• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermally Radiative Rotating Magneto-Nano fl uid Flow over an Exponential Sheet with Heat Generation and Viscous Dissipation:A Comparative Study

    2018-05-14 01:05:17SagheerBilalHussainandAhmed
    Communications in Theoretical Physics 2018年3期

    M.Sagheer,M.Bilal,S.Hussain,and R.N.Ahmed

    Department of Mathematics,Capital University of Science and Technology,Islamabad,Pakistan

    Nomenclature

    ?

    1 Introduction

    In the present fast growing and developing computer age,the transportation,communication,heavy mechanical industries,electronics industries and house hold appliances,all are running by some mechanical and electronic devices.Almost in all such devices,according to the requirements of devices,a system of cooling or heating is built-in,by which a fl uid fl ows through or around the device to prevent these devices from overheating or cooling down from certain temperature threshold.To meet the human requirements and demand of the market,it is essential that these devices work round the clock.To keep the devices at a constant temperature,the heat dissipated must be equal to the heat generated.The conventional fl uids with low thermal conductivity do not meet the temperature requirements of many mechanical and electronics devices,which results in poor performance of these devices and reduces their efficiency and working age.Therefore,it is imperative to improve the thermal conductivity of the conventional fl uids.

    The conventional fl uids used for the transfer of heat energy were first time replaced by the nano fl uids by Choi[1]followed by many researchers.A nano fl uid is a mixture of nanoparticles in a conventional heat transfer fl uid.The nanoparticles(1–100 nm)in size are usually metals,metallic oxides,nano fibers,etc.Choi[1]experimentally found that the nanoparticles when added to the base fl uids,considerably improve the thermal conductivity of the base fl uid.Magyari and Keller[2]focused on the heat and mass transfer analysis in the boundary layer fl ow due to an exponentially continuous stretching sheet.Eastmanet al.[3]observed that the thermal conductivity of pure ethylene glycol is much increased when copper nanoparticles are added to it.Liet al.[4]investigated the MHD nano fl uid fl ow in a thin film through unsteady stretching sheet with additional effects of thermal radiation,heat generation,Brownian motion,and thermophoresis.They used theMATLABbuilt-in bvp4c solver to solve their ODEs.It is found form their investigation that temperature and nanoparticle concentration have opposite behavior for the thermophoresis parameter.Nadeemet al.[5]analyzed the in fl uence of nanoparticles on the two-dimensional fl ow of Maxwell nano fl uid over a stretching sheet for the heat and mass transfer effects.By applying the boundarylayer approximation,they also incorporated the effects of MHD and elasticity parameter.Sheikholeslamiet al.[6]presented an analysis focusing on the unsteady squeezing fl ow of electrically conducting nano fl uid using the homotopy perturbation method.Two phase simulation model for the nano fl uid is considered along with the magnetohydrodynamics effects.They concluded that the Nusselt number is a decreasing function of the squeezing parameter.Another useful contribution of Sheikholeslami and Ganji,[7]is a review work addressing both the single and the double phase models for the nano fl uids.They describe brie fl y the various attempts of different scientists on heat transfer of convective nano fl uids.It is further analyzed that while increasing the Reynolds number and Rayleigh number,the rate of heat transfer is increased.Sheikholeslamiet al.[8]discussed the thermal radiation on MHD free convection of Al2O3-water nano fl uid.Chopkaret al.[9]studied the effect of the size of the nanoparticles on the thermal conductivity of nano fl uid and found that the thermal conductivity decreases by increasing the size of the particles.In last half decade,many articles related to the nano fl uid dynamics are published in literature.[10?24]

    A reasonable number of applications emphasizing the role of steady and unsteady rotating fl ows may be found in chemical and geophysical fl uid mechanics.These all are of applied nature like in the thermal power generating systems,food processing,the skins of high speed air crafts and in rotor stator systems.The pioneering work highlighting the rotating fl ow was done by Wang.[25]Takharet al.[26]discussed the effects of magnetohydrodynamic in a rotating fl ow.They concluded that the skin friction along thex-axis increases for the higher values of the magnetic parameter and has a reverse relation for they-axis skin friction coefficient.Zaimiet al.[27]applied the numerical technique to examine the rotating fl ow of viscoelastic fl uid.Turkyilmazoglu[28]applied the spectral numerical integration method for the problem related to the shrinking rotating disk with the effect of magnetohydrodynamic.Some recent attempts emphasizing the rotating fl ow can be found in Refs.[29–31].

    During the study of nano fl uid,the thermal radiative properties of Newtonian and non-Newtonian fl uids for the heat transfer phenomenon have got much attention.Because of the insertion of the nanoparticles in the base fl uid,the thermal properties are enhanced which resultantly rises the temperature of the nano fl uids and for the higher temperature differences,the effects of the thermal radiation cannot be neglected.The operating systems performing the energy conversion at high temperature show a comparable effect of the thermal radiation.In other engineering and chemical processes such as solar water technology,fossil fuel combustion,astrophysical fl ows,hypersonic fl ights,gas turbines,space vehicles,nuclear reactors etc.,the effects of thermal radiations are quite phenomenal.Many researchers have considered the in fl uence of thermal radiation on the boundary layer fl ow of Newtonian and non-Newtonian fl uids.Mushtaqet al.[32]considered the nonlinear thermal radiation in the two-dimensional stagnation point fl ow with additional effects of Joule heating and viscous dissipation over a convectively heated surface.They deduced that both the temperature and its gradient are increasing functions of thermal radiation parameter.Pourmehranet al.[33]numerically investigated the MHD boundary layer fl ow of nano fl uid through convectively heated vertical stretching sheet.During the study,the in fl uence of thermal radiation and buoyancy effects got special attention.Pourmehran et al.considered three different types of base fl uid i.e.,pure water,ethylene glycol 30%and ethylene glycol 50%while the four types of nanoparticles i.e.,copper,silver,alumina,and titanium oxide.

    Motivated by the above mentioned literature,the primary objective of the present study is to examine the effects of thermal radiation and viscous dissipation on heat transfer fl ow over a bi-directional convectively heated exponentially stretching sheet in the presence of transverse magnetic field and volumetric rate of heat generation.Five different nanoparticles(silver,copper,copper oxide,titanium oxide,alumina)are assumed to be suspended in the pure water.A detailed comparative study of these nano fl uids for the fl ow and heat transfer is presented and discussed graphically and numerically.Boundary layer approximations are used to govern the partial differential equations,which are then transformed to the ordinary differential equations with the help of transformations.The modeled problem is solved numerically by the shooting method using Runga-Kutta integration scheme of order 4.Effects of emerging parameters on velocity and temperature pro files are discussed in detail.Nusselt number and skin friction coefficient are also calculated.In the limiting case,the results are veri fied by reproducing the results of previously published article[34?35]

    2 Mathematical Formulation

    A laminar,incompressible and steady water-based electrically conducted nano fl uid fl ow over an exponentially bidirectional stretching sheet is considered.Sheet temperatureTfis controlled via convection by considering hot fl uid below it.The temperature faraway from the surface where its difference is negligible is known as the ambient temperature and is denoted byT∞.The fl uid is assumed to rotate with angular velocityalongz-axis having the coriolis effect.A transverse variable magnetic fieldis applied alongz-axis with the assumption of small Reynolds number,ignoring the induced magnetic field.The fl uid has internal volumetric rate of heat generationIn thexdirection,the velocity of the sheet is taken asas shown in Fig.1.

    Fig.1 Geometry of the Problem.

    Further the effects of the thermal radiation,Joule heating and viscous dissipation are considered in the formulation of energy equation.For the nano fl uid model,the Tiwari and Das model.[36]has been utilized.Applying the boundary layer by incorporating the Boussinesq approximations,the conservation equations of mass,momentum and energy in the mathematical form can be expressed as

    In Table 1,the thermo-physical properties of different nanoparticles and pure water are shown.The following dimensionless variables are used to convert the system of the non-linear PDEs to the system of ODEs.

    In Eq.(4),qris a radiative heat fl ux which is de fined as

    Furthermore,the temperature difference within the fl ow is assumed such thatT4may be expanded in a Taylor series.Hence,expandingT4aboutT∞and neglecting the higher order terms,we get

    Using the similarity transformation de fined in Eq.(9),Eq.(1)is identically satis fied while Eqs.(2)–(5)are converted into the following nonlinear ordinary differential equations:

    Table 1 Thermo-physical properties of H2O and nanoparticles.

    The transformed boundary conditions are:

    3 Solution Methodology

    An efficient numerical technique,namely the shooting method has been employed to solve the transformed ordinary differential equations along with the boundary con-ditions for different values of the emerging parameters.While applying the shooting method,[42]first the higher order boundary value problem is converted to a system of first order initial value problem(IVP).During the conversion,fis denoted byy1,gbyy4andθbyy6.The missing initial conditions are supposed to be?1,?2and?3.The converted first order IVP takes the following form

    Fourth order Runge-Kutta method is utilized to solve this IVP.The re finement of initial guesses is carried out by the Newton’s method.Because the numerical solution cannot be computed on the unbounded domain[0,∞),a bounded domain[0,η∞]has been considered,whereη∞is an appropriate real number.After performing a number of computational experiments,η∞is set to 4,because there is no signi ficant variation in the results forη∞>4.The stoping criteria set for the Newton’s iterative process is

    Throughout this article,?is chosen as 10?6.For the validation of theMATLABcode of the shooting method,it is affectively applied to reproduce the numerical results of Javedet al.[35]and Ahmad and Mustafa.[34]The successful comparison has been presented in Table 2.

    Table 2 Comparison of present results with those of Javed et al.[35]and Ahmad and Mustafa.[34]

    4 Results and Discussions

    In this section,we discuss the in fl uence of different parameters such as nanoparticles volume fraction?,rotational parameterλ,magnetic parameterM,thermal radiation parameterR,Eckert numberEc,heat generation/absorption parameterQhon the velocity,temperature,skin-friction and Nusselt number,both graphically and numerically in the tabular form.

    In Table 3,the in fl uence of the nanoparticle volume fraction?,rotational parameterλand magnetic parameterMon the skin friction coefficient alongx-axis is presented for different nanoparticles.It is observed that due to the addition of more nanoparticles in the base fl uid,the skin-friction is enhanced.This enhancement is more rapid in Ag-H2O nano fl uid whereas in case of Al2O3-H2O,the increase in the skin-friction is less as compared to the other nanolfuids.Quite similar behavior is noticed for the rotational parameterλ.When the magnetic field is intensi fied along thez-axis,the skin-friction escalates along thex-axis due to the presence of the Lorentz force.Again,Ag-H2O nano fl uid has more frictional force as compared to the other nano fl uids.

    Table 3 Effect of ?,λ and M on the skin friction coefficient along x-axis when Qh=0.1,Bi=0.6,Pr=6.2,n=3.0,R=0.2,Ec=0.01.

    Table 4 Numerical values of skin friction coefficient along y-axis for different values of parameters when Qh=0.1,R=0.2,Ec=0.01.

    Table 5 Numerical values of local Nusselt for different values of parameters when ? =0.01,λ =0.2,M=0.3.

    Table 3 shows the effect of variation of nanoparticles volume fraction?,rotational parameterλ,and magnetic parameterMon the skin friction coefficient alongyaxis. From the table,it is highlighted that fractional force between the fl uid and the solid surface in theydirection is enhanced when the nanoparticles volume fraction is increased.However this increase in skin friction is very small. Again it is observed that Al2O3water base nano fl luid has least increase when compared with the other nano fl uids.By escalating the angular velocity of the nanoparticles,the skin friction rises along they-axis.The effect of magnetic fieldMon the skin friction along they-axis is quite similar as already shown in Table 3.By enhancing the magnetic parameter,the surface fractional force also increased.

    Fig.2 In fl uence of ?,λ,and M on f′(η)for Al2O3-H2O nano fl uid.

    Fig.3 In fl uence of ?, λ,and M on f′(η)for CuO-H2O nano fl uid.

    Fig.4 In fl uence of ?, λ and M on f′(η)for TiO2-H2O nano fl uid.

    The effect of thermal radiation parameterR,Eckert numberEc,heat generation/absorption parameterQhand Biot number on Nusselt number is shown in Table 5.From this table,it is observed that these parameters have increasing effect on the Nusselt number.The comparison among different nanoparticles exhibits that Al2O3-H2O nano fl uid possesses the highest value of Nusselt number for thermal radiation parameter.It is also perceived that Ag-H2O nano fl uid has more heat transfer rate as compared to the other nano fl uids for the increasing values of Eckert number and heat generation/absorption parameterQh.Nusselt number is also enhanced for the higher values of the Biot numberBi.It happens because for the higher values of the Biot number,a stronger convection is produced which causes higher rate of change in the temperature.

    Fig.5 In fl uence of ?,λ and M on f′(η)for Cu-H2O nano fl uid.

    Fig.6 In fl uence of ?,λ and M on f′(η)for Ag-H2O nano fl uid.

    Fig.7 In fl uence of Bi,Ec and Qhon θ(η)for Al2O3-H2O nano fl uid.

    Fig.8 In fl uence of Bi,Ec and Qhon θ(η)for CuO-H2O nano fl uid.

    Fig.9 In fl uence of Bi,Ec and Qhon θ(η)for TiO2-H2O nano fl uid.

    Fig.10 In fl uence of Bi,Ec and Qhon θ(η)for Cu-H2O nano fl uid.

    Fig.11 In fl uence of Bi,Ec and Qhon θ(η)for Ag-H2O nano fl uid.

    Fig.12 In fl uence of R,M and ? on θ(η)for Al2O3-H2O nano fl uid.

    Fig.13 In fl uence of R,M and ? on θ(η)for CuO-H2O nano fl uid.

    Fig.14 In fl uence of R,M and ? on θ(η)for TiO2-H2O nano fl uid.

    Fig.15 In fl uence of R,M and ? on θ(η)for Cu-H2O nano fl uid.

    Fig.16 In fl uence of R,M and ? on θ(η)for Ag-H2O nano fl uid.

    To visualize the effect of different physical parameters on the velocityf′(η)and the temperature pro fileθ(η),Figs.2–6 are plotted.In Figs.2–6,the effects of nanoparticle volume fraction?,rotational parameterλand magnetic parameterMon the velocity pro file for alumina,copper oxide,titanium oxide,copper and silver based nano fl uids are displayed.For all the nano fl uids,it is observed that the velocity as well as the boundary layer thickness of the nano fl uid decreases when the quantity of the nanoparticles in the base fl uid is increased.Velocity distribution is dominant at the surface of the sheet.The effect of rotational parameterλwhich is the associated with the angular velocity of the fl uid,on velocity pro file is displayed in Figs.2–6.From these figures,it is noticed that the velocity pro file and its momentum boundary layer thickness is reduced for the increasing values ofλ.Hence,the rotational effects resist the fl uid fl ow in thex-direction.For higher values of rotational parameter,the velocity becomes negative in some part of the boundary layer thickness and an interesting phenomenon of oscillatory decaying pro file are also observed.The Lorentz forces,which are resistive in nature are produced when the magnetic field is applied across the fl uid fl ow.These forces are responsible for the reduction in the fl uid particle’s motion for the higher values of magnetic parameterM.Hence for all the nano fl uids,the speed of the fl uid decreases for the increasing values of magnetic parameter.

    To observe the effect of the variation in the Biot numberBi,Eckert numberEc,and heat generation parameterQhon the temperature distribution Figs.7–11 are plotted.It is observed that the higher values of the Biot number escalate the temperature distribution and the thermal boundary layer thickness.The same observation is preserved for all the nano fl uids.The strength of the convected heating is signi fied for the higher values of the Biot number which resultantly rise the temperature distribution.The temperature is enhanced when the Eckert number is increased.Eckert number appears in the energy equation because of the consideration of the viscous dissipation effects in the fl uid motion.It is inversely proportional to the difference between the fl uid temperature on the surface and the ambient temperature.An increase in the Eckert number means there is a slight temperature difference between the surface and the thermal boundary layer and hence the rate of heat transfer is reduced.This reduction in heat transfer rate leads to escalate the temperature of the nano fl uid as shown in Figs.7–11.The effect of heat generation parameterQhis also displayed in the same figures.It is quite obvious that if heat is generated from any external or internal source the temperature of the fl uid is increased.In Figs.12–16,the in fl uence of the thermal radiation parameterR,magnetic parameterMand nanoparticle volume fraction?is displayed for the temperature distribution.Higher values of thermal radiation produces more heat in the working fl uid which rises the temperature and the thermal boundary layer thickness of the nano fl uid as shown in these figures.By increasing the magnetic field across the fl uid,the resistive forces are enhanced.Temperature is increased due to these resistive forces.Lastly,by inserting the more quantity of nanopartices in the base fl uid,the thermal properties of the fl uid go up and hence the temperature of the fl uid is increased.

    5 Concluding Remarks

    This article encompasses the three-dimensional MHD rotating fl ow of electrically conducting nano fl uid over an exponentially stretching sheet.The effect of heat generation,viscous dissipation and thermal radiation for five different nanoparticles is analyzed graphically and numerically.The main findings of the investigation are as follows.

    ?Al2O3-H2O nano fl uid has more capacity to transfer heat as compared to the other discussed nano fl uids when the thermal radiation is enhanced.

    ?The skin friction coefficient is maximum for Ag-H2O nano fl uid.

    ?An increase in the Eckert numberEcand the heat generation parameterQhreduces the Nusselt number.This reduction in the heat transfer rate is much lower for Ag-H2O nano fl uid.

    ?The velocity pro file diminishes for increasing values of the magnetic parameterM.

    ?Ag-H2O and Cu-H2O nano fl uids have greater values of the Nusselt number as compared to Al2O3-H2O and TiO2-H2O nano fl uids.

    [1]S.U.S.Choi,ASME Int.Mech.Engr.Cong.Exp.78(1995)99.

    [2]E.Magyari and B.Keller,J.Phys.D 32(1999)577.

    [3]J.A.Eastman,S.U.S.Choi,S.Li,et al.,Appl.Phys.Let.78(2001)718.

    [4]J.Li,L.Liu,L.Zheng,and B.B.Mohsin,J.Taiwan Inst.Chem.Engr.67(2016)226.

    [5]S.Nadeem,R.U.Haq,and Z.H.Khan,J.Taiwan Inst.Chem.Engr.45(2014)121.

    [6]M.Sheikholeslami,M.Hatami,and G.Domairry,J.Taiwan Inst.Chem.Engr.46(2015)43.

    [7]M.Sheikholeslami and D.D.Ganji,J.Taiwan Inst.Chem.Engr.65(2016)43.

    [8]M.Sheikholeslami,T.Hayat,and A.Alsaedi,Int.J.Heat Mass Transfer 96(2016)513.

    [9]M.Chopkar,S.Sudarshan,P.K.Das,and I.Manna,Metall.Matter.Trans.A 39(2009)1535.

    [10]M.Ramzan and M.Bilal,PLoS ONE 10(2015)e0124929.

    [11]M.Ramzan and M.Bilal,J.Mol.Liq.215(2016)212.

    [12]M.Bilal,M.Sagheer,and S.Hussain,Alex.Engr.J.,doi.org/10.1016/j.aej.2017.03.039,(2017).

    [13]M.Sheikholeslami and S.A.Shehzad,Int.J.Heat Mass Transfer 109(2017)82.

    [14]M.Bilal,S.Hussain,and M.Sagheer,Bull.Po.Acad.Sci.Tech.Sci.65(2017)383.

    [15]M.Sheikholeslami and S.A.Shehzad,Int.J.Heat Mass Transfer 113(2017)796.

    [16]M.Sheikholeslami,T.Hayat,and A.Alsaedi,Int.J.Heat Mass Transfer 108(2017)1870.

    [17]M.Sheikholeslami and M.M.Bhatti,Int.J.Heat Mass Transfer 109(2017)115.

    [18]M.Sheikholeslami and H.B.Rokni,Int.J.Heat Mass Transfer 107(2017)288.

    [19]M.Sheikholeslami and M.M.Bhatti,Int.J.Heat Mass Transfer 111(2017)1039.

    [20]M.Sheikholeslami and M.K.Sadoughi,Int.J.Heat Mass Transfer 116(2018)909.

    [21]M.Sheikholeslami and M.M.Bhatti,Int.J.Heat Mass Transfer 111(2017)1039.

    [22]M.Sheikholeslami,Phys.B 516(2017)55.

    [23]M.Sheikholeslami,Eur.Phys.J.Plus.132(2017)55.

    [24]M.Sheikholeslami and H.B.Rokni,Int.J.Heat Mass Transfer 115(2017)1203.

    [25]C.Y.Wang,Zeitschrift für angewandte Math-ematik und Physik ZAMP 39(1988)177.

    [26]H.S.Takhar,A.J.Chamkha,and G.Nath,Int.J.Therm.Sci.42(2003)23.

    [27]K.Zaimi,A.Ishak,and I.Pop,Appl.Math.Mech.34(2013)945.

    [28]M.Turkyilmazoglu,Comp.&Fluids 90(2014)51.

    [29]A.Mushtaq,M.Mustafa,T.Hayat,and A.Alsaedi,Comp.&Fluids 27(2016)2223.

    [30]A.Mushtaq,M.Mustafa,T.Hayat,and A.Alsaedi,Adv.Powder Technol.27(2017)2223.

    [31]A.U.Rehman,R.Mehmood,and S.Nadeem,Appl.Therm.Engr.112(2017)832.

    [32]A.Mushtaq,M.Mustafa,T.Hayat,and A.Alsaedi,J.Taiwan Inst.Chem.Engr.45(2014)1176.

    [33]O.Pourmehran,M.Rahimi-Gorji,and D.D.Ganji,J.Taiwan Inst.Chem.Engr.65(2016)162.

    [34]R.Ahmed and M.Mustafa,J.Mol.Liq.220(2016)635.

    [35]T.Javed,M.Sajid,Z.Abbas,and N.Ali,Int.J.Num.Meth.Heat&Fluid Flow 21(2011)903.

    [36]R.Tiwari and S.Das,Int.J.Heat Mass Trans.50(2007)2002.

    [37]H.C.Brinkman,J.Chem.Phys.20(1952)571.

    [38]M.Sheikholeslami,J.Mol.Liq.234(Supplement C):(2017)364.

    [39]Mohsen Sheikholeslami,Magnetic Int.J.Hydrogen Energy 42(2017)19611.

    [40]M.Sheikholeslami and A.Zeeshan,Comput.Methods Appl.Mech.Eng.320(Supplement C):(2017)68.

    [41]R.L.Hamilton and O.K.Crosser,Ind.Engr.Chem.Fund.1(1962)187.

    [42]T.Y.Na,Computational Methods in Engineering Boundary Value Problem,Acad.Press,New York(1979)pp.71–76.

    色老头精品视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 欧美一级毛片孕妇| 欧美日韩亚洲国产一区二区在线观看| 两个人看的免费小视频| 国产激情欧美一区二区| 精品久久久久久久人妻蜜臀av| 91九色精品人成在线观看| 亚洲中文日韩欧美视频| 亚洲一区中文字幕在线| 男人舔女人的私密视频| 日韩欧美精品v在线| 九九热线精品视视频播放| 久久久久国内视频| 日本三级黄在线观看| 亚洲中文日韩欧美视频| 国产亚洲精品第一综合不卡| 一个人免费在线观看电影 | x7x7x7水蜜桃| 在线观看舔阴道视频| 午夜福利高清视频| 国产精品日韩av在线免费观看| 两性夫妻黄色片| 日韩欧美在线二视频| 国内精品一区二区在线观看| 哪里可以看免费的av片| 丝袜人妻中文字幕| 亚洲欧美精品综合久久99| 女人爽到高潮嗷嗷叫在线视频| 伊人久久大香线蕉亚洲五| 老汉色av国产亚洲站长工具| 亚洲成人久久爱视频| 人妻丰满熟妇av一区二区三区| 亚洲人成网站在线播放欧美日韩| 在线视频色国产色| 亚洲中文av在线| 国产熟女午夜一区二区三区| 国产精品野战在线观看| 成人av一区二区三区在线看| 90打野战视频偷拍视频| 久久久久久亚洲精品国产蜜桃av| 伦理电影免费视频| 日本熟妇午夜| 精品不卡国产一区二区三区| 成人欧美大片| 欧美性猛交╳xxx乱大交人| 一边摸一边抽搐一进一小说| 午夜精品久久久久久毛片777| 亚洲欧美激情综合另类| 国产在线精品亚洲第一网站| 久久久国产成人精品二区| 亚洲国产精品成人综合色| 久久香蕉激情| 亚洲精品久久国产高清桃花| 成人av在线播放网站| 最新在线观看一区二区三区| 国产探花在线观看一区二区| 国产av麻豆久久久久久久| 搞女人的毛片| 精品少妇一区二区三区视频日本电影| 黑人巨大精品欧美一区二区mp4| 午夜影院日韩av| 无遮挡黄片免费观看| 国产精品av视频在线免费观看| 美女午夜性视频免费| 亚洲精品色激情综合| 国内毛片毛片毛片毛片毛片| 久久精品成人免费网站| 午夜老司机福利片| 法律面前人人平等表现在哪些方面| 国产99久久九九免费精品| 天天一区二区日本电影三级| 日韩欧美 国产精品| 中文字幕人成人乱码亚洲影| 国产亚洲欧美在线一区二区| 亚洲国产欧美一区二区综合| 狂野欧美白嫩少妇大欣赏| xxx96com| 成人国产综合亚洲| 久久久久亚洲av毛片大全| 国产精品九九99| 日韩大码丰满熟妇| 成年免费大片在线观看| 国产精品亚洲美女久久久| 亚洲自拍偷在线| 51午夜福利影视在线观看| 久久久国产成人精品二区| 亚洲欧美日韩东京热| 99re在线观看精品视频| 亚洲成av人片免费观看| 欧美高清成人免费视频www| 免费看a级黄色片| 俄罗斯特黄特色一大片| 国产av一区在线观看免费| 黑人巨大精品欧美一区二区mp4| 免费在线观看完整版高清| 欧美成狂野欧美在线观看| 欧美最黄视频在线播放免费| 国产精品综合久久久久久久免费| 香蕉丝袜av| 可以免费在线观看a视频的电影网站| 岛国在线观看网站| 久久久久久久久久黄片| 亚洲成a人片在线一区二区| 成人永久免费在线观看视频| 国产精品久久久久久精品电影| 国产精品 国内视频| bbb黄色大片| 久久久久久久久免费视频了| 欧美中文综合在线视频| 午夜免费激情av| 久久久久久久精品吃奶| 亚洲人与动物交配视频| 国产激情久久老熟女| 日本熟妇午夜| 精华霜和精华液先用哪个| 一个人免费在线观看电影 | 国产一区二区激情短视频| 亚洲国产精品成人综合色| 日本一区二区免费在线视频| 免费看日本二区| 黄色a级毛片大全视频| 在线观看免费视频日本深夜| 99re在线观看精品视频| 我要搜黄色片| 欧美色视频一区免费| 国产精品 欧美亚洲| 在线十欧美十亚洲十日本专区| 午夜视频精品福利| 日韩欧美一区二区三区在线观看| 中文字幕熟女人妻在线| 久久久国产成人免费| 制服人妻中文乱码| 亚洲国产精品合色在线| 久久欧美精品欧美久久欧美| www.999成人在线观看| 一个人观看的视频www高清免费观看 | 国产伦一二天堂av在线观看| 国产成人系列免费观看| 国产精品爽爽va在线观看网站| 这个男人来自地球电影免费观看| 亚洲男人的天堂狠狠| 在线十欧美十亚洲十日本专区| 久久婷婷人人爽人人干人人爱| 成人手机av| 国产激情偷乱视频一区二区| 国产成人系列免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片女人18水好多| 手机成人av网站| 色在线成人网| 美女黄网站色视频| 免费搜索国产男女视频| 国产精品亚洲av一区麻豆| 日日夜夜操网爽| 一级毛片精品| 久热爱精品视频在线9| 日本黄色视频三级网站网址| 午夜福利在线在线| 床上黄色一级片| 在线观看免费日韩欧美大片| 国产片内射在线| 曰老女人黄片| 亚洲欧美日韩无卡精品| 少妇裸体淫交视频免费看高清 | 日韩欧美在线乱码| 亚洲精品一区av在线观看| 久久久久久久精品吃奶| 日日爽夜夜爽网站| 久久这里只有精品中国| 黄色片一级片一级黄色片| 成人高潮视频无遮挡免费网站| 午夜免费观看网址| 亚洲成人久久爱视频| 99国产精品一区二区三区| 国产精品一及| 免费在线观看亚洲国产| 亚洲 欧美 日韩 在线 免费| 18禁美女被吸乳视频| 亚洲欧洲精品一区二区精品久久久| 一进一出抽搐gif免费好疼| 少妇裸体淫交视频免费看高清 | 中文字幕人成人乱码亚洲影| 狂野欧美白嫩少妇大欣赏| 激情在线观看视频在线高清| or卡值多少钱| 日本三级黄在线观看| 欧美一区二区精品小视频在线| 午夜亚洲福利在线播放| 精品欧美一区二区三区在线| 伦理电影免费视频| 欧美zozozo另类| 男人的好看免费观看在线视频 | 妹子高潮喷水视频| 黄片小视频在线播放| 十八禁人妻一区二区| 久久久久精品国产欧美久久久| 91大片在线观看| 亚洲av五月六月丁香网| 亚洲自拍偷在线| 欧美日韩亚洲综合一区二区三区_| 国产成人av教育| 色综合欧美亚洲国产小说| 波多野结衣巨乳人妻| 国产亚洲精品久久久久久毛片| 99re在线观看精品视频| 国产一区二区三区在线臀色熟女| 黄频高清免费视频| 日本三级黄在线观看| 欧美日韩黄片免| 在线免费观看的www视频| 久久香蕉国产精品| 一个人观看的视频www高清免费观看 | 国产99白浆流出| 国产精品免费一区二区三区在线| 人成视频在线观看免费观看| 色综合欧美亚洲国产小说| 色老头精品视频在线观看| 国内揄拍国产精品人妻在线| 欧美黑人巨大hd| 亚洲男人的天堂狠狠| 亚洲专区国产一区二区| 国产精品,欧美在线| 国产精品久久视频播放| 日本在线视频免费播放| 欧美成人午夜精品| 亚洲男人天堂网一区| 欧美色视频一区免费| 久久 成人 亚洲| 国产主播在线观看一区二区| 可以在线观看的亚洲视频| 国产精品一区二区三区四区免费观看 | 小说图片视频综合网站| 午夜亚洲福利在线播放| 99久久99久久久精品蜜桃| 精品国产美女av久久久久小说| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品一区二区www| 一a级毛片在线观看| 白带黄色成豆腐渣| 人人妻人人澡欧美一区二区| 51午夜福利影视在线观看| 欧美一级毛片孕妇| 不卡av一区二区三区| 男人舔女人的私密视频| 亚洲七黄色美女视频| 亚洲第一电影网av| 999久久久国产精品视频| 精品国产乱码久久久久久男人| 老司机午夜福利在线观看视频| 国产精品99久久99久久久不卡| 丰满的人妻完整版| 日本免费a在线| 色尼玛亚洲综合影院| 一区二区三区高清视频在线| 亚洲人成77777在线视频| 日本撒尿小便嘘嘘汇集6| 国产伦在线观看视频一区| 啦啦啦免费观看视频1| 亚洲五月天丁香| 观看免费一级毛片| 午夜福利高清视频| 俄罗斯特黄特色一大片| 国产精品亚洲av一区麻豆| 中文字幕av在线有码专区| 国产男靠女视频免费网站| 亚洲欧美一区二区三区黑人| 久久伊人香网站| 不卡一级毛片| 久久久国产精品麻豆| 亚洲一区高清亚洲精品| 国产乱人伦免费视频| 黄色视频不卡| www国产在线视频色| 成年版毛片免费区| 亚洲激情在线av| 午夜免费激情av| 久久 成人 亚洲| 最好的美女福利视频网| 欧美日韩亚洲综合一区二区三区_| 老司机午夜福利在线观看视频| 黄色成人免费大全| 天堂动漫精品| 欧美日韩一级在线毛片| 看黄色毛片网站| 少妇人妻一区二区三区视频| 亚洲五月天丁香| 欧美大码av| 悠悠久久av| 天天添夜夜摸| 午夜福利成人在线免费观看| av福利片在线观看| АⅤ资源中文在线天堂| 欧美丝袜亚洲另类 | 色尼玛亚洲综合影院| 在线视频色国产色| 国产69精品久久久久777片 | 麻豆国产97在线/欧美 | 在线永久观看黄色视频| 特大巨黑吊av在线直播| 欧美av亚洲av综合av国产av| 免费在线观看成人毛片| 国产三级中文精品| 中文字幕精品亚洲无线码一区| 在线观看www视频免费| 一个人观看的视频www高清免费观看 | 怎么达到女性高潮| www.999成人在线观看| 中文字幕最新亚洲高清| 国产精品av视频在线免费观看| 久久草成人影院| 男女午夜视频在线观看| 国产69精品久久久久777片 | 精品免费久久久久久久清纯| 国产午夜精品论理片| 日本精品一区二区三区蜜桃| 久久久精品大字幕| 男女床上黄色一级片免费看| 99热这里只有是精品50| 国产精品一区二区三区四区久久| 女人被狂操c到高潮| 一边摸一边做爽爽视频免费| 深夜精品福利| 亚洲人与动物交配视频| 国语自产精品视频在线第100页| 久久久久久国产a免费观看| 校园春色视频在线观看| 好男人电影高清在线观看| 人成视频在线观看免费观看| 级片在线观看| 亚洲精品中文字幕在线视频| 国产精品免费一区二区三区在线| 俺也久久电影网| 天堂av国产一区二区熟女人妻 | 少妇裸体淫交视频免费看高清 | 成年版毛片免费区| 五月玫瑰六月丁香| 亚洲免费av在线视频| av福利片在线观看| 亚洲精品国产精品久久久不卡| aaaaa片日本免费| 国产精品98久久久久久宅男小说| 国产高清视频在线观看网站| 1024视频免费在线观看| 可以在线观看毛片的网站| 国产在线观看jvid| 久久久久九九精品影院| 一级毛片女人18水好多| 国产99白浆流出| 三级国产精品欧美在线观看 | 午夜福利高清视频| 久久精品91无色码中文字幕| 国产熟女xx| 国产91精品成人一区二区三区| 亚洲成a人片在线一区二区| 人妻夜夜爽99麻豆av| 69av精品久久久久久| 成人精品一区二区免费| 国产免费av片在线观看野外av| 18禁黄网站禁片午夜丰满| 欧美成人午夜精品| 国产精品久久久久久人妻精品电影| 亚洲av片天天在线观看| 天堂动漫精品| 正在播放国产对白刺激| 悠悠久久av| 男女视频在线观看网站免费 | 国产精品一及| 成人三级做爰电影| 嫩草影视91久久| 国产成人影院久久av| 老熟妇乱子伦视频在线观看| 91av网站免费观看| 亚洲欧美日韩高清在线视频| 91麻豆精品激情在线观看国产| 日本撒尿小便嘘嘘汇集6| 一进一出抽搐gif免费好疼| 中国美女看黄片| 国产熟女xx| 一二三四社区在线视频社区8| 老司机福利观看| 神马国产精品三级电影在线观看 | 每晚都被弄得嗷嗷叫到高潮| 99riav亚洲国产免费| 白带黄色成豆腐渣| 欧美日韩亚洲综合一区二区三区_| 啦啦啦观看免费观看视频高清| 久久精品国产清高在天天线| 亚洲人成伊人成综合网2020| 精品少妇一区二区三区视频日本电影| 嫩草影院精品99| 国产人伦9x9x在线观看| 女人高潮潮喷娇喘18禁视频| 日韩高清综合在线| 国产午夜精品论理片| 欧美黄色片欧美黄色片| 国产真实乱freesex| 老熟妇乱子伦视频在线观看| 舔av片在线| 日韩大尺度精品在线看网址| 国产蜜桃级精品一区二区三区| 国产区一区二久久| 一边摸一边做爽爽视频免费| 成人特级黄色片久久久久久久| 亚洲人成77777在线视频| 精品久久久久久久久久免费视频| 美女午夜性视频免费| 久久人妻av系列| 日韩中文字幕欧美一区二区| 亚洲九九香蕉| 欧美最黄视频在线播放免费| 成人高潮视频无遮挡免费网站| 久久婷婷成人综合色麻豆| 午夜亚洲福利在线播放| 精品一区二区三区av网在线观看| 日韩欧美国产一区二区入口| 中国美女看黄片| 在线国产一区二区在线| 久久天堂一区二区三区四区| 久久久国产成人精品二区| 中文亚洲av片在线观看爽| 男女之事视频高清在线观看| 日本在线视频免费播放| 女人高潮潮喷娇喘18禁视频| 午夜精品在线福利| 白带黄色成豆腐渣| 99国产综合亚洲精品| 精品日产1卡2卡| 国产三级中文精品| 久久性视频一级片| 手机成人av网站| 欧美性猛交╳xxx乱大交人| 高潮久久久久久久久久久不卡| 村上凉子中文字幕在线| a在线观看视频网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品精品国产色婷婷| 国产三级在线视频| 一二三四在线观看免费中文在| 极品教师在线免费播放| 黄色a级毛片大全视频| 婷婷六月久久综合丁香| 亚洲欧美精品综合久久99| 国产三级在线视频| 午夜激情福利司机影院| 不卡一级毛片| 免费电影在线观看免费观看| 波多野结衣高清作品| 国产v大片淫在线免费观看| 12—13女人毛片做爰片一| 国产精品 国内视频| 国产免费男女视频| 欧美一区二区国产精品久久精品 | 在线观看舔阴道视频| 亚洲国产欧美人成| 日本一本二区三区精品| 婷婷六月久久综合丁香| 日本撒尿小便嘘嘘汇集6| 午夜视频精品福利| 午夜福利视频1000在线观看| 亚洲精品一卡2卡三卡4卡5卡| 日日干狠狠操夜夜爽| 国内精品一区二区在线观看| 给我免费播放毛片高清在线观看| 国产精品影院久久| 亚洲国产中文字幕在线视频| 五月玫瑰六月丁香| 女人爽到高潮嗷嗷叫在线视频| 亚洲黑人精品在线| 免费在线观看影片大全网站| e午夜精品久久久久久久| 国内揄拍国产精品人妻在线| 男女那种视频在线观看| 国产精品爽爽va在线观看网站| 欧美精品啪啪一区二区三区| 给我免费播放毛片高清在线观看| av中文乱码字幕在线| 成熟少妇高潮喷水视频| 亚洲国产欧洲综合997久久,| 国产伦在线观看视频一区| 中亚洲国语对白在线视频| 人妻夜夜爽99麻豆av| 国产亚洲欧美98| 日本 av在线| 免费在线观看日本一区| 男女之事视频高清在线观看| 欧美三级亚洲精品| 亚洲免费av在线视频| 黄色女人牲交| 天堂av国产一区二区熟女人妻 | 在线国产一区二区在线| 夜夜爽天天搞| 精品电影一区二区在线| 校园春色视频在线观看| 久久久水蜜桃国产精品网| 又黄又粗又硬又大视频| 嫁个100分男人电影在线观看| 国产三级中文精品| 日本在线视频免费播放| 欧美一区二区国产精品久久精品 | 黄色视频,在线免费观看| 国产精品99久久99久久久不卡| 99在线视频只有这里精品首页| 亚洲精品一区av在线观看| 国产精品永久免费网站| 国产精品日韩av在线免费观看| 757午夜福利合集在线观看| 高清毛片免费观看视频网站| 亚洲av成人不卡在线观看播放网| 欧美中文综合在线视频| 久久久久久久午夜电影| 婷婷亚洲欧美| 午夜精品久久久久久毛片777| 欧美三级亚洲精品| 国产熟女午夜一区二区三区| 国产探花在线观看一区二区| 亚洲电影在线观看av| 久久性视频一级片| 欧美绝顶高潮抽搐喷水| 久久精品影院6| 怎么达到女性高潮| 中文字幕人妻丝袜一区二区| 亚洲人成网站高清观看| 在线免费观看的www视频| 欧美久久黑人一区二区| 亚洲av成人av| 真人做人爱边吃奶动态| 精品国产乱码久久久久久男人| 免费在线观看视频国产中文字幕亚洲| 午夜亚洲福利在线播放| 欧美不卡视频在线免费观看 | netflix在线观看网站| 国产精品精品国产色婷婷| 成人高潮视频无遮挡免费网站| 真人一进一出gif抽搐免费| 久久人人精品亚洲av| 中文字幕最新亚洲高清| 欧美日韩亚洲综合一区二区三区_| 色老头精品视频在线观看| 男女视频在线观看网站免费 | 国产aⅴ精品一区二区三区波| 国产私拍福利视频在线观看| 亚洲在线自拍视频| 久久久国产精品麻豆| 老司机深夜福利视频在线观看| 免费搜索国产男女视频| 一二三四在线观看免费中文在| 精品欧美国产一区二区三| 国产精品综合久久久久久久免费| 国产麻豆成人av免费视频| 亚洲真实伦在线观看| 99久久综合精品五月天人人| 久久精品aⅴ一区二区三区四区| 午夜久久久久精精品| 日本精品一区二区三区蜜桃| 国产激情欧美一区二区| 露出奶头的视频| 久久精品亚洲精品国产色婷小说| 狠狠狠狠99中文字幕| 成年版毛片免费区| 欧美成人一区二区免费高清观看 | 日韩欧美国产一区二区入口| 欧美3d第一页| 国产高清激情床上av| 91大片在线观看| 精品乱码久久久久久99久播| 看免费av毛片| av有码第一页| 国产亚洲精品一区二区www| 久久久久久久精品吃奶| 午夜两性在线视频| 日韩有码中文字幕| 国产三级在线视频| 亚洲男人的天堂狠狠| 香蕉av资源在线| 成人欧美大片| 制服丝袜大香蕉在线| 国产精品98久久久久久宅男小说| 禁无遮挡网站| 欧美+亚洲+日韩+国产| 久久草成人影院| 午夜免费观看网址| 日日爽夜夜爽网站| 久久人妻福利社区极品人妻图片| 欧美高清成人免费视频www| 日日干狠狠操夜夜爽| 国产精品亚洲一级av第二区| 国产真实乱freesex| 亚洲美女黄片视频| 日本三级黄在线观看| 亚洲精品美女久久久久99蜜臀| 国产成人精品久久二区二区免费| 18禁美女被吸乳视频| 国产精品亚洲一级av第二区| 精品熟女少妇八av免费久了| 最好的美女福利视频网| 欧美一级毛片孕妇| 18禁国产床啪视频网站| 国产激情偷乱视频一区二区| 国产亚洲精品久久久久久毛片| а√天堂www在线а√下载| 国产精品国产高清国产av| 在线观看午夜福利视频| 国产一区二区三区视频了| 久久这里只有精品19| 国产成人系列免费观看| 久久午夜综合久久蜜桃| 久久久精品欧美日韩精品| 婷婷亚洲欧美| 国产精华一区二区三区| 国产高清视频在线播放一区| 欧美色欧美亚洲另类二区| 亚洲自拍偷在线| 国内久久婷婷六月综合欲色啪| 十八禁网站免费在线|