition 2.1(see[21])Let Fbe a mapping satisfying:

    (F1)F is strictly increasing,that is

    We denote with F the family of all functions F that satisfy conditions(F1)-(F3).

    Example 2.2The following functionbelongs to F:

    Definition 2.3(see[21])Let (X,d)be a metric space.A mapping f:X→X is called an F-contraction on X if there exist F∈F and τ>0 such that for all x,y∈X with d(fx,fy)>0,we have

    Definition 2.4(see[22])Let(X,d)be a metric space.A mapping f:X→X is called an F-weak contraction on X if there exist F∈F and τ>0 such that,for all x,y∈X with d(fx,fy)>0,we have

    Remark 2.5(see[22])Every F-contraction is an F-weak contraction but converse is not necessarily true.

    Definition 2.6Let ΔGdenote the set of all functions G:(R+)4→R+satisfying the condition:

    Example 2.7The following functionbelongs to

    Definition 2.8(see[8])Let(X,d)be a metric space and f:X→X.Also suppose thatare two functions.We say that f is an α-GF-contraction if for all x,with,we have

    Definition 2.9(see[18])A mappingis α-admissible if there exists a functionsuch that

    3 Fixed Point Results for α-type F-contractions

    In this section,we first introduce the concepts of α-type F-contractions and then we prove some fixed point theorems for these contractions in a complete metric space.For convenience,we assume that an expression-∞·0 has value-∞.

    We begin with the following definitions:

    Definition 3.1Let(X,d)be a metric space.A mapping f:X→X is said to be an α-type F-contraction on X if there exist τ>0 and two functionssuch that for all,the following inequality holds

    Definition 3.2Let(X,d)be a metric space.A mapping f:X → X is said to be an α-type F-weak contraction on X if there exists τ>0 and two functions F ∈F andsuch that,for all xsatisfying,the following inequality holds

    Remark 3.3Every α-type F-contraction is an α-type F-weak contraction,but converse is not necessarily true.

    Then,for x=0 and y=1,by puttingwe get

    Further,since

    therefore,inequality(2.1)reduces to

    a contradiction and hence f is not an F-weak contraction.

    However,since

    then f is an α-type F-weak contraction for the choice

    Remark 3.5Definition 3.1(respectively,Definition 3.2)reduces to F-contraction(respectively,F(xiàn)-weak contraction)for α(x,y)=1.

    The next two examples demonstrate that α-type F-contractions(defined above)and α-GF-contractions[8]are independent.

    Example 3.6Let X=[0,1]and d be the usual metric on X.Define f:X→X by

    Then f is an α-type F-weak contraction with α(x,y)=1 for all xsuch thatBut f is not an α-GF-contraction[8].To see this,considersuch that

    and hence f is not an α-GF-contraction.

    Then,one can easily verify by simple calculations that f is an α-GF-contraction;but it is not an α-type F-weak contraction.To see this consider x=0 and y=2,then we get

    and so the inequality 6≤4e-τdoes not hold for any τ>0.Hence f is not an α-type F-weak contraction.

    Now,we prove our first result.

    Theorem 3.8Let(X,d)be a complete metric space and f:X→X be an α-type-F-weak contraction satisfying the following conditions:

    (i)f is α-admissible,

    (ii)there exists x0∈X such that α(x0,fx0)≥1,

    (iii)f is continuous.

    By induction we get

    Since f is an α-type F-weak contraction,then,for every n∈N,we write

    Consequently,we have

    If there exists n∈N such thatthen(3.3)becomes

    This implies that

    Taking limit as n→+∞in(3.4),we get

    that together with(F2)gives us

    From(3.4),for all n∈N,we deduce that

    Next using(3.5),(3.6)and taking limit as n→+∞in(3.7),we get

    Since X is complete,there existsFinally,the continuity of f yields

    i.e.,x?is a fixed point of f.

    In the next theorem we omit the continuity hypothesis of f.

    Theorem 3.9Let(X,d)be a metric space and f:X → X be an α-type F-weak contraction satisfying the following conditions:

    (ii)f is α-admissible,

    (iv)F is continuous.

    that is x?is a fixed point of f.

    By(3.9),we get

    Example 3.4 above satisfies all the hypothesis of Theorem 3.9,consequently f has at least a fixed point.Hereare two fixed point of f.

    To ensure the uniqueness of the fixed point,we will consider the following hypothesis:

    Theorem 3.10Adding condition(H)to the hypotheses of Theorem 3.8(respectively,Theorem 3.9)the uniqueness of the fixed point is obtained.

    ProofSuppose that y?is an another fixed point of f,soThen,we get easily

    a contradiction,which implies that

    Example 3.6 above satisfies all the hypothesis of Theorem 3.10,hence f has unique fixed point

    From Remark 3.3,we deduce the following corollary.

    Corollary 3.11Let(X,d)be a complete metric space and f:X → X be an α-type F-contraction satisfying the hypotheses of Theorem 3.10,then f has unique fixed point.

    Finally,we conclude that many existing results in the literature can be deduced easily from our Theorem 3.10.In fact,taking in Theorem 3.10,we obtain the following fixed point result.

    Corollary 3.12(see[22])Let(X,d)be a complete metric space and f:X→X be an F-weak contraction.If F is continuous,then f has a unique fixed point x?in X.

    Since the above Corollary 3.12 implies the corresponding theorems in Wardowski[21],′Ciri′c[6],Hardy and Rogers[7],thus these results are consequences of our Theorem 3.10.

    4 Periodic Point Results

    It is an obvious fact that,if f is a mapping which has a fixed point x,then x is also a fixed point of fnfor every n∈N.However,the converse is false.Indeed,let X=[0,1]andThen f has a unique fixed point atbut fn=I(identity map on X)for each even n>1,has every point of X as a fixed point. On the other hand,ifgiven by fx=cosx for all,is nonexpansive and every iterative of f has the same fixed point as f.

    In this section we prove some periodic point results for self-mappings on a complete metric space.In the sequel,we need the following definition.

    Definition 4.1A mapping f:X→X is said to have property(P)iffor every

    For further details on these property,we refer to[10].

    Theorem 4.2Let(X,d)be a complete metric space and f:X → X be a mapping satisfying the following conditions

    (i)there exists τ>0 and two functionsthat

    holds for all x∈X with d(fx,f2x)>0,

    (iii)f is α-admissible,

    (v)if w∈Fix(fn)and w/∈Fix(f),then α(fn-1w,fnw)≥1. Then f has property(P).

    and by induction we write

    If there exists n0∈N such thatis a fixed point of f and the proof is finished.Hence,we assume

    From(4.1)and(i),we have

    By using a similar reasoning as in the proof of Theorem 3.8,we get that the sequenceis a Cauchy sequence and hence the completeness of(X,d)ensures that there existssuch that

    Corollary 4.3Let(X,d)be a complete metric space andbe a continuous mapping satisfying

    5 Application

    In this section,we present an application of Theorem 3.9 to establishing the existence of solutions for a nonlinear fractional differential equation considered in[2].

    We will study the existence of solutions for the nonlinear fractional differential problem

    via the integral boundary conditions

    Note that,for a continuous function g:R+→R,the Caputo derivative of fractional order β is defined as

    where[β]denotes the integer part of the real number β.Also,the Riemann-Liouville fractional derivatives of order β for a continuous function g:R+→R is defined by

    provided the right-hand side is point-wise defined on(0,+∞),see for instance[15].

    Now,we prove the following existence theorem.

    Theorem 5.1Suppose that

    (i)there exist a function ξ:R×R→R and τ>0 such that

    Then,problem(5.1)has at least one solution.

    Then,problem(5.1)is equivalent to findwhich is a fixed point of T.

    By passing to logarithm,we write

    Therefore

    This implies that T is an α-type F-contraction.Next,by using condition(iii),we get

    is an easy example of function suitable for Theorem 5.1,whereis given by

    6 Conclusion

    Taking into account its interesting applications,searching for fixed point and periodic point theorems involving contractive type conditions received considerable attention through the last few decades.In this connection,the main aim of our paper is to present new concepts of α-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in[21,22]and different from α-GF-contractions given in[8].For these type of contractions,the existence and uniqueness of fixed point in complete metric space are established.An application to nonlinear fractional differential equation illustrates the usability of the obtained results for studying problems arising in pure and applied sciences.The new concepts lead to further investigations and applications.For instance,using the recent ideas in the literature[12,13,16],it is possible to extend our results to the case of coupled and cyclical fixed points in partially ordered metric spaces.It will be also interesting to apply these concepts in a metric space having graphical structure on it,see[9].

    References

    [1]Abbas M,Ali B,Romaguera S.Fixed and periodic points of generalized contractions in metric space. Fixed Point Theory Appl,2013,2013:243

    [2]Baleanu D,Rezapour Sh,Mohammadi M.Some existence results on nonlinear fractional differential equations.Philos Trans R Soc A,Math Phys Eng Sci,2013,371(1990):Article ID 20120144

    [3]Banach S.Sur les op′erations dans les ensembles abstraits et leur application aux′equations int′egrales. Fund Math,1922,3:133-181

    [4]Boyd D W,Wong J S.On nonlinear contractions.Proc Amer Math Soc,1969,20:458-462

    [5]Caristi J.Fixed point theorems for mappings satisfying inwardness conditions.Trans Amer Math Soc,1976,215:241-251

    [6]′Ciri′c Lj B.A generalization of Banach’s contraction principle.Proc Amer Math Soc,1974,45:267-273

    [7]Hardy G E,Rogers T D.A generalization of a fixed point theorem of Reich.Canadian Math Bull,1973,16:201-206

    [8]Hussain N,Salimi P.Suzuki-Wardowski type fixed point theorems for α-GF-contractions.Taiwanese J Math,2014,18:1879-1895

    [9]Jachymski J.The contraction principle for mapping on a metric space with a graph.Proc Amer Math Soc,2008,136:1359-1373

    [10]Jeong G S,Rhoades B E.Maps for which F(T)=F(Tn).Fixed Point Theory Appl,2005,6:87-131

    [11]Khan M S,Swaleh M,Sessa S.Fixed point theorems by altering distances between the points.Bull Aust Math Soc,1984,30:1-9

    [12]Kirk W A,Srinivasan P S,Veeramani P.Fixed points for mappings satisfying cyclical contractive conditions.Fixed Point Theory,2003,4:79-89

    [13]Lakshmikantham V,′Ciri′c Lj B.Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces.Nonlinear Anal,2009,70:4341-4349

    [14]Meir A,Keeler E.A theorem on contraction mappings.J Math Anal Appl,1969,28:326-329

    [15]Podlubny I.Fractional Differential Equations.Academic Press,1999

    [16]Ran A C M,Reurings M C B.A fixed point theorem in partially ordered sets and some applications to matrix equations.Proc Amer Math Soc,2004,132:1435-1443

    [17]Reich S.Some remarks concerning contraction mappings.Canadian Math Bull,1971,14:121-124

    [18]Samet B,Vetro C,Vetro P.Fixed point theorems for α-ψ-contractive type mappings.Nonlinear Anal,2012,75:2154-2165

    [19]Sgroi M,Vetro C.Multi-valued F-contractions and the solution of certain functional and integral equations. Filomat,2013,27:1259-1268

    [20]Suzuki T.A generalized Banach contraction principle that characterizes metric completeness.Proc Amer Math Soc,2008,136:1861-1869

    [21]Wardowski D.Fixed points of new type of contractive mappings in complete metric space.Fixed Point Theory Appl,2012,doi:10.1186/1687-1812-2012-94

    [22]Wardowski D,Van Dung N.Fixed points of F-weak contractions on complete metric space.Demonstratio Math,2014,47:146-155

    ?August 26,2015;revised December 6,2015.

    ?Dhananjay GOPAL.

    AcknowledgementsThe thanks for the support of CSIR,Govt.of India,Grant No.-25(0215)/13/EMR-II and C.Vetro is member of the Gruppo Nazionale per l’Analisi Matematica,la Probabilit`a e le loro Applicazioni(GNAMPA)of the Istituto Nazionale di Alta Matematica(INdAM).

    中文字幕人成人乱码亚洲影| 久久伊人香网站| 久久午夜亚洲精品久久| 女生性感内裤真人,穿戴方法视频| 久久久成人免费电影| 久久精品人妻少妇| 久久热精品热| 91字幕亚洲| 12—13女人毛片做爰片一| 激情在线观看视频在线高清| 成人欧美大片| 亚洲三级黄色毛片| 久久久精品大字幕| 别揉我奶头 嗯啊视频| 国产亚洲欧美98| 麻豆av噜噜一区二区三区| 很黄的视频免费| 在线看三级毛片| 麻豆成人午夜福利视频| 国产精品嫩草影院av在线观看 | 国产白丝娇喘喷水9色精品| 久久久久久久久久成人| 久久久久久久久久成人| 99精品在免费线老司机午夜| 久久人妻av系列| 日韩欧美在线二视频| 久久99热6这里只有精品| 久9热在线精品视频| 欧美成人一区二区免费高清观看| 嫁个100分男人电影在线观看| 给我免费播放毛片高清在线观看| 91久久精品国产一区二区成人| 欧美性感艳星| 99国产综合亚洲精品| 免费大片18禁| 深爱激情五月婷婷| 免费看美女性在线毛片视频| 91在线精品国自产拍蜜月| 成年人黄色毛片网站| 在线免费观看不下载黄p国产 | 1024手机看黄色片| 精品欧美国产一区二区三| 国产真实乱freesex| av女优亚洲男人天堂| 99热6这里只有精品| 又爽又黄无遮挡网站| 久久精品国产亚洲av天美| 级片在线观看| 国产探花在线观看一区二区| 99久久精品一区二区三区| 99久久精品一区二区三区| 18+在线观看网站| 老司机深夜福利视频在线观看| 亚洲午夜理论影院| 757午夜福利合集在线观看| 在线观看免费视频日本深夜| 国产一级毛片七仙女欲春2| 悠悠久久av| 久久精品人妻少妇| 久久国产乱子伦精品免费另类| 午夜福利欧美成人| 国产欧美日韩一区二区三| 长腿黑丝高跟| 麻豆国产97在线/欧美| a级毛片免费高清观看在线播放| 制服丝袜大香蕉在线| 97热精品久久久久久| 国产精华一区二区三区| 偷拍熟女少妇极品色| 黄色女人牲交| 亚洲18禁久久av| 我要看日韩黄色一级片| 一区二区三区四区激情视频 | 国产一区二区激情短视频| 久久久久久国产a免费观看| 在线观看美女被高潮喷水网站 | 国产麻豆成人av免费视频| 又爽又黄无遮挡网站| 久久精品国产亚洲av天美| 99热这里只有是精品50| 国产精品野战在线观看| 国产精品亚洲美女久久久| 久久久久久久久中文| 欧美成人免费av一区二区三区| 国产精品伦人一区二区| 成熟少妇高潮喷水视频| 国产又黄又爽又无遮挡在线| 国产探花在线观看一区二区| 国产伦一二天堂av在线观看| 亚洲色图av天堂| 欧美日韩国产亚洲二区| 黄色配什么色好看| 变态另类成人亚洲欧美熟女| 久久热精品热| 亚洲片人在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲最大成人av| 亚洲五月天丁香| 久久久色成人| 男人的好看免费观看在线视频| 国产精品美女特级片免费视频播放器| 欧美丝袜亚洲另类 | 日本撒尿小便嘘嘘汇集6| 色视频www国产| 欧美国产日韩亚洲一区| 免费在线观看日本一区| 色5月婷婷丁香| 国产白丝娇喘喷水9色精品| 国内精品美女久久久久久| 91av网一区二区| 我的女老师完整版在线观看| 久久久久久大精品| 亚洲aⅴ乱码一区二区在线播放| 精品熟女少妇八av免费久了| 99久国产av精品| 成人精品一区二区免费| 国内精品一区二区在线观看| 亚洲电影在线观看av| 大型黄色视频在线免费观看| 97人妻精品一区二区三区麻豆| 男女下面进入的视频免费午夜| 日韩欧美三级三区| 俄罗斯特黄特色一大片| 亚洲五月天丁香| 简卡轻食公司| 99久国产av精品| 又黄又爽又刺激的免费视频.| 在线观看舔阴道视频| 婷婷精品国产亚洲av| 国产精品一区二区性色av| 成人三级黄色视频| 国产成人福利小说| 男女视频在线观看网站免费| 久久九九热精品免费| x7x7x7水蜜桃| 中出人妻视频一区二区| 午夜精品一区二区三区免费看| 少妇熟女aⅴ在线视频| 我的老师免费观看完整版| 婷婷色综合大香蕉| 欧美精品国产亚洲| 乱人视频在线观看| 中国美女看黄片| 成人鲁丝片一二三区免费| 最近最新中文字幕大全电影3| 搡老熟女国产l中国老女人| 夜夜看夜夜爽夜夜摸| 欧美日本亚洲视频在线播放| 日韩欧美三级三区| 91在线精品国自产拍蜜月| 能在线免费观看的黄片| 亚洲人成网站在线播| 国产亚洲精品综合一区在线观看| 女同久久另类99精品国产91| 精品人妻视频免费看| 亚洲最大成人av| 高清毛片免费观看视频网站| 久久草成人影院| 成人欧美大片| 国产视频一区二区在线看| 欧美在线黄色| 90打野战视频偷拍视频| 成年人黄色毛片网站| 欧美成人免费av一区二区三区| 国产伦精品一区二区三区四那| 日本熟妇午夜| 每晚都被弄得嗷嗷叫到高潮| 色噜噜av男人的天堂激情| 九九热线精品视视频播放| av女优亚洲男人天堂| 国产在视频线在精品| 国产一级毛片七仙女欲春2| 国产精品国产高清国产av| 97碰自拍视频| 欧美黄色片欧美黄色片| 岛国在线免费视频观看| 热99re8久久精品国产| 一本精品99久久精品77| 熟妇人妻久久中文字幕3abv| 老熟妇仑乱视频hdxx| 亚洲综合色惰| 亚洲av第一区精品v没综合| 三级毛片av免费| 亚洲在线观看片| 波野结衣二区三区在线| 免费看a级黄色片| 一个人免费在线观看的高清视频| 亚洲欧美清纯卡通| 精品久久久久久成人av| 赤兔流量卡办理| 亚洲电影在线观看av| 久久婷婷人人爽人人干人人爱| 深爱激情五月婷婷| 99精品久久久久人妻精品| 在线播放国产精品三级| 一个人看视频在线观看www免费| 婷婷精品国产亚洲av在线| 日韩欧美三级三区| 中国美女看黄片| 麻豆av噜噜一区二区三区| 少妇的逼水好多| 永久网站在线| 亚洲,欧美精品.| 69av精品久久久久久| 极品教师在线视频| 亚洲午夜理论影院| 国内少妇人妻偷人精品xxx网站| 国产蜜桃级精品一区二区三区| 免费看美女性在线毛片视频| 很黄的视频免费| 18+在线观看网站| 日本免费一区二区三区高清不卡| 国产精品一及| 69av精品久久久久久| 欧美成人免费av一区二区三区| 欧美绝顶高潮抽搐喷水| av天堂在线播放| 九九热线精品视视频播放| 成人性生交大片免费视频hd| 天堂网av新在线| 九九在线视频观看精品| 男女下面进入的视频免费午夜| 嫩草影院新地址| 免费在线观看亚洲国产| 免费在线观看日本一区| 亚洲人成网站在线播放欧美日韩| 搡女人真爽免费视频火全软件 | 尤物成人国产欧美一区二区三区| 在线观看舔阴道视频| 国产精品久久久久久亚洲av鲁大| 精品久久国产蜜桃| 别揉我奶头~嗯~啊~动态视频| 精品国内亚洲2022精品成人| 亚洲国产高清在线一区二区三| 他把我摸到了高潮在线观看| 中亚洲国语对白在线视频| 色综合欧美亚洲国产小说| 757午夜福利合集在线观看| 亚洲国产精品999在线| 国内毛片毛片毛片毛片毛片| 久久久久性生活片| 国产伦精品一区二区三区四那| 成人毛片a级毛片在线播放| www.999成人在线观看| 亚洲精品影视一区二区三区av| 人妻久久中文字幕网| 免费看光身美女| 18禁黄网站禁片免费观看直播| 日本a在线网址| 成熟少妇高潮喷水视频| 伊人久久精品亚洲午夜| 18禁黄网站禁片免费观看直播| 午夜亚洲福利在线播放| 亚洲欧美激情综合另类| 亚洲国产日韩欧美精品在线观看| 神马国产精品三级电影在线观看| 国产精品爽爽va在线观看网站| 欧美色欧美亚洲另类二区| 久久久久免费精品人妻一区二区| 精品久久久久久,| 51午夜福利影视在线观看| 91麻豆av在线| 久久久久国产精品人妻aⅴ院| 久久精品国产亚洲av香蕉五月| 在线观看午夜福利视频| 国产大屁股一区二区在线视频| 国产亚洲精品久久久久久毛片| 色噜噜av男人的天堂激情| 免费人成视频x8x8入口观看| 欧美日韩亚洲国产一区二区在线观看| 黄色一级大片看看| 国产不卡一卡二| 丝袜美腿在线中文| 欧美高清性xxxxhd video| 国产乱人伦免费视频| 国产蜜桃级精品一区二区三区| 嫩草影院入口| 久久人妻av系列| 夜夜看夜夜爽夜夜摸| 欧美黄色片欧美黄色片| 午夜精品久久久久久毛片777| 看片在线看免费视频| 欧美+亚洲+日韩+国产| 亚洲性夜色夜夜综合| 精品日产1卡2卡| 成人国产综合亚洲| 精品国产三级普通话版| 欧美成人a在线观看| 蜜桃久久精品国产亚洲av| 国产视频一区二区在线看| 日韩欧美三级三区| 99精品久久久久人妻精品| 18+在线观看网站| 美女大奶头视频| 毛片一级片免费看久久久久 | 国产亚洲av嫩草精品影院| 亚洲天堂国产精品一区在线| 国产精品亚洲一级av第二区| 淫妇啪啪啪对白视频| 免费av不卡在线播放| 国产蜜桃级精品一区二区三区| 毛片女人毛片| 怎么达到女性高潮| 嫩草影视91久久| 国产精品爽爽va在线观看网站| 欧美xxxx性猛交bbbb| 成人永久免费在线观看视频| 欧美bdsm另类| 欧美成人一区二区免费高清观看| 午夜精品一区二区三区免费看| 欧美又色又爽又黄视频| 亚洲av一区综合| 亚洲天堂国产精品一区在线| 亚洲美女黄片视频| 亚洲精品久久国产高清桃花| 可以在线观看毛片的网站| 成人性生交大片免费视频hd| 在线国产一区二区在线| 男女做爰动态图高潮gif福利片| 美女cb高潮喷水在线观看| 成人欧美大片| www日本黄色视频网| 国产亚洲精品久久久com| 国产亚洲精品久久久com| 又黄又爽又免费观看的视频| 精品久久久久久久久av| 老司机福利观看| 成人av一区二区三区在线看| 91久久精品国产一区二区成人| 麻豆一二三区av精品| 国产高潮美女av| 丝袜美腿在线中文| 免费人成在线观看视频色| 一级a爱片免费观看的视频| 亚洲欧美清纯卡通| 91狼人影院| 日韩欧美三级三区| 欧美丝袜亚洲另类 | 真实男女啪啪啪动态图| 自拍偷自拍亚洲精品老妇| 18美女黄网站色大片免费观看| 日日摸夜夜添夜夜添小说| 国产不卡一卡二| 别揉我奶头~嗯~啊~动态视频| 又黄又爽又免费观看的视频| 国产黄a三级三级三级人| 免费在线观看成人毛片| 亚洲电影在线观看av| а√天堂www在线а√下载| 精品国内亚洲2022精品成人| 男人舔女人下体高潮全视频| 亚洲国产色片| 看十八女毛片水多多多| 久久久久久大精品| 黄色丝袜av网址大全| 久久久久久久久久成人| 亚洲综合色惰| 成人鲁丝片一二三区免费| 亚洲无线观看免费| 美女黄网站色视频| xxxwww97欧美| .国产精品久久| 久久精品综合一区二区三区| 亚洲美女搞黄在线观看 | 成年女人毛片免费观看观看9| 国产一级毛片七仙女欲春2| 亚洲av熟女| 成人精品一区二区免费| 色综合亚洲欧美另类图片| 三级毛片av免费| av天堂中文字幕网| 偷拍熟女少妇极品色| 欧美最黄视频在线播放免费| 最新中文字幕久久久久| 在线免费观看不下载黄p国产 | 亚洲专区中文字幕在线| 中国美女看黄片| 欧美日韩国产亚洲二区| 免费电影在线观看免费观看| 国产69精品久久久久777片| 精品国产亚洲在线| 女人十人毛片免费观看3o分钟| 中文字幕av在线有码专区| 久久久久久久久大av| 麻豆av噜噜一区二区三区| 在线观看免费视频日本深夜| 乱人视频在线观看| 精品久久久久久成人av| 嫩草影视91久久| 毛片女人毛片| 久久国产精品影院| 性色av乱码一区二区三区2| 亚洲中文日韩欧美视频| 欧美午夜高清在线| 婷婷丁香在线五月| 日韩欧美 国产精品| 狠狠狠狠99中文字幕| 高潮久久久久久久久久久不卡| 一级a爱片免费观看的视频| 国产真实乱freesex| 亚洲专区国产一区二区| 18禁在线播放成人免费| 国产高清三级在线| 男女下面进入的视频免费午夜| x7x7x7水蜜桃| 欧美日韩黄片免| 免费人成视频x8x8入口观看| 在线观看舔阴道视频| 国产高清视频在线观看网站| 免费黄网站久久成人精品 | 精品无人区乱码1区二区| 动漫黄色视频在线观看| 两个人视频免费观看高清| 赤兔流量卡办理| 变态另类丝袜制服| 蜜桃久久精品国产亚洲av| 村上凉子中文字幕在线| 国产成人av教育| 麻豆久久精品国产亚洲av| 亚洲精华国产精华精| 99久久九九国产精品国产免费| 免费人成视频x8x8入口观看| 成人特级黄色片久久久久久久| 精品欧美国产一区二区三| 一进一出抽搐gif免费好疼| 国产美女午夜福利| 亚洲欧美日韩无卡精品| 国产精品久久电影中文字幕| 亚洲av美国av| 亚洲av中文字字幕乱码综合| 听说在线观看完整版免费高清| 国产伦在线观看视频一区| 成人午夜高清在线视频| 熟女电影av网| 久久久国产成人免费| 此物有八面人人有两片| 国产精品久久久久久久久免 | 最新在线观看一区二区三区| 欧美bdsm另类| 男女那种视频在线观看| 国产av不卡久久| 在线国产一区二区在线| 女人十人毛片免费观看3o分钟| av福利片在线观看| 99在线视频只有这里精品首页| 日韩免费av在线播放| 色视频www国产| 精品久久久久久久久亚洲 | 亚洲成人免费电影在线观看| 亚洲成人久久爱视频| 色在线成人网| 国产av一区在线观看免费| 欧美精品国产亚洲| 久久久久免费精品人妻一区二区| 国产成人欧美在线观看| 最好的美女福利视频网| 欧美国产日韩亚洲一区| 亚洲内射少妇av| 在线观看舔阴道视频| 丝袜美腿在线中文| 国产一级毛片七仙女欲春2| 无人区码免费观看不卡| 欧美bdsm另类| 亚洲欧美日韩高清在线视频| 听说在线观看完整版免费高清| 日韩精品中文字幕看吧| 欧美成狂野欧美在线观看| 亚洲av成人不卡在线观看播放网| 婷婷丁香在线五月| 88av欧美| 91九色精品人成在线观看| 亚洲黑人精品在线| 人妻夜夜爽99麻豆av| 桃色一区二区三区在线观看| 丰满的人妻完整版| 精品国内亚洲2022精品成人| a级毛片a级免费在线| 99国产精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 我的老师免费观看完整版| 成年免费大片在线观看| 亚洲综合色惰| 中文字幕av在线有码专区| 亚洲欧美日韩卡通动漫| 精品一区二区三区人妻视频| 女人被狂操c到高潮| 亚洲综合色惰| 色综合婷婷激情| 亚洲国产精品成人综合色| 亚洲专区国产一区二区| 精品熟女少妇八av免费久了| 欧美在线黄色| 怎么达到女性高潮| 天美传媒精品一区二区| 精品国产亚洲在线| 日本黄色片子视频| 国产精品一及| 在线观看舔阴道视频| 最近最新免费中文字幕在线| 精品人妻偷拍中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 男女床上黄色一级片免费看| 国产精品亚洲美女久久久| 在线观看午夜福利视频| 国产精品影院久久| 直男gayav资源| 久久久久久国产a免费观看| 亚洲国产精品合色在线| 久9热在线精品视频| 少妇人妻一区二区三区视频| 中文在线观看免费www的网站| a级毛片免费高清观看在线播放| 国产精品国产高清国产av| 欧美色视频一区免费| 午夜影院日韩av| 国产在视频线在精品| 久久久久久大精品| 亚洲专区国产一区二区| 非洲黑人性xxxx精品又粗又长| 久久亚洲精品不卡| 精品久久久久久久人妻蜜臀av| 岛国在线免费视频观看| 99久久久亚洲精品蜜臀av| 亚洲欧美精品综合久久99| 男女床上黄色一级片免费看| 内射极品少妇av片p| 男插女下体视频免费在线播放| 国产男靠女视频免费网站| 又爽又黄a免费视频| or卡值多少钱| 九九在线视频观看精品| 国产亚洲欧美98| 一进一出好大好爽视频| 91在线观看av| 亚洲欧美清纯卡通| 日韩欧美精品v在线| 99热这里只有是精品50| 搡老妇女老女人老熟妇| 两个人的视频大全免费| 亚洲av电影不卡..在线观看| 国产精品三级大全| 国产白丝娇喘喷水9色精品| 国产成人aa在线观看| 国产高清激情床上av| 波多野结衣巨乳人妻| 精品久久久久久久末码| 久久久久久九九精品二区国产| 精品久久久久久成人av| 亚洲av日韩精品久久久久久密| 黄色日韩在线| 国产视频内射| 欧美黑人欧美精品刺激| 757午夜福利合集在线观看| 成人av在线播放网站| 久久亚洲精品不卡| 日韩欧美在线乱码| 高清毛片免费观看视频网站| 亚洲欧美日韩无卡精品| 中文字幕久久专区| 国产精品久久久久久人妻精品电影| 亚洲专区中文字幕在线| 99久久成人亚洲精品观看| 露出奶头的视频| 欧美区成人在线视频| 国产精品亚洲av一区麻豆| 波多野结衣高清作品| 黄色一级大片看看| 热99re8久久精品国产| 91麻豆精品激情在线观看国产| 9191精品国产免费久久| 国产精华一区二区三区| 亚洲精品成人久久久久久| 99精品在免费线老司机午夜| 欧美成人a在线观看| 日本五十路高清| 99热这里只有是精品50| 成人午夜高清在线视频| 成人国产一区最新在线观看| 高清在线国产一区| 深爱激情五月婷婷| 人妻夜夜爽99麻豆av| 日韩欧美在线二视频| 亚洲性夜色夜夜综合| 亚洲中文字幕一区二区三区有码在线看| 如何舔出高潮| 欧美性猛交黑人性爽| 国产视频一区二区在线看| 国产成人欧美在线观看| 亚洲精品粉嫩美女一区| 日本成人三级电影网站| 国产精品伦人一区二区| 国产一区二区亚洲精品在线观看| 在线观看66精品国产| 国产精品亚洲av一区麻豆| 九色成人免费人妻av| 国产精品98久久久久久宅男小说| 桃色一区二区三区在线观看| 免费高清视频大片| 国产精品1区2区在线观看.| 国产视频内射| 亚洲18禁久久av| 欧美日本视频| 一个人观看的视频www高清免费观看| 精品一区二区三区视频在线观看免费| 精品熟女少妇八av免费久了| 91午夜精品亚洲一区二区三区 | 欧美成人性av电影在线观看| 日本黄色片子视频| 在线观看一区二区三区| 国产aⅴ精品一区二区三区波| 国产国拍精品亚洲av在线观看| 波多野结衣巨乳人妻| 深爱激情五月婷婷| 小说图片视频综合网站| 一进一出抽搐动态|