• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alpha-7 nicotinic acetylcholine receptor agonist treatment in a rat model of Huntington’s disease and involvement of heme oxygenase-1

    2018-05-05 06:47:13LauraFoucaultFruchardClaireTronelSylvieBodardZuhalGulhanJulieBussonSylvieChalonDanielAntier

    Laura Foucault-Fruchard , Claire Tronel Sylvie Bodard Zuhal Gulhan Julie Busson Sylvie Chalon Daniel Antier

    1 UMR 1253, iBrain, Université de Tours, Inserm, Tours, France

    2 CHRU de Tours, H?pital Bretonneau, Tours, France

    Introduction

    Epidemiological studies have shown that smokers have a lower risk of neurodegenerative diseases than non-smokers.These effects seem to be related to the activation of nicotinic receptors by nicotine, which is a nonselective agonist of alpha 7 nicotinic receptor (α7nAChR) (Gotti and Clementi, 2004; O’Reilly et al., 2005; Thacker et al., 2007). Several studies have reported the beneficial effects of α7nAChR activation on neuronal survival and neuroinflammation in animal models of neurodegenerative diseases (Medeiros et al., 2014; Sérrière et al., 2015). These homopentameric ligand-gated cation channel receptors are widely expressed on neurons and non-neuronal cells (microglia, astroglia,oligodendrocytes and endothelial cells) (Bertrand et al.,2015). In peripheral macrophages, cholinergic anti-in fl ammatory mechanisms through stimulation of α7nAChR are well documented (Egea et al., 2015; Han et al., 2017). Shytle et al. (2004) reported that both activated microglia and macrophages can mediate the inhibition of lipopolysaccharide-induced tumor necrosis factor-alpha (TNF-α) release.Accordingly, it was hypothesized that the cholinergic anti-inflammatory pathway (CAP) identified in the periphery has a brain counterpart in the central nervous system (CNS)that could regulate microglial activation.

    Referring to the CNS, it has been previously stated that α7nAChR stimulation was associated with the activation of the Jak2/PI3K/AKT cascade, which promotes translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus (Parada et al., 2010). By analogy with the mechanism observed in periphery, Nrf2 activation could promote the overexpression of phase II antioxidant enzymes such as heme oxygenase-1 (HO-1). The end products of HO-1 activity are known for their ability to reduce the inflammatory response (Egea et al., 2015). To date, there is little evidence related to the participation of this CAP in the brain. Additional experiments are necessary to confirm this hypothesis.

    We have recently shown that repeated administrations of a potent agonist of α7nAChR, PHA 543613, decreased microglial activation in a dose-dependent manner and significantly improved neuronal survival in anin vivoneuroinflammatory excitotoxic rat model (Foucault-Fruchard et al., 2017). PHA 543613, also known as [N-(3R)-1-azabicyclo[2.2.2]-Oct-3-yl-furo [2,3-c]pyridine-5-carboxamide hydrochloride], is characterized by rapid brain penetration(Acker et al., 2008). Published data about this compound provide additional support for the hypothesis that it represents a potential drug in the management of neurodegenerative diseases. This agonist was shown to improve cognitive function in a model of Schizophrenia (Wishka et al., 2006). It has also demonstrated neuroprotective and anti-inflammatory effects in different intracerebral haemorrhage models and in neurodegenerative rodent models such as models of Parkinson’s and Alzheimer’s diseases (Kraキ et al., 2012, 2013, 2017; Sadigh-Eteghad et al., 2015; Sérrière et al., 2015). Therefore, the purpose of the present study was to assess the participation of HO-1 in the modulation of neuronal loss and neuroinflammation mediated by α7nAChR activation in a rat model of brain excitotoxicity. The model of acute neuroinflammation chosen, admitted as an animal model mimicking the early-stage Huntington’s disease, is obtained by unilateral striatal injection of quinolinic acid(QA). QA is an agonist of glutamate N-methyl-D-aspartate (NMDA) receptors with excitotoxic properties. This heterocyclic amino acid increases the expression of various enzymes (proteases, lipases, and endonucleases) that leads to neuronal death (Schwarcz and Kohler, 1983; Estrada Sanchez et al., 2008). Dysfunction of neuronal activity related to the QA injection induces a pro-inflammatory environment leading to the activation of surrounding microglial cells (Estrada Sanchez et al., 2008).

    Material and Methods

    Animals

    Experiments were conducted on 10-week-old normotensive male Wistar rats (n= 12) (Janvier Labs, Le Genest-Saint-Isle,France), housed in a temperature (21 ± 1°C)- and humidity-controlled (55 ± 5%) environment in a 12-hour light/dark cycle (food and waterad libitum). All procedures were carried out according to the European Community Council Directive 2010/63/EU for laboratory animal care and the experimental procedure was approved by the Regional Ethical Committee (Authorization N°2015022011523044).

    Excitotoxic neuroinflammation model mimicking early-stage Huntington’s disease

    Rats were anesthetized with isoflurane (4% for induction and 2% for maintenance, gas anesthetizing box, AerraneTM,Baxter, France) and placed in a stereotaxic David Kopf apparatus (Phymep, Paris, France) to be lesioned in the right striatum with QA (150 nmol, 2 μL, Sigma Aldrich, Lyon,France) at the following stereotaxic coordinates according to the Atlas of Paxinos and Watson (Paxinos and Watson,2008): anterior-posterior (AP): +0.7 mm; medial-lateral(ML): –3 mm; dorsal-ventral (DV): –5.5 mm from bregma.

    PHA 543613 injection

    Western blot assay

    On day 4, the rats were killed by decapitation and both ipsilateral and contralateral striata were dissected from brain tissue. These hemispheres were homogenized with lysis buffer and supplemented with sodium fluoride (NaF), phenylmethane sulfonyl fluoride (PMSF), protease and phosphatase inhibitor cocktails (Couturier et al., 2012). Lysates were centrifuged at 15,000 ×gfor 15 minutes at 4°C. The resulting supernatants were collected to measure the quantity of total protein using the Bradford method. After denaturation(100°C, 5 minutes), beta mercaptoethanol and bromophenol blue were added to 30 μg of samples. Proteins were separated on a SDS gel electrophoresis (40 minutes, 200 V) and were transferred onto a nitrocellulose membrane (Biorad,Marnes-la-Coquette, France). The blots were blocked for 3 hours at room temperature with 5% (v/v) nonfat dried milk in Tris-buffered saline containing 0.05% Tween 20 and then incubated with primary antibodies anti-HO-1 (1:300, rabbit antibody, ab68477, Abcam, Paris, France) or anti-α7nAChR(1:200, rabbit antibody, ab10096, Abcam, Paris, France) in blocking buffer overnight at 4°C. Membranes were incubated with a horseradish peroxidase-conjugated secondary polyclonal antibody at room temperature (1:7500, goat antibody, 111-033-144, Jackson Immunoresearch, West Grove,PA, USA) for 2 hours. Mouse polyclonal antibody against β-actin was used as housekeeping protein (Sigma Aldrich,Saint-Quentin Fallavier, France). Immunoreactive proteins were exposed to the enhanced chemiluminescence western blotting detection system and the signals were captured using the Gbox system and the GeneSys image capture soft-ware (Syngene, Ozyme, Saint Quentin en Yvelines, France).The densitometry relative difference between HO-1/α7nAChR and β-actin was analyzed with ImageJ software(National Institutes of Health, Bethesda, Maryland, USA).The expression levels of HO-1 and α7nAChR proteins in all rats were quantified independently of each other on the same nitrocellulose membrane. Each protein was quantified in all rats (n= 12) under the same condition and at the same time.

    Statistical analysis

    Results were analyzed using GraphPad Prism software v.5,San Diego, California, USA and expressed as the mean ±SEM(Standard error of the mean). Comparisons between groups were performed using the Mann-WhitneyUtest and comparisons between ipsilateral and contralateral striata were conducted using the Wilcoxon one-tailed test. The level of significance wasP< 0.05.

    Results

    Effect of PHA 543613 treatment on HO-1 expression in the striatum

    Figure 1 Effects of PHA 543613 treatment on HO-1 expression in the striatum of rats using western blot assay

    HO-1 expression was evaluated in ipsilateral and contralateral striata in the QA-vehicle (n= 6) and QA-PHA (n=6) groups. The results are illustrated in Figure 1. Western blot assay results revealed that HO-1 protein expression was significantly decreased in both groups (P< 0.05), and there was a significant difference in the decrease of HO-1 protein expression between the ipsilateral and contralateral striata in each group (HO-1/β-actin ratio in the QA-vehicle group:0.69 ± 0.13 in the contralateral striatumvs. 0.37 ± 0.09 in the ipsilateral striatum; HO-1/β-actin ratio in the QA-PHA group: 1.20 ± 0.20 in the contralateral striatumvs. 0.91 ± 0.18 in the ipsilateral striatum;P= 0.03). However, HO-1 expression in the ipsilateral striatum of rats in the QA-PHA group was significantly higher than in the QA-vehicle group (+146%;P= 0.02). HO-1 expression level in the contralateral striatum was also higher in the QA-PHA group than in the QA-vehicle group (+74%, not statistically significant).

    Effect of PHA 543613 on α7nAChR expression in the striatum

    Quantification of α7nAChR expression was performed on ipsilateral and contralateral striata in the QA-vehicle (n= 6)and QA-PHA (n= 6) groups. The results are illustrated in Figure 2. The overall level of α7nAChR in the contralateral and ipsilateral striata was determined using western blotting(QA-vehicle group: 0.60 ± 0.05 in the contralateral striatumvs. 0.60 ± 0.09 in the ipsilateral striatum; QA-PHA group:0.50 ± 0.01 in the contralateral striatumvs. 0.52 ± 0.06 in the ipsilateral striatum). No significant difference was observed between the animals (P> 0.05).

    Discussion

    Figure 2 Effect of PHA 543613 on α7nAChR expression in the striatum of rats using western blot assay

    PHA 543613 has already demonstrated neuroprotective and anti-inflammatory effects in rodent models of neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases (Krafft et al., 2012, 2013, 2017; Sadigh-Eteghad et al., 2015; Sérrière et al., 2015). We have recently highlighted that PHA 543613 decreased microglial activation with a dose effect and improved neuronal survival in a rat model of Huntington’s disease and we recently confirmed the agonist properties of PHA 543613 on α7nAChR expression in neuron and astrocyte cultures (Foucault-Fruchard et al., 2017).However, the pathways activated following the stimulation of α7nAChR in the brain are poorly understood. The present study aimed to add knowledge about the expression of a key component of the cholinergic anti-inflammatory pathway,HO-1, after repeated administrations of α7nAChR agonist.HO-1 end products generated from heme degradation may modulate inflammation. First, carbon monoxide (CO)released from HO activity may modulate apoptotic, proliferative, and inflammatory cellular programs. CO can downregulate the production of pro-inflammatory mediators(interleukin-6, tumor necrosis factor, inducible nitric oxide synthase…) and upregulate the anti-inflammatory cytokines(interleukin-1, interleukin-10…)viathe mitogen-activated protein kinase (MAPK) pathway. CO can also stimulate the production of reactive oxygen species, which can downregulate pro-inflammatory transcription (transforming growth factor-β, Egr-1…). Bilirubin, another product of heme degradation, may also exert anti-inflammatory and anti-proliferative effects. However, the degree of HO-1 activation should be regulated because a third end product of HO-1,Fe2+may be deleterious in the case of excess activation (Ryter et al., 2015).

    In our study, we observed a significant decrease of HO-1 expression in ipsilateral striatum compared with contralateral striatum in both groups (–86% and –33% in the QA-vehicle and QA-PHA groups respectively). Tasset et al. (2010)performed anin vitrostudy and demonstrated that QA exerted a pro-oxidant effect and decreased Nrf2 expression on rat striatal slices. Consequently, it is possible to speculate that this phenomenon is associated with a decrease of transcription of anti-oxidant genes such as HO-1. Colin-Gonzales et al. (2013) also investigated the effects of QA infused intrastriatally on HO-1 expression in rats. Contrary to our experimentation, they observed an increase in a time-dependent manner at 1, 3, 5 and 7 days post QA lesion compared with control animals. However, it is important to highlight that the experimental procedure was different from ours.The dose of QA used (240 nmol) was higher than in our surgical lesion technique, and the stereotaxic coordinates were different (AP: +0.5 mm; ML: 2.6 mm from bregma;DV: 4.5 mm from dura). In addition, HO-1 expression was only quantified in the ipsilateral striatum of QA and control animals lesioned with isotonic saline solution.

    In the present study, we revealed for the first time that repeated administrations of the α7nAChR agonist, PHA 543613, significantly increased HO-1 expression in the ipsilateral striatum of the QA-PHA group compared with QA-vehicle. Increased HO-1 expression was also observed in the contralateral striatum. Several studies have already highlighted a correlation between HO-1 expression and HO-1 activity in the CNS (Colín-González et al., 2013; Lin et al.,2017). The ipsilateral side represents the region of interest in our QA lesion model. These observations correspond to a protective action of HO-1 activation as described previously(Suttner and Dennery, 1999). The dual behavior, protective(formation of anti-oxidant compounds) or toxic (production of Fe2+), of this enzyme is widely reported and the protein expression level depends on the neuroinflammation model and drug exposure methods (Colín-González et al., 2013;Tronel et al., 2013). Increased HO-1 expression, 10 times higher than the basal value, seems to be toxic whereas 2-fold to 10-fold increase in HO-1 expression seems to be protective (1.7-fold and 2.4-fold increases in HO-1 expression in ipsilateral striatum relative to contralateral striatum in the QA-vehicle and QA-PHA groups respectively) (Suttner and Dennery, 1999). After activation, the α7nAChR theoretically undergoes rapid desensitization to limit the influx of Ca2+into the cell which can lead to excitotoxicity. A compensating mechanism characterized by an increased number of α7nAChR binding sites in several brain regions, particularly in the prefrontal cortex, can be initiated (Christensen et al.,2010). However, 4-day treatment with PHA 543613 did not lead to a significant modification of α7nAChR expression.This finding suggests that HO-1 expression is not associated with an increase of α7nAChR density.

    Increased HO-1 expression in our study seems to underlie the neuroprotective and anti-inflammatory effects associated with α7nAChR activation observed under excitotoxic conditions. Other studies have supported the correlation between the neuroprotective effects and the induction of HO-1 expression in neurodegenerative models (Parada et al., 2014; Buendia et al., 2015). Taken together, these observations reinforce the hypothesis that the cholinergic anti-inflammatory pathway identified in the periphery has a brain counterpart in the CNS. However, other signaling pathways such as Nrf2 (i.e., activator protein 1, nuclear factor kappa B or hypoxia inducible factor-1) can regulate HO-1 expression(Alam and Cook, 2003; Ferrándiz and Devesa, 2008) and further investigations have to be performed to confirm our hypothesis.

    Author contributions:LFF contributed to the conception, design,definition of the intellectual content, literature retrieval, experimental studies, data acquisition and analysis, statistical analysis, manuscript preparation and editing and was the guarantor of the paper. CT contributed to the conception, design, definition of intellectual content, experimental studies, and manuscript review. SB, ZG and JB contributed to the experimentation. SC and DA contributed to the conception, design,and definition of the intellectual content, and manuscript review. They contributed equally to this work and approved the final version of this paper for publication.

    Conflicts of interest:The authors declare that there is no conflict of interest regarding the publication of this paper.

    Financial support:This work was supported by the Région Centre-Val de Loire (2014 00094049 – AP 2014-850) and the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n°278850 (INMiND). The funding bodies played no role in the study design, in the collection, analysis and interpretation of data, in the writing of the paper, and in the decision to submit the paper for publication.

    Research ethics:All procedures were carried out according the European Community Council Directive 2010/63/EU for laboratory animal care and the experimental procedure was approved by the Regional Ethical Committee (Authorization N°2015022011523044).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak,and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Acker BA, Jacobsen EJ, Rogers BN, Wishka DG, Reitz SC, Piotrowski DW, Myers JK, Wolfe ML, Groppi VE, Thornburgh BA, Tinholt PM, Walters RR, Olson BA, Fitzgerald L, Staton BA, Raub TJ,Krause M, Li KS, Hoffmann WE, Hajos M, et al. (2008) Discovery of N-[(3R,5R)-1-azabicyclo[3.2.1]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide as an agonist of the alpha7 nicotinic acetylcholine receptor: in vitro and in vivo activity. Bioorg Med Chem Lett 18:3611-3615.

    Alam J, Cook JL (2003) Transcriptional regulation of the heme oxygenase-1 gene via the stress response pathway. Curr Pharm Des 9:2499-2511.

    Bertrand D, Lee CH, Flood D, Marger F, Donnelly-Roberts D (2015)Therapeutic potential of alpha7 nicotinic acetylcholine receptors.Pharmacol Rev 67:1025-1073.

    Buendia I, Egea J, Parada E, Navarro E, León R, Rodríguez-Franco MI,López MG (2015) The melatonin-N,N-dibenzyl(N-methyl)amine hybrid ITH91/IQM157 affords neuroprotection in an in vitro Alzheimer’s model via hemo-oxygenase-1 induction. ACS Chem. Neurosci 6:288-296.

    Christensen DZ, Mikkelsen JD, Hansen HH, Thomsen MS (2010)Repeated administration of alpha7 nicotinic acetylcholine receptor(nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain. J Neurochem 114:1205-1216.

    Colín-González AL, Orozco-Ibarra M, Chánez-Cárdenas ME, Rangel-López E, Santamaría A, Pedraza-Chaverri J, Barrera-Oviedo D,Maldonado PD (2013) Heme oxygenase-1 (HO-1) upregulation delays morphological and oxidative damage induced in an excitotoxic/pro-oxidant model in the rat striatum. Neuroscience 231:91-101.

    Couturier J, Paccalin M, Lafay-Chebassier C, Chalon S, Ingrand I,Pinguet J, Pontcharraud R, Guillard O, Fauconneau B, Page G(2012) Pharmacological inhibition of PKR in APPswePS1dE9 mice transiently prevents inflammation at 12 months of age but increases Aβ42 levels in the late stages of the Alzheimer’s disease. Curr Alzheimer Res 9:344-360.

    Egea J, Buendia I, Parada E, Navarro E, León R, Lopez MG (2015)Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem Pharmacol 97:463-472.

    Estrada Sánchez AM, Mejía-Toiber J, Massieu L (2008) Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res 39:265-276.

    Ferrandiz ML, Devesa I (2008) Inducers of heme oxygenase-1. Curr Pharm Des 14:473-486.

    Foucault-Fruchard L, Doméné A, Page G, Windsor M, Emond P, Rodrigues N, Doll, F, Damont A, Buron F, Routier S, Chalon S, Antier D (2017) Neuroprotective effect of the alpha 7 nicotinic receptor agonist PHA 543613 in an in vivo excitotoxic adult rat model. Neuroscience 356:52-63.

    Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363-396.

    Han B, Li X, Hao J (2017) The cholinergic anti-inflammatory pathway:An innovative treatment strategy for neurological diseases. Neurosci Biobehav Rev 77:358-368.

    Kraキ PR, Altay O, Rolland WB, Duris K, Lekic T, Tang J, Zhang JH(2012) α7 nicotinic acetylcholine receptor agonism confers neuroprotection through GSK-3β inhibition in a mouse model of intracerebral hemorrhage. Stroke 43:844-850.

    Krafft PR, Caner B, Klebe D, Rolland WB, Tang J, Zhang JH (2013)PHA-543613 preserves blood-brain barrier integrity after intracerebral hemorrhage in mice. Stroke J Cereb Circ 44:1743-1747.

    Kraキ PR, McBride D, Rolland WB, Lekic T, Flores JJ, Zhang JH (2017)α7 nicotinic acetylcholine receptor stimulation attenuates neuroinflammation through JAK2-STAT3 activation in murine models of intracerebral hemorrhage. Biomed Res Int 2017:8134653.

    Lin CC, Yang CC, Chen YW, Hsiao LD, Yang CM (2017) Arachidonic Acid Induces ARE/Nrf2-Dependent Heme Oxygenase-1 Transcription in Rat BrainAstrocytes. Mol Neurobiol doi: 10.1007/s12035-017-0590-7.

    Medeiros R, Castello NA, Cheng D, Kitazawa M, Baglietto-Vargas D, Green KN, Esbenshade TA, Bitner RS, Decker MW, LaFerla FM (2014) α7 Nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles. Am J Pathol 184:520-529.

    O’Reilly EJ, McCullough ML, Chao A, Jane Henley S, Calle EE, Thun MJ, Ascherio A (2005) Smokeless tobacco use and the risk of Parkinson’s disease mortality. Mov Disord 20:1383-1384.

    Parada E, Egea J, Romero A, del Barrio L, García AG, López MG (2010)Poststress treatment with PNU282987 can rescue SH-SY5Y cells undergoing apoptosis via α7 nicotinic receptors linked to a Jak2/Akt/HO-1 signaling pathway. Free Radic Biol Med 49:1815-1821.

    Parada E, Buendia I, León R, Negredo P, Romero A, Cuadrado A,López MG, Egea J (2014) Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J Pineal Res 56:204-212.

    Paxinos G, Watson C (2008) The Rat Brain in Stereotaxic Coordinates:Compact. 6thed. Academic Press/Elsevier, Amsterdam.

    Ryter SW, Choi AM (2016) Targetingheme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 167:7-34.

    Sérrière S, Doméné A, Vercouillie J, Mothes C, Bodard S, Rodrigues N, Guilloteau D, Routier S, Page G, Chalon S (2015) Assessment of the protection of dopaminergic neurons by an α7 nicotinic receptor agonist, pha 543613 using [18F]lbt-999 in a Parkinson’s disease rat model. Front Med 2:61.

    Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D(2015) Effect of alpha-7 nicotinic acetylcholine receptor activation on beta-amyloid induced recognition memory impairment. Possible role of neurovascular function. Acta Cir Bras 30:736-742.

    Schwarcz R, K?hler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38:85-90.

    Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89:337-343.

    Suttner DM, Dennery PA (1999) Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. FASEB J 13:1800-1809.

    Tasset I, Pérez-De La Cruz V, Elinos-Calderón D, Carrillo-Mora P, González-Herrera IG, Luna-López A, Konigsberg M, Pedraza-Chaverrí J, Maldonado PD, Ali SF, Túnez I, Santamaría A (2010)Protective effect of tert-butylhydroquinone on the quinolinic-acid-induced toxicity in rat striatal slices: role of the Nrf2-antioxidant response element pathway. Neurosignals 18:24-31.

    Thacker EL, O’Reilly EJ, Weisskopf MG, Chen H, Schwarzschild MA,McCullough ML, Calle EE, Thun MJ, Ascherio A (2007) Temporal relationship between cigarette smoking and risk of Parkinson disease. Neurology 68:764-768.

    Tronel C, Rochefort GY, Arlicot N, Bodard S, Chalon S, Antier D (2013)Oxidative stress is related to the deleterious effects of heme oxygenase-1 in an in vivo neuroinflammatoryrat model. Oxid Med Cell Longev 2013:264935.

    Wishka DG, Walker DP, Yates KM, Reitz SC, Jia S, Myers JK, Olson KL, Jacobsen EJ, Wolfe ML, Groppi VE, Hanchar AJ, Thornburgh BA, Cortes-Burgos LA, Wong EH, Staton BA, Raub TJ, Higdon NR, Wall TM, Hurst RS, Walters RR, et al. (2006) Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the alpha7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure--activity relationship. J Med Chem 49:4425-4436.

    欧美绝顶高潮抽搐喷水| 天美传媒精品一区二区| 99久久久亚洲精品蜜臀av| 日本熟妇午夜| 久久久久久久久中文| 久久久久精品国产欧美久久久| 国产精华一区二区三区| 国产黄色小视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 在线观看一区二区三区| 天天躁夜夜躁狠狠久久av| 99久久九九国产精品国产免费| 波野结衣二区三区在线| 日韩在线高清观看一区二区三区| 真实男女啪啪啪动态图| 直男gayav资源| 人妻久久中文字幕网| 国产麻豆成人av免费视频| 一本一本综合久久| 性色avwww在线观看| 日韩强制内射视频| av在线天堂中文字幕| 亚洲熟妇熟女久久| 香蕉av资源在线| 久久人人精品亚洲av| 日日啪夜夜撸| 亚洲av五月六月丁香网| 亚洲最大成人中文| 成人精品一区二区免费| 小蜜桃在线观看免费完整版高清| av黄色大香蕉| 精品无人区乱码1区二区| 最后的刺客免费高清国语| 日韩欧美精品v在线| 白带黄色成豆腐渣| av专区在线播放| 精品久久久久久久久久免费视频| 国产高清三级在线| 男人狂女人下面高潮的视频| 啦啦啦啦在线视频资源| 国产淫片久久久久久久久| 色播亚洲综合网| 舔av片在线| 五月玫瑰六月丁香| 国产高潮美女av| 亚洲性久久影院| 亚洲欧美精品综合久久99| 久久99热6这里只有精品| 麻豆国产av国片精品| 男女之事视频高清在线观看| 久久精品综合一区二区三区| 亚洲欧美成人综合另类久久久 | 色av中文字幕| 精品一区二区三区av网在线观看| 寂寞人妻少妇视频99o| 国产精品综合久久久久久久免费| 波野结衣二区三区在线| 欧美绝顶高潮抽搐喷水| 久久鲁丝午夜福利片| 伊人久久精品亚洲午夜| 免费观看精品视频网站| 少妇人妻精品综合一区二区 | 免费电影在线观看免费观看| 日韩中字成人| av在线观看视频网站免费| 91午夜精品亚洲一区二区三区| 我的老师免费观看完整版| 婷婷色综合大香蕉| 国产精品av视频在线免费观看| 久久中文看片网| 久久久久久久午夜电影| 国产一区二区亚洲精品在线观看| 国产精品免费一区二区三区在线| 精品久久久久久久久av| 超碰av人人做人人爽久久| 麻豆国产av国片精品| 直男gayav资源| 校园春色视频在线观看| 精品人妻一区二区三区麻豆 | 国内精品久久久久精免费| 99久久精品国产国产毛片| 欧美在线一区亚洲| 露出奶头的视频| 国产一区二区亚洲精品在线观看| 国产亚洲91精品色在线| 精品一区二区免费观看| 亚洲美女黄片视频| 中文字幕av成人在线电影| 青春草视频在线免费观看| 免费看av在线观看网站| 99久久无色码亚洲精品果冻| 精品免费久久久久久久清纯| 欧美xxxx黑人xx丫x性爽| 国产成人aa在线观看| 国产69精品久久久久777片| 久久草成人影院| 直男gayav资源| 青春草视频在线免费观看| 欧美最黄视频在线播放免费| 伊人久久精品亚洲午夜| 国产成人精品久久久久久| 99国产极品粉嫩在线观看| 香蕉av资源在线| 日韩强制内射视频| 亚洲国产精品成人久久小说 | 欧美成人精品欧美一级黄| 日韩欧美国产在线观看| av在线亚洲专区| 日本-黄色视频高清免费观看| 此物有八面人人有两片| 91麻豆精品激情在线观看国产| 狂野欧美激情性xxxx在线观看| 中国美女看黄片| 性欧美人与动物交配| 美女被艹到高潮喷水动态| 国产免费男女视频| 色哟哟哟哟哟哟| 免费av毛片视频| 国产 一区精品| 精品少妇黑人巨大在线播放 | 伦理电影大哥的女人| 午夜免费男女啪啪视频观看 | 免费看美女性在线毛片视频| 狂野欧美白嫩少妇大欣赏| 午夜精品一区二区三区免费看| 人妻制服诱惑在线中文字幕| 天天躁夜夜躁狠狠久久av| 国产精品三级大全| 亚洲精品影视一区二区三区av| 99热这里只有是精品在线观看| 中文字幕久久专区| 变态另类成人亚洲欧美熟女| 一区福利在线观看| 中文字幕熟女人妻在线| 国产精华一区二区三区| 欧美极品一区二区三区四区| 看片在线看免费视频| 女同久久另类99精品国产91| 91av网一区二区| 国产精品爽爽va在线观看网站| 亚洲四区av| 国产精品永久免费网站| 亚洲国产精品合色在线| 91av网一区二区| 国产av不卡久久| 91久久精品国产一区二区成人| 国产精品久久久久久av不卡| 能在线免费观看的黄片| 欧美高清性xxxxhd video| 99久久精品一区二区三区| 亚洲av二区三区四区| 亚洲精品在线观看二区| 国产精品,欧美在线| 午夜亚洲福利在线播放| 国产真实乱freesex| 国产乱人偷精品视频| 欧美激情国产日韩精品一区| 91久久精品电影网| 久久久久久伊人网av| а√天堂www在线а√下载| 久久人人爽人人片av| 中文在线观看免费www的网站| 老熟妇乱子伦视频在线观看| 国产一区二区亚洲精品在线观看| 精品久久久久久成人av| 永久网站在线| 成人漫画全彩无遮挡| 欧美极品一区二区三区四区| 精品熟女少妇av免费看| 听说在线观看完整版免费高清| 精品一区二区三区视频在线| 亚洲人成网站高清观看| 欧美色视频一区免费| 国产精品福利在线免费观看| 国产一区二区亚洲精品在线观看| 日本免费a在线| 久久久久性生活片| 日韩欧美在线乱码| 日产精品乱码卡一卡2卡三| 欧美性猛交黑人性爽| 97热精品久久久久久| 美女高潮的动态| 亚洲av成人精品一区久久| 国产伦一二天堂av在线观看| 久久亚洲精品不卡| 欧美xxxx性猛交bbbb| 少妇熟女aⅴ在线视频| 久久久成人免费电影| 日韩亚洲欧美综合| av专区在线播放| 久久亚洲国产成人精品v| 久久国内精品自在自线图片| 一本久久中文字幕| 国产片特级美女逼逼视频| 中文字幕精品亚洲无线码一区| 亚洲丝袜综合中文字幕| 日韩精品青青久久久久久| 色吧在线观看| 最近中文字幕高清免费大全6| 俺也久久电影网| 在线看三级毛片| 亚洲在线观看片| 欧美区成人在线视频| 欧美日韩精品成人综合77777| 免费大片18禁| 少妇熟女欧美另类| 亚洲丝袜综合中文字幕| 午夜福利在线观看免费完整高清在 | 免费在线观看成人毛片| 中文字幕av在线有码专区| av在线蜜桃| 亚洲精品色激情综合| 天美传媒精品一区二区| 99热精品在线国产| 搡女人真爽免费视频火全软件 | .国产精品久久| 亚洲精品粉嫩美女一区| 日本与韩国留学比较| 免费人成视频x8x8入口观看| 久久久久久久久中文| avwww免费| 国产淫片久久久久久久久| 亚洲欧美日韩东京热| 亚洲精品色激情综合| 国产69精品久久久久777片| 免费av不卡在线播放| 女生性感内裤真人,穿戴方法视频| 女的被弄到高潮叫床怎么办| 日韩人妻高清精品专区| 美女cb高潮喷水在线观看| 小蜜桃在线观看免费完整版高清| 国产精品,欧美在线| 夜夜夜夜夜久久久久| 在线观看免费视频日本深夜| 国产高清不卡午夜福利| 舔av片在线| 国产aⅴ精品一区二区三区波| 国产爱豆传媒在线观看| 男插女下体视频免费在线播放| 亚洲国产日韩欧美精品在线观看| 久久精品影院6| 中文字幕熟女人妻在线| 精品一区二区三区av网在线观看| 久久亚洲精品不卡| 欧美3d第一页| 日韩精品青青久久久久久| 日韩av在线大香蕉| 国产伦精品一区二区三区四那| 一级a爱片免费观看的视频| 夜夜爽天天搞| 日韩成人伦理影院| 国产精品日韩av在线免费观看| 亚洲不卡免费看| 22中文网久久字幕| 午夜免费激情av| 精品少妇黑人巨大在线播放 | 99久久精品热视频| 国产v大片淫在线免费观看| 我的老师免费观看完整版| 91久久精品国产一区二区成人| 看片在线看免费视频| 搡女人真爽免费视频火全软件 | 不卡一级毛片| 久久天躁狠狠躁夜夜2o2o| 日韩一区二区视频免费看| 亚洲欧美成人综合另类久久久 | 亚洲欧美中文字幕日韩二区| 夜夜看夜夜爽夜夜摸| 天美传媒精品一区二区| 大又大粗又爽又黄少妇毛片口| 3wmmmm亚洲av在线观看| 夜夜夜夜夜久久久久| 色哟哟哟哟哟哟| 久久韩国三级中文字幕| 久久精品国产亚洲av涩爱 | 国产人妻一区二区三区在| 国产白丝娇喘喷水9色精品| 久久久久久大精品| 国产综合懂色| 久久精品国产亚洲av香蕉五月| 99热6这里只有精品| 九九在线视频观看精品| 丝袜美腿在线中文| 一个人看视频在线观看www免费| 欧美精品国产亚洲| 又黄又爽又刺激的免费视频.| 少妇被粗大猛烈的视频| 久久久久性生活片| 91久久精品电影网| 亚洲国产色片| 不卡一级毛片| 在现免费观看毛片| 一个人看的www免费观看视频| 色综合站精品国产| 免费观看精品视频网站| 国产精品一及| 一卡2卡三卡四卡精品乱码亚洲| 91午夜精品亚洲一区二区三区| 最近手机中文字幕大全| 亚洲,欧美,日韩| 天堂√8在线中文| 国产乱人偷精品视频| 深夜a级毛片| 日本撒尿小便嘘嘘汇集6| 日本黄大片高清| 亚洲五月天丁香| 亚洲欧美成人精品一区二区| 色哟哟·www| 亚洲人成网站高清观看| 免费电影在线观看免费观看| 尤物成人国产欧美一区二区三区| 亚洲精品成人久久久久久| 精品无人区乱码1区二区| 亚洲中文字幕一区二区三区有码在线看| 毛片一级片免费看久久久久| 天天一区二区日本电影三级| 午夜亚洲福利在线播放| 国产伦一二天堂av在线观看| 乱人视频在线观看| 亚洲丝袜综合中文字幕| 99在线人妻在线中文字幕| 久久久久精品国产欧美久久久| 国产 一区精品| 99热全是精品| 波多野结衣高清无吗| 亚洲国产精品成人久久小说 | 国产精品人妻久久久影院| 成人二区视频| 亚洲欧美日韩东京热| 亚洲欧美日韩无卡精品| 中国国产av一级| 欧美3d第一页| 婷婷亚洲欧美| www.色视频.com| 三级毛片av免费| 国产高清视频在线播放一区| 亚洲国产色片| 成人av一区二区三区在线看| 好男人在线观看高清免费视频| 看十八女毛片水多多多| 欧美zozozo另类| 亚洲性久久影院| 舔av片在线| 欧美高清成人免费视频www| 久久精品影院6| 黄色欧美视频在线观看| 欧美精品国产亚洲| 99热精品在线国产| 久久精品综合一区二区三区| 精品久久久久久久人妻蜜臀av| 久久人人爽人人爽人人片va| 天堂网av新在线| av免费在线看不卡| 成人美女网站在线观看视频| 色吧在线观看| 国产色婷婷99| 亚洲精品粉嫩美女一区| 人妻丰满熟妇av一区二区三区| 亚洲一级一片aⅴ在线观看| 亚洲国产精品久久男人天堂| 国产伦精品一区二区三区视频9| 久久草成人影院| 国产精品无大码| 麻豆av噜噜一区二区三区| 日韩欧美 国产精品| 久久午夜亚洲精品久久| 亚洲第一区二区三区不卡| 天天躁日日操中文字幕| 国语自产精品视频在线第100页| 偷拍熟女少妇极品色| 成人精品一区二区免费| 中文字幕熟女人妻在线| 欧美绝顶高潮抽搐喷水| 亚洲av熟女| 伊人久久精品亚洲午夜| 99国产精品一区二区蜜桃av| h日本视频在线播放| 日日摸夜夜添夜夜爱| 久久鲁丝午夜福利片| 精品免费久久久久久久清纯| 欧美激情久久久久久爽电影| 毛片一级片免费看久久久久| 在线a可以看的网站| 精品久久久久久久末码| .国产精品久久| 亚洲精品影视一区二区三区av| 大香蕉久久网| videossex国产| 插逼视频在线观看| 国产精品嫩草影院av在线观看| 日本-黄色视频高清免费观看| 最近手机中文字幕大全| 身体一侧抽搐| 最近的中文字幕免费完整| 亚洲精品亚洲一区二区| 国产亚洲欧美98| 国产精品福利在线免费观看| 老司机午夜福利在线观看视频| 日韩欧美精品v在线| 成人二区视频| 久久精品久久久久久噜噜老黄 | 国产日本99.免费观看| 日日啪夜夜撸| 久久精品国产99精品国产亚洲性色| 又粗又爽又猛毛片免费看| 美女 人体艺术 gogo| 久久精品人妻少妇| 国产单亲对白刺激| 少妇丰满av| 直男gayav资源| 精品乱码久久久久久99久播| 精品久久久噜噜| 变态另类丝袜制服| 尾随美女入室| 天天躁夜夜躁狠狠久久av| 一进一出抽搐动态| av中文乱码字幕在线| 成年免费大片在线观看| 欧美日韩精品成人综合77777| 欧美极品一区二区三区四区| 精品一区二区免费观看| 精品一区二区三区av网在线观看| 波多野结衣高清作品| 青春草视频在线免费观看| 亚洲精品粉嫩美女一区| 国产精品不卡视频一区二区| 免费大片18禁| 伊人久久精品亚洲午夜| 性插视频无遮挡在线免费观看| 在线a可以看的网站| 最近手机中文字幕大全| 深夜a级毛片| 热99re8久久精品国产| 神马国产精品三级电影在线观看| 国产精品一二三区在线看| 午夜福利18| 久久草成人影院| 久久婷婷人人爽人人干人人爱| 国产高清三级在线| 国产一区二区激情短视频| 国产亚洲精品综合一区在线观看| av在线播放精品| 欧美日韩综合久久久久久| 国产成人影院久久av| 永久网站在线| 国产中年淑女户外野战色| 午夜福利18| 亚洲不卡免费看| 亚洲自偷自拍三级| 亚洲国产日韩欧美精品在线观看| 夜夜爽天天搞| 人妻夜夜爽99麻豆av| 免费在线观看成人毛片| 黄片wwwwww| 观看免费一级毛片| 国国产精品蜜臀av免费| 内射极品少妇av片p| 亚洲高清免费不卡视频| 国产高清视频在线播放一区| av.在线天堂| 国产亚洲精品久久久com| 一区二区三区高清视频在线| 秋霞在线观看毛片| eeuss影院久久| 直男gayav资源| 久久精品影院6| 亚洲无线观看免费| 亚洲精品影视一区二区三区av| 99视频精品全部免费 在线| 老司机影院成人| 国产男靠女视频免费网站| 国产精品久久电影中文字幕| 日本精品一区二区三区蜜桃| 国产精品野战在线观看| 最近中文字幕高清免费大全6| 在线观看免费视频日本深夜| 午夜激情欧美在线| 日韩精品有码人妻一区| 亚洲欧美日韩高清在线视频| 成人漫画全彩无遮挡| 国产精品1区2区在线观看.| 精品一区二区三区视频在线| 久久国产乱子免费精品| 久久人妻av系列| 男女边吃奶边做爰视频| 黄色一级大片看看| 麻豆国产av国片精品| 村上凉子中文字幕在线| 国产乱人偷精品视频| 男女边吃奶边做爰视频| 色综合色国产| 欧美色视频一区免费| 日韩欧美精品v在线| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区激情短视频| 亚洲最大成人中文| 久久久色成人| 亚洲精品日韩av片在线观看| 久久久久久久亚洲中文字幕| 我要搜黄色片| 高清午夜精品一区二区三区 | 18+在线观看网站| 亚洲aⅴ乱码一区二区在线播放| 亚洲一区二区三区色噜噜| 美女高潮的动态| 香蕉av资源在线| 午夜免费男女啪啪视频观看 | ponron亚洲| 人妻久久中文字幕网| 欧美精品国产亚洲| 日本熟妇午夜| 1024手机看黄色片| 婷婷色综合大香蕉| 人妻丰满熟妇av一区二区三区| 日韩欧美免费精品| 欧美三级亚洲精品| 男人狂女人下面高潮的视频| 亚洲自偷自拍三级| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品国产av成人精品 | 别揉我奶头 嗯啊视频| 久久亚洲精品不卡| 蜜桃久久精品国产亚洲av| 亚洲欧美成人综合另类久久久 | 国产伦精品一区二区三区视频9| 成人亚洲精品av一区二区| 3wmmmm亚洲av在线观看| 国产91av在线免费观看| 久久这里只有精品中国| 久久久久精品国产欧美久久久| 国产私拍福利视频在线观看| 午夜久久久久精精品| 美女黄网站色视频| 天堂网av新在线| 国产一区二区在线av高清观看| 亚洲av中文字字幕乱码综合| 激情 狠狠 欧美| 久久精品国产亚洲av涩爱 | 久久午夜亚洲精品久久| 国内少妇人妻偷人精品xxx网站| 少妇人妻精品综合一区二区 | 身体一侧抽搐| 国产成人aa在线观看| 日本五十路高清| 男人狂女人下面高潮的视频| 午夜a级毛片| 国产又黄又爽又无遮挡在线| 哪里可以看免费的av片| 久久亚洲国产成人精品v| 一级毛片我不卡| 永久网站在线| 女的被弄到高潮叫床怎么办| 国产黄a三级三级三级人| 国产毛片a区久久久久| 人妻少妇偷人精品九色| 草草在线视频免费看| 天堂av国产一区二区熟女人妻| 69av精品久久久久久| 老熟妇仑乱视频hdxx| 高清毛片免费看| 国产精品爽爽va在线观看网站| 国产高清不卡午夜福利| 国产精品一二三区在线看| 亚洲av免费在线观看| 国产成人freesex在线 | 少妇被粗大猛烈的视频| 真人做人爱边吃奶动态| 最后的刺客免费高清国语| 亚洲成人精品中文字幕电影| 亚洲欧美日韩高清在线视频| 色播亚洲综合网| 午夜福利在线在线| 最近最新中文字幕大全电影3| 国产精品女同一区二区软件| 欧美三级亚洲精品| 人妻久久中文字幕网| 国产精品日韩av在线免费观看| 在线观看66精品国产| 国产69精品久久久久777片| 亚洲熟妇中文字幕五十中出| 精品福利观看| 在线看三级毛片| 国产精品人妻久久久影院| 国产精品国产高清国产av| 非洲黑人性xxxx精品又粗又长| 久久久久久伊人网av| 搞女人的毛片| 国产精品美女特级片免费视频播放器| 九九久久精品国产亚洲av麻豆| 久久久久免费精品人妻一区二区| 久久午夜亚洲精品久久| 日韩精品有码人妻一区| 亚洲国产日韩欧美精品在线观看| 精品欧美国产一区二区三| 黄片wwwwww| 亚洲精华国产精华液的使用体验 | 亚洲欧美日韩高清在线视频| 久久韩国三级中文字幕| 最好的美女福利视频网| 午夜精品一区二区三区免费看| 一个人观看的视频www高清免费观看| 99国产极品粉嫩在线观看| 天堂网av新在线| 亚洲精品影视一区二区三区av| 午夜福利18| 成人欧美大片| 久久久久九九精品影院| 五月伊人婷婷丁香| 国产精品人妻久久久久久| 亚洲四区av| 久久婷婷人人爽人人干人人爱| 久久久久久久久久成人| 能在线免费观看的黄片| 精品乱码久久久久久99久播| 99久久九九国产精品国产免费|