• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural neural connectivity of the vestibular nuclei in the human brain: a diffusion tensor imaging study

    2018-05-05 06:47:12SungHoJangMiYoungLeeSangSeokYeoHyeokGyuKwon

    Sung Ho Jang, Mi Young Lee, Sang Seok Yeo, Hyeok Gyu Kwon

    1 Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Daegu, Republic of Korea

    2 Department of Physical Therapy, College of Health and Therapy, Daegu Haany University, Gyeongsan, North Gyeongsang, Republic of Korea

    3 Department of Physical Therapy, College of Health Sciences, Dankook University, Dandaero, Cheonan, Republic of Korea

    4 Department of Physical Therapy, College of Health Sciences, Catholic University of Pusan, Pusan, Republic of Korea

    Introduction

    The vestibular nuclei (VN), located at the pons and medulla oblongata, consists of four subnuclei: superior nucleus, inferior nucleus, medial nucleus, and lateral nucleus (Barmack,2003; Haines, 2006; Augustine, 2008; Siegel et al., 2010). It receives and carries various types of sensory information,including eye movement, direction or speed of head movement, and body orientation in space to control the movements (Barmack, 2003; Haines, 2006; Augustine, 2008; Siegel et al., 2010; zu Eulenburg et al., 2012). The VN is known to have neural connection with various brain regions including the cerebellum, thalamus, cerebral cortex, oculomotor nucleus, trochlear nucleus, abducens nucleus, insula, and hypothalamus (Henkel and Martin, 1977; Montgomery,1988; Akbarian et al., 1994; Shiroyama et al., 1999; Barmack,2003; Horowitz et al., 2005; Haines, 2006; Augustine, 2008;Markia et al., 2008; Siegel et al., 2010; Kirsch et al., 2016).The connected brain regions and their relation to functions can be summarized as follows: cerebellum - equilibrium;oculomotor nucleus - control of eye movements; thalamus and cerebral cortex - conscious perception of movement and spatial orientation (Barmack, 2003; Haines, 2006; Augustine,2008; Siegel et al., 2010; zu Eulenburg et al., 2012; Hitier et al., 2014). As a result, an injury to VN can result in vertigo and sensorimotor dysfunction, including loss of equilibrium, poor perception of body movement and eye movement(Barmack, 2003; Haines, 2006; Augustine, 2008; Siegel et al.,2010; Hitier et al., 2014).

    Electrophysiologic and tracer techniques have been used in many animal studies reporting on the neural connectivity between the VN and various brain regions (Henkel and Martin, 1977; Montgomery, 1988; Faugier-Grimaud and Ventre,1989; Barmack et al., 1993; Akbarian et al., 1994; Shiroyama et al., 1999; Horowitz et al., 2005; Markia et al., 2008). However, these techniques are limited to application in the live human brain, and the connectivity of the VN in the human brain has not been clearly elucidated. Recently developed diffusion tensor tractography (DTT), derived from diffusion tensor imaging (DTI), is a technique used to reveal the structural neural connectivity in three-dimensional visualization by detection of the translational displacement of water molecules (Parker and Alexander, 2005; Behrens et al., 2007). In particular, the probabilistic tracking method enables estimation of local uncertainty in fiber orientation of each voxel(Parker and Alexander, 2005; Behrens et al., 2007). In other words, it considers the distribution of underlying fiber structure. Accordingly, probabilistic DTI tractography has been widely used to investigate the neural connectivity between neural structures in the human brain, including the amygdala, lateral geniculate body and red nucleus (Muthusamy et al., 2007; Nucifora et al., 2007; Jang and Kwon, 2014; Kwon and Jang, 2014). However, few studies are reported on the structural neural connectivity of the VN in the human brain(Kirsch et al., 2016). In this study, we attempted to investi-gate the structural neural connectivity of the VN in normal subjects using DTT.

    Figure 1 Diffusion tensor tractography for the structural neural connectivity of the vestibular nuclei in a healthy participant.

    Participants and Methods

    Participants

    Thirty-seven healthy participants (22 males and 15 females;mean age of 37.8 years (range 20–56 years) with no previous history of neurological, physical, or psychiatric illness were included in this studyviabulletin board notices. All participants understood the purpose of this study and provided written informed consent prior to participation and the study protocol was approved by the Institutional Review Board of Yeungnam University Hospital, Republic of Korea(YUMC 2017-07-065-011).

    Data acquisition

    A 1.5 T Philips Gyroscan Intera system (Philips Ltd, Best,The Netherlands) equipped with a 6-channel head coil with a single-shot spin echo planar imaging sequence was used for acquisition of DTT data. For each of the 32 non-collinear, diffusion-sensitizing gradients, 70 contiguous slices were acquired parallel to the anterior commissure-posterior commissure line. Imaging parameters of DTT were as follows:acquisition matrix = 96 × 96; reconstructed to matrix = 192 ×192; field of view = 240 × 240 mm2; repetition time = 10,398 ms; echo time = 72 ms; parallel imaging reduction factor = 2;echo-planar imaging factor = 59;b= 1000 s/mm2; number of excitations = 1; and a slice thickness of 2.5 mm.

    Probabilistic fiber tracking

    The Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL; www.fmrib.ox.ac.uk/fsl) was used to analyze diffusion-weighted imaging data. Eddy current correction was applied to correct the head motion effect and image distortion. Fiber tracking was performed using probabilistic tractography, and applied in the default tractography option in FMRIB Diffusion Soft-ware (5000 streamline samples, 0.5 mm step lengths, curvature thresholds = 0.2) (Smith et al., 2004; Behrens et al.,2007). The fiber tracking method was used to generate 5000 streamline samples from each seed region of interest with relection of both dominant and non-dominant orientation of diffusion in each voxel in each individual (Smith et al.,2004; Behrens et al., 2007). The fiber tracking method has an advantage in the evaluation of the structural neural connectivities of neural structures. In the seed region of interest, the VN was isolated using the following adjacent structures: the reticular formation (RF, antero-medial boundary), restiform body (lateral boundary), and posterior margin of the medulla (posterior boundary) (Naidich and Duvernoy, 2009). Out of 5,000 streamline samples generated from the seed voxel,results of fiber tracking were visualized at the threshold of 5, 50, and 100 streamlines through each voxel for analysis.Connectivity represented the percentage of connection in the hemispheres of 37 healthy subjects.

    Determination of connectivity between the VN and targeted brain regions

    Connectivity was defined as the incidence of connection between the VN and each of the following brain regions: the primary motor cortex, premotor cortex, primary somatosensory cortex, posterior parietal cortex, lateral prefrontal cortex,ventromedial prefrontal cortex, orbitofrontal cortex, thalamus,hypothalamus, oculomotor nucleus, trochlear nucleus, abducens nucleus, and reticular formation and cerebellum.

    Statistical analysis

    SPSS 15.0 software (SPSS, Chicago, IL, USA) was used for statistical analysis. The chi-square test was performed to determine the difference in connectivity of the VN between the right and left hemispheres. A level ofP< 0.05 was considered statistically significant.

    Table 1 Incidence of connectivity (%) between the vestibular nuclei and targeted brain regions in healthy subjects

    Results

    A summary of the structural neural connectivity of the VN is shown in Table 1 and Figure 1. The VN showed 100%connectivity with the cerebellum, thalamus, oculomotor nucleus, trochlear nucleus, abducens nucleus, and reticular formation, irrespective of thresholds. In contrast, regarding the threshold of 5, 50, and 100 streamlines, the VN showed connectivity with the primary motor cortex (95.9%, 83.8%,and 74.3%), primary somatosensory cortex (90.5%, 68.9%,and 64.9%), premotor cortex (87.8%, 52.7%, and 40.5%),hypothalamus (86.5%, 64.9%, and 54.1%), posterior parietal cortex (75.7%, 27.0%, and 23.0%), lateral prefrontal cortex(70.3%, 27.0%, and 17.6%), ventromedial prefrontal cortex(51.4%, 27.0%, and 20.3%), and orbitofrontal cortex (40.5%,24.3%, and 18.9%), respectively. In all targeted brain regions,no significant difference in connectivity of the VN was observed between the right and left hemispheres (P> 0.05).

    Discussion

    In this study, probabilistic tracking was used to investigate the structural neural connectivity of the VN in the normal human brain. According to our findings, the VN showed 100% connectivity with brain regions (cerebellum, thalamus,oculomotor nucleus, trochlear nucleus, abducens nucleus,and reticular formation) related to the functions of the VN(equilibrium, control of eye movements, conscious perception of movement, and spatial orientation) irrespective of thresholds, as well as high connectivity (over 70%) with the sensory-motor cortex (primary motor cortex, primary somatosensory cortex, premotor cortex, and posterior parietal cortex), hypothalamus, and lateral prefrontal cortex at the threshold of 5 streamlines.

    Tracer technique has been used in many animal studies reporting on the connectivity of the VN (Henkel and Martin, 1977; Montgomery, 1988; Faugier-Grimaud and Ventre,1989; Barmack et al., 1993; Akbarian et al., 1994; Shiroyama et al., 1999; Horowitz et al., 2005; Markia et al., 2008). Using tracer technique, Henkel and Martin (1977) demonstrated connection of the major afferent fibers of the VN with the cerebellum in 300 rats and that the superior VN terminated at the ipsilateral trochlear nucleus and oculomotor nucleus. Subsequently, Akbarian et al. (1994), who reported that the VN connected the premotor and parietal cortex in five monkeys, suggested that these connectivities might affect the vestibulocular reflex. Horowitz et al. (2005) reported connection of the VN with various brain regions, including the thalamic nucleus, hypothalamus, oculomotor nucleus,and cerebellum in 24 hamsters. Markia et al. (2008) recently reported on the connectivity between the VN and paraventricular nucleus of hypothalamus using a monosynaptic retrograde tracer technique in six rats. Our results appear to be consistent with those of the previous studies.

    To the best of our knowledge, only one study involving the human brain has been reported on the structural neural connectivity of the VN using DTT (Kirsch et al., 2016 ).Kirsch et al. (2016) examined the functional and structural connectivity between the VN and ipsilateral and contralateral parieto-insular vestibular cortex in 24 normal subjects using DTT and functional MRI. They found two ipsilateral pathways of the VN to the parieto-insular vestibular cortex,a direct pathway without the thalamus and an indirect pathway with the thalamus in either the posterolateral or paramedian nuclei, and with regard to the contralateral pathways, the VN connected with the parieto-insular vestibular cortexviathe posterolateral thalamus (Kirsch et al., 2016). Compared to Kirsch’s study, our study investigated the structural neural connectivity of the VN to almost all brain regions and adopted three different thresholds to determine the potential and tendency of connectivity between the VN and all brain regions. We believe our findings would be helpful for clinicians who are engaged in research on neurological diseases in terms of diagnosis, treatment plan, and prognosis prediction.

    In conclusion, in this study, we investigated the structural neural connectivity of the VN in normal human subjects and found that the VN showed high connectivity with brain regions related to the functions including equilibrium, eye movements, conscious perception of movement, and spatial orientation. We believe that the methods used in this study to investigate the structural neural connectivity of the VN in the live human brain, as well as the corresponding results, would provide valuable information for clinicians and researchers studying the VN. However, several limitations of this study should be considered (Parker and Alexander, 2005; Yamada et al., 2009; Fillard et al., 2011). First, although the VN is composed of four subnuclei, we found no connectivity between specific subnuclei of the VN and each brain region. Second,because DTT cannot discern the direction, the afferent and efferent fibers could not be divided between the VN and brain regions. Third, when using probabilistic DTT tractography,crossing fibers in a voxel or partial volume effect throughout the white matter of the brain can cause both false positive and negative results (Yamada et al., 2009; Fillard et al., 2011).Therefore, to overcome these limitations, in-depth studies, as well as studies regarding clinical application of our results for patients with brain injury, are encouraged.

    Author contributions:SHJ conceived and designed this study, was responsible for data acquisition, wrote and authorized the paper. MYL participated in research design and data acquisition. SSY participated in research design and provided technical assistance. HGK participated in data acquisition and analysis, was in charge of fundraising, contributed to paper writing, and provided technical support. All authors approved the final version of this paper.

    Conflicts of interest:None declared.

    Financial support:This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (2015R1D1A4A01020385).

    Research ethics:All participants provided informed consent for participation and the study was approved by the institutional Review Board of Yeungnam University Hospital (YUMC 2017-07-065-011). The study followed the Declaration of Helsinki and relevant ethical principles.

    Declaration of participant consent:The authors certify that they will obtain all appropriate participant consent forms. In the form, the participants will give their consent for their images and other clinical information to be reported in the journal. The participants understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak,and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Akbarian S, Grusser OJ, Guldin WO (1994) Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey. J Comp Neurol 339:421-437.

    Augustine JR (2008) Human Neuroanatomy. NJ, USA: John Wiley &Sons.

    Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511-541.

    Barmack NH, Baughman RW, Errico P, Shojaku H (1993) Vestibular primary afferent projection to the cerebellum of the rabbit. J Comp Neurol 327:521-534.

    Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007)Probabilistic diffusion tractography with multiple fibre orientations:What can we gain? Neuroimage 34:144-155.

    Faugier-Grimaud S, Ventre J (1989) Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280:1-14.

    Fillard P, Descoteaux M, Goh A, Gouttard S, Jeurissen B, Malcolm J,Ramirez-Manzanares A, Reisert M, Sakaie K, Tensaouti F, Yo T, Mangin JF, Poupon C (2011) Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. Neuroimage 56:220-234.

    Haines DE (2006) Fundamental neuroscience, 3rdEdition. Philadelphia:Churchill Livingstone.

    Henkel CK, Martin GF (1977) The vestibular complex of the American opossum didelphis virginiana. II. Afferent and efferent connections. J Comp Neurol 172:321-348.

    Hitier M, Besnard S, Smith PF (2014) Vestibular pathways involved in cognition. Front Integr Neurosci 8:59.

    Horowitz SS, Blanchard J, Morin LP (2005) Medial vestibular connections with the hypocretin (orexin) system. J Comp Neurol 487:127-146.

    Jang SH, Kwon HG (2014) Neural connectivity of the amygdala in the human brain: a diffusion tensor imaging study. Neural Netw World 24:591-599.

    Kirsch V, Keeser D, Hergenroeder T, Erat O, Ertl-Wagner B, Brandt T, Dieterich M (2016) Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex. Brain Struct Funct 221:1291-308.

    Kwon HG, Jang SH (2014) Neural connectivity of the lateral geniculate body in the human brain: diffusion tensor imaging study. Neurosci Lett 578:66-70.

    Markia B, Kovacs ZI, Palkovits M (2008) Projections from the vestibular nuclei to the hypothalamic paraventricular nucleus: morphological evidence for the existence of a vestibular stress pathway in the rat brain.Brain Struct Funct 213:239-245.

    Montgomery NM (1988) Projections of the vestibular and cerebellar nuclei in Rana pipiens. Brain Behav Evol 31:82-95.

    Muthusamy KA, Aravamuthan BR, Kringelbach ML, Jenkinson N, Voets NL, Johansen-Berg H, Stein JF, Aziz TZ (2007) Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurosurg 107:814-820.

    Naidich TP, Duvernoy HM (2009) Duvernoy’s atlas of the human brain stem and cerebellum: high- field MRI: surface anatomy, internal structure, vascularization and 3D sectional anatomy. Wien; New York:Springer.

    Nucifora PG, Verma R, Lee SK, Melhem ER (2007) Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 245:367-384.

    Parker GJ, Alexander DC (2005) Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue. Philos Trans R Soc Lond B Biol Sci 360:893-902.

    Shiroyama T, Kayahara T, Yasui Y, Nomura J, Nakano K (1999) Projections of the vestibular nuclei to the thalamus in the rat: a Phaseolus vulgaris leucoagglutinin study. J Comp Neurol 407:318-332.

    Siegel A, Sapru HN, Siegel H (2010) Essential neuroscience, 3th ed. Edition: Lippincott Williams & Wilkins.

    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE,Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE,Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM,Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1:S208-219.

    Yamada K, Sakai K, Akazawa K, Yuen S, Nishimura T (2009) MR tractography: a review of its clinical applications. Magn Reson Med Sci 8:165-174.

    zu Eulenburg P, Caspers S, Roski C, Eickhoff SB (2012) Meta-analytical definition and functional connectivity of the human vestibular cortex.Neuroimage 60:162-169.

    久久精品国产亚洲av香蕉五月| 国产精品免费一区二区三区在线| 精品国产美女av久久久久小说| 国产在线观看jvid| 婷婷六月久久综合丁香| 黄片小视频在线播放| 黄色视频不卡| 精品久久久久久久毛片微露脸| 露出奶头的视频| 香蕉丝袜av| 欧美黑人巨大hd| 免费看十八禁软件| 午夜免费激情av| 国产真实乱freesex| 在线看三级毛片| 久久久久国产一级毛片高清牌| 亚洲avbb在线观看| 男女那种视频在线观看| 国产激情偷乱视频一区二区| 91在线观看av| 欧美不卡视频在线免费观看 | 欧美成人一区二区免费高清观看 | 亚洲一区高清亚洲精品| 国产精品久久电影中文字幕| 亚洲欧洲精品一区二区精品久久久| 国产99久久九九免费精品| 看片在线看免费视频| 欧美 亚洲 国产 日韩一| 黄色成人免费大全| 不卡一级毛片| 欧美又色又爽又黄视频| 亚洲乱码一区二区免费版| 国产不卡一卡二| 亚洲精品色激情综合| 久久精品影院6| 欧美一区二区国产精品久久精品 | www.精华液| 国产aⅴ精品一区二区三区波| 可以在线观看毛片的网站| 国产伦在线观看视频一区| 婷婷精品国产亚洲av| 麻豆久久精品国产亚洲av| 丁香欧美五月| 1024香蕉在线观看| 床上黄色一级片| 天天添夜夜摸| 老鸭窝网址在线观看| 欧美人与性动交α欧美精品济南到| 免费在线观看成人毛片| 欧美极品一区二区三区四区| 精品一区二区三区av网在线观看| 成人精品一区二区免费| 国产成+人综合+亚洲专区| 亚洲色图av天堂| 欧美三级亚洲精品| 他把我摸到了高潮在线观看| 国产精品香港三级国产av潘金莲| 中文字幕人成人乱码亚洲影| 精华霜和精华液先用哪个| 婷婷六月久久综合丁香| 久久中文看片网| a级毛片a级免费在线| 男女之事视频高清在线观看| 久久天躁狠狠躁夜夜2o2o| 后天国语完整版免费观看| 国产视频内射| 国产av一区在线观看免费| 99热这里只有是精品50| 最近最新中文字幕大全电影3| 高清在线国产一区| 国产av麻豆久久久久久久| 亚洲自偷自拍图片 自拍| 午夜两性在线视频| 一区二区三区高清视频在线| 中文字幕人成人乱码亚洲影| 九色成人免费人妻av| 少妇裸体淫交视频免费看高清 | 国产在线精品亚洲第一网站| 一级毛片高清免费大全| 国内精品一区二区在线观看| 精品一区二区三区视频在线观看免费| 大型黄色视频在线免费观看| 国产精品av视频在线免费观看| 国产精品爽爽va在线观看网站| 色精品久久人妻99蜜桃| 国产精品美女特级片免费视频播放器 | 夜夜看夜夜爽夜夜摸| 最好的美女福利视频网| 丰满人妻一区二区三区视频av | 亚洲午夜理论影院| 国产精品99久久99久久久不卡| 神马国产精品三级电影在线观看 | 亚洲人成网站高清观看| 国产激情偷乱视频一区二区| 久久香蕉精品热| 天天躁狠狠躁夜夜躁狠狠躁| 免费高清视频大片| 国产成人精品久久二区二区91| 一进一出抽搐动态| 亚洲国产中文字幕在线视频| 亚洲精品av麻豆狂野| 亚洲av五月六月丁香网| 国产高清视频在线播放一区| 18禁黄网站禁片免费观看直播| 亚洲男人天堂网一区| 在线观看美女被高潮喷水网站 | 伦理电影免费视频| 人妻久久中文字幕网| 成人18禁在线播放| 亚洲av电影不卡..在线观看| 黄色丝袜av网址大全| 国产aⅴ精品一区二区三区波| 制服人妻中文乱码| 50天的宝宝边吃奶边哭怎么回事| 日日爽夜夜爽网站| 成人精品一区二区免费| 99热这里只有是精品50| 色综合婷婷激情| 天天一区二区日本电影三级| 老熟妇乱子伦视频在线观看| 9191精品国产免费久久| 久久香蕉精品热| 午夜福利高清视频| 国产精品影院久久| 久久人人精品亚洲av| 一区福利在线观看| 亚洲成人国产一区在线观看| 岛国视频午夜一区免费看| 久久精品综合一区二区三区| 亚洲18禁久久av| 在线免费观看的www视频| 变态另类丝袜制服| a级毛片a级免费在线| 欧美日韩乱码在线| 大型av网站在线播放| 亚洲av熟女| 色播亚洲综合网| 一级片免费观看大全| 国产精品 国内视频| 日本一二三区视频观看| 在线观看免费日韩欧美大片| 一级片免费观看大全| 国产成人精品无人区| 在线观看免费日韩欧美大片| 国产成人av教育| 国产真实乱freesex| 性欧美人与动物交配| 国产69精品久久久久777片 | 国产精品亚洲一级av第二区| 欧美精品亚洲一区二区| 变态另类成人亚洲欧美熟女| 精品国产亚洲在线| 成人国产综合亚洲| 搡老妇女老女人老熟妇| 欧美一区二区国产精品久久精品 | 国产亚洲精品久久久久5区| cao死你这个sao货| 香蕉丝袜av| 亚洲aⅴ乱码一区二区在线播放 | 婷婷丁香在线五月| 波多野结衣巨乳人妻| 亚洲人成网站在线播放欧美日韩| 伊人久久大香线蕉亚洲五| 日韩精品免费视频一区二区三区| 五月伊人婷婷丁香| 九九热线精品视视频播放| 国产精品 国内视频| bbb黄色大片| 夜夜躁狠狠躁天天躁| 搡老熟女国产l中国老女人| 少妇熟女aⅴ在线视频| 亚洲电影在线观看av| 777久久人妻少妇嫩草av网站| 夜夜看夜夜爽夜夜摸| 12—13女人毛片做爰片一| 久久天堂一区二区三区四区| 日韩三级视频一区二区三区| 亚洲九九香蕉| 在线观看午夜福利视频| 两人在一起打扑克的视频| 亚洲av电影不卡..在线观看| 高潮久久久久久久久久久不卡| 麻豆一二三区av精品| 白带黄色成豆腐渣| 亚洲人成网站在线播放欧美日韩| 老汉色∧v一级毛片| 久久精品人妻少妇| 久久国产乱子伦精品免费另类| 一区福利在线观看| 波多野结衣高清作品| 最近视频中文字幕2019在线8| 丝袜美腿诱惑在线| 国产亚洲精品久久久久5区| 禁无遮挡网站| 老司机午夜十八禁免费视频| 欧美中文综合在线视频| 最近最新中文字幕大全电影3| 色综合婷婷激情| 欧美激情久久久久久爽电影| 亚洲电影在线观看av| 色在线成人网| 国产精品,欧美在线| 亚洲无线在线观看| 欧美在线一区亚洲| 真人一进一出gif抽搐免费| e午夜精品久久久久久久| √禁漫天堂资源中文www| 久久国产精品人妻蜜桃| 黄色a级毛片大全视频| 中文资源天堂在线| 亚洲国产精品合色在线| 午夜视频精品福利| 国产不卡一卡二| 老汉色av国产亚洲站长工具| 19禁男女啪啪无遮挡网站| 岛国在线免费视频观看| 制服诱惑二区| 久久精品国产99精品国产亚洲性色| xxx96com| 亚洲国产高清在线一区二区三| 女人高潮潮喷娇喘18禁视频| 欧美黑人精品巨大| 亚洲狠狠婷婷综合久久图片| 1024视频免费在线观看| 欧美日韩福利视频一区二区| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品久久男人天堂| 国产精品野战在线观看| 无限看片的www在线观看| 国产伦在线观看视频一区| 亚洲电影在线观看av| 大型黄色视频在线免费观看| 久久精品夜夜夜夜夜久久蜜豆 | 日本精品一区二区三区蜜桃| 免费观看人在逋| av有码第一页| 黄色视频,在线免费观看| 给我免费播放毛片高清在线观看| 色精品久久人妻99蜜桃| 亚洲欧洲精品一区二区精品久久久| 一本综合久久免费| 久久欧美精品欧美久久欧美| 日韩欧美一区二区三区在线观看| 俄罗斯特黄特色一大片| 午夜精品在线福利| 色综合欧美亚洲国产小说| 怎么达到女性高潮| 曰老女人黄片| 97人妻精品一区二区三区麻豆| 长腿黑丝高跟| 一级片免费观看大全| 老司机午夜十八禁免费视频| 一本精品99久久精品77| 亚洲自偷自拍图片 自拍| 国产午夜福利久久久久久| 国产免费av片在线观看野外av| 90打野战视频偷拍视频| 欧美成人一区二区免费高清观看 | 90打野战视频偷拍视频| 性色av乱码一区二区三区2| 午夜精品在线福利| 色尼玛亚洲综合影院| netflix在线观看网站| 又紧又爽又黄一区二区| 午夜影院日韩av| 国产精品九九99| 精品久久久久久久末码| 狂野欧美激情性xxxx| 国产av麻豆久久久久久久| 精品电影一区二区在线| 亚洲精品久久成人aⅴ小说| or卡值多少钱| 日韩高清综合在线| 99热这里只有是精品50| 一边摸一边做爽爽视频免费| 巨乳人妻的诱惑在线观看| 亚洲国产欧美人成| 国产成人av教育| 亚洲精品av麻豆狂野| 婷婷精品国产亚洲av| 天天躁狠狠躁夜夜躁狠狠躁| 久久香蕉国产精品| 久久久精品国产亚洲av高清涩受| 男女那种视频在线观看| 成年版毛片免费区| 国产野战对白在线观看| 国产精品一区二区三区四区久久| 久久中文字幕人妻熟女| 亚洲成人久久爱视频| 色尼玛亚洲综合影院| 超碰成人久久| 日本免费一区二区三区高清不卡| 18禁国产床啪视频网站| 亚洲精华国产精华精| 国产成人啪精品午夜网站| 曰老女人黄片| 久久久国产欧美日韩av| 国产一区二区激情短视频| 亚洲精品中文字幕一二三四区| 热99re8久久精品国产| 成人三级做爰电影| 亚洲av电影不卡..在线观看| 看黄色毛片网站| 亚洲精品中文字幕在线视频| 亚洲片人在线观看| 午夜亚洲福利在线播放| av福利片在线| 久久人妻av系列| 三级男女做爰猛烈吃奶摸视频| 少妇人妻一区二区三区视频| 亚洲18禁久久av| 国产成人精品无人区| 日本撒尿小便嘘嘘汇集6| 啦啦啦韩国在线观看视频| 久久国产精品影院| 欧美av亚洲av综合av国产av| 中文字幕熟女人妻在线| 亚洲人与动物交配视频| 免费观看精品视频网站| 亚洲人成网站在线播放欧美日韩| 午夜a级毛片| 国产精品av久久久久免费| 亚洲人与动物交配视频| 脱女人内裤的视频| 日本黄色视频三级网站网址| 欧美黑人精品巨大| 色播亚洲综合网| 免费在线观看成人毛片| 精品久久久久久久人妻蜜臀av| 久久香蕉精品热| 亚洲真实伦在线观看| 久久精品国产亚洲av高清一级| 国产成人aa在线观看| 日日摸夜夜添夜夜添小说| 99久久久亚洲精品蜜臀av| 久久中文字幕一级| 首页视频小说图片口味搜索| 欧美乱码精品一区二区三区| 久久久久久九九精品二区国产 | 这个男人来自地球电影免费观看| 99热这里只有精品一区 | 亚洲av成人不卡在线观看播放网| av福利片在线观看| 国产av麻豆久久久久久久| 精品久久久久久久久久久久久| 国产成人av教育| 天堂av国产一区二区熟女人妻 | 人人妻人人澡欧美一区二区| 亚洲成人久久性| 在线免费观看的www视频| 日韩高清综合在线| 久久国产精品人妻蜜桃| 久久香蕉精品热| 色综合亚洲欧美另类图片| 欧美日韩亚洲综合一区二区三区_| 日韩有码中文字幕| 国产在线精品亚洲第一网站| 亚洲成人免费电影在线观看| 少妇被粗大的猛进出69影院| cao死你这个sao货| 99久久综合精品五月天人人| 人人妻人人看人人澡| 久久久久久九九精品二区国产 | 1024香蕉在线观看| 俄罗斯特黄特色一大片| 中文字幕精品亚洲无线码一区| 日韩高清综合在线| 熟女电影av网| 色综合亚洲欧美另类图片| 亚洲av第一区精品v没综合| 免费在线观看亚洲国产| 亚洲av片天天在线观看| 欧美又色又爽又黄视频| 国产三级黄色录像| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品粉嫩美女一区| 美女 人体艺术 gogo| 国产成人av激情在线播放| 在线观看舔阴道视频| 99久久久亚洲精品蜜臀av| 国产一区在线观看成人免费| 91成年电影在线观看| 午夜精品在线福利| 欧美最黄视频在线播放免费| 精品一区二区三区视频在线观看免费| 国产精品久久久久久精品电影| 大型av网站在线播放| 狂野欧美激情性xxxx| 成年版毛片免费区| 国产黄片美女视频| 欧美中文综合在线视频| 在线观看免费视频日本深夜| 欧美乱码精品一区二区三区| 精品久久久久久,| 午夜日韩欧美国产| 男人舔奶头视频| 在线观看舔阴道视频| 啦啦啦免费观看视频1| 男女下面进入的视频免费午夜| cao死你这个sao货| 大型av网站在线播放| 熟女少妇亚洲综合色aaa.| av免费在线观看网站| 亚洲一区高清亚洲精品| 国产精品一区二区三区四区久久| 真人一进一出gif抽搐免费| 麻豆一二三区av精品| 女人高潮潮喷娇喘18禁视频| 日日干狠狠操夜夜爽| 欧美日韩一级在线毛片| 亚洲欧美日韩高清在线视频| 日韩欧美在线乱码| 无限看片的www在线观看| 韩国av一区二区三区四区| 黄色成人免费大全| 小说图片视频综合网站| √禁漫天堂资源中文www| 不卡av一区二区三区| 国产精品久久久久久精品电影| 色综合亚洲欧美另类图片| 久久天躁狠狠躁夜夜2o2o| 好男人在线观看高清免费视频| 日本在线视频免费播放| 婷婷亚洲欧美| 在线观看66精品国产| 一二三四在线观看免费中文在| 熟女少妇亚洲综合色aaa.| 99久久无色码亚洲精品果冻| 欧美av亚洲av综合av国产av| 我要搜黄色片| 久久久久久九九精品二区国产 | 搡老妇女老女人老熟妇| 亚洲男人天堂网一区| 亚洲18禁久久av| 午夜精品久久久久久毛片777| 国产午夜精品论理片| 国产精品久久电影中文字幕| av在线天堂中文字幕| 亚洲av电影在线进入| 天堂√8在线中文| 国产一区二区在线av高清观看| 国内精品久久久久精免费| 美女扒开内裤让男人捅视频| 91成年电影在线观看| 88av欧美| 伊人久久大香线蕉亚洲五| 亚洲色图av天堂| 日本三级黄在线观看| 老司机午夜十八禁免费视频| 最近最新免费中文字幕在线| 777久久人妻少妇嫩草av网站| 国产高清有码在线观看视频 | 午夜福利视频1000在线观看| 美女高潮喷水抽搐中文字幕| 亚洲欧美日韩高清专用| 亚洲七黄色美女视频| 亚洲精品av麻豆狂野| 每晚都被弄得嗷嗷叫到高潮| 2021天堂中文幕一二区在线观| 日韩欧美免费精品| videosex国产| 老司机福利观看| 久久午夜综合久久蜜桃| 成人一区二区视频在线观看| 欧美乱码精品一区二区三区| 亚洲国产欧美网| 国产欧美日韩一区二区三| 麻豆成人午夜福利视频| 免费看美女性在线毛片视频| 久久久精品欧美日韩精品| 神马国产精品三级电影在线观看 | 日韩欧美国产一区二区入口| 91麻豆精品激情在线观看国产| 波多野结衣高清作品| av欧美777| 一a级毛片在线观看| 国产精品野战在线观看| 变态另类成人亚洲欧美熟女| 亚洲自偷自拍图片 自拍| 在线观看日韩欧美| 欧美日韩中文字幕国产精品一区二区三区| 欧美又色又爽又黄视频| or卡值多少钱| 妹子高潮喷水视频| 亚洲电影在线观看av| www日本在线高清视频| 精品第一国产精品| 黄片大片在线免费观看| 国产一区二区三区在线臀色熟女| 日韩免费av在线播放| 日本三级黄在线观看| 黑人操中国人逼视频| 免费在线观看日本一区| 九九热线精品视视频播放| 久久精品综合一区二区三区| 天天添夜夜摸| 国产精品精品国产色婷婷| 高清在线国产一区| 久久欧美精品欧美久久欧美| 极品教师在线免费播放| 级片在线观看| 亚洲av成人不卡在线观看播放网| 日本 欧美在线| 亚洲av中文字字幕乱码综合| 亚洲成人中文字幕在线播放| 99在线视频只有这里精品首页| 999久久久精品免费观看国产| 国产黄色小视频在线观看| 人妻丰满熟妇av一区二区三区| 色噜噜av男人的天堂激情| 免费在线观看黄色视频的| 国产精品国产高清国产av| 久久香蕉国产精品| √禁漫天堂资源中文www| 日本 av在线| 国产精品美女特级片免费视频播放器 | 琪琪午夜伦伦电影理论片6080| 久久伊人香网站| 日本免费一区二区三区高清不卡| 久久人妻福利社区极品人妻图片| 中出人妻视频一区二区| 成人高潮视频无遮挡免费网站| 午夜福利在线在线| 日本 欧美在线| 亚洲国产欧美网| 丰满的人妻完整版| 亚洲成人久久爱视频| 精品不卡国产一区二区三区| 国产精品日韩av在线免费观看| 中文字幕最新亚洲高清| 亚洲成人精品中文字幕电影| 成年人黄色毛片网站| 欧美日韩精品网址| 国产精品久久久久久精品电影| 午夜老司机福利片| 日韩国内少妇激情av| 19禁男女啪啪无遮挡网站| 午夜老司机福利片| 熟女电影av网| 日韩av在线大香蕉| 免费一级毛片在线播放高清视频| 日韩欧美国产一区二区入口| 国产精华一区二区三区| 亚洲欧美日韩东京热| 国产精品久久久久久精品电影| 成年免费大片在线观看| 妹子高潮喷水视频| 亚洲七黄色美女视频| 色综合婷婷激情| 欧美午夜高清在线| 国产97色在线日韩免费| 日韩欧美 国产精品| 国产成人精品无人区| √禁漫天堂资源中文www| 国产三级中文精品| 中国美女看黄片| 女人爽到高潮嗷嗷叫在线视频| 亚洲av美国av| 最新在线观看一区二区三区| 中文亚洲av片在线观看爽| 黄色视频不卡| 校园春色视频在线观看| 亚洲av成人不卡在线观看播放网| 国产精品 国内视频| 国产探花在线观看一区二区| 搡老岳熟女国产| 一本久久中文字幕| 色综合婷婷激情| 亚洲成人国产一区在线观看| 久久久久久亚洲精品国产蜜桃av| 身体一侧抽搐| 久久精品国产亚洲av高清一级| 国产激情偷乱视频一区二区| 黄色女人牲交| 99热6这里只有精品| 成人手机av| 免费无遮挡裸体视频| 国产精品爽爽va在线观看网站| 日本一本二区三区精品| 久久精品夜夜夜夜夜久久蜜豆 | 在线免费观看的www视频| 男插女下体视频免费在线播放| 啦啦啦韩国在线观看视频| 国产一区在线观看成人免费| 国产av又大| 亚洲成人久久性| 国产高清有码在线观看视频 | 少妇人妻一区二区三区视频| www.熟女人妻精品国产| 国产激情偷乱视频一区二区| 日韩精品中文字幕看吧| 久久天堂一区二区三区四区| 久久久国产成人精品二区| 999久久久国产精品视频| 久久精品91无色码中文字幕| 高潮久久久久久久久久久不卡| 亚洲精品久久成人aⅴ小说| 午夜激情福利司机影院| 看黄色毛片网站| 两个人免费观看高清视频| 免费在线观看黄色视频的| 国产亚洲精品一区二区www| 亚洲精品粉嫩美女一区| 欧美极品一区二区三区四区| 999精品在线视频| 麻豆av在线久日| 欧美日韩瑟瑟在线播放| 久久久久久大精品| 亚洲在线自拍视频| 天天添夜夜摸| 精品少妇一区二区三区视频日本电影| 久99久视频精品免费| 中文在线观看免费www的网站 | 成人三级黄色视频| 精品一区二区三区视频在线观看免费|