• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brain remodeling after chronic median nerve compression in a rat model

    2018-05-05 06:47:09BingBoBaoDanQianQuHongYiZhuTaoGaoXianYouZheng

    Bing-Bo Bao , Dan-Qian Qu , Hong-Yi Zhu Tao Gao Xian-You Zheng

    1 Department of Orthopedic Surgery, Shanghai Jiao Tong University, Affiliated Sixth People’s Hospital, Shanghai, China

    2 Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,China

    Introduction

    Carpal tunnel syndrome (CTS) is the most clinically common compressive neuropathy of the upper extremities,and affects many individuals (Stapleton, 2006). Specifically, it has a prevalence of 3–5% in the general population and 6% in females over the age of 40 years (Grace et al.,2010). It causes altered sensation, chronic pain, and partial thenar atrophy, which can lead to hand dysfunction(Kleopa, 2015; Padua et al., 2016; Dec and Zyluk, 2018).Previous studies have shown that CTS, accompanied by chronic nerve compression with compressive neuropathy,can induce changes in the structure and microvasculature of peripheral nerves (Bai et al., 2016; Chen et al., 2016).Further, CTS is also characterized by structural (Maeda et al., 2013, 2016) and functional (Druschky et al., 2000; Napadow et al., 2006; Dhond et al., 2012; Maeda et al., 2014)neuroplasticity in the primary somatosensory cortex (S1)of the brain.

    Figure 1 Brain activation map for normal control rats(functional magnetic resonance imaging).

    Figure 2 Brain activation map for carpal tunnel syndrome rats at 2 weeks after operation (functional magnetic resonance imaging).

    Figure 3 Brain activation map for carpal tunnel syndrome rats at 2 months after operation (functional magnetic resonance imaging).

    CTS leads to altered afferent processing throughout the somatosensory system (involving both the peripheral and central nervous systems), as measured by somatosensory evoked potentials in the spinal cord, brainstem, and primary sensorimotor cortex (Maeda et al., 2013b, 2017).The finger and toe digits occupy a significant portion of the human somatotopic map in the primary somatosensory cortex, and are represented in consecutive order along the postcentral gyrus, with digit 1 (D1) being most ventrolateral and digit 5 (D5) most dorsomedial (Maeda et al., 2014, 2016, 2017). Although chronic nerve compression is a peripheral neuropathy, neuroimaging data suggests that irregular afferent signals of CTS produce maladaptive central neuroplasticity (Napadow et al.,2007). For example, spinal amplification of event-related potentials to ulnar nerve stimulation of the CTS-affected hand is thought to represent unmasking of secondary inputs that are normally silent in median nerve signaling. Similarly, studies have recently reported that during stimulation of median nerve-innervated digits, early cortical amplification can evoke responses and alter S1 digit somatotopy. Corroboratively, these findings have been verified by functional magnetic resonance imaging (fMRI)(Khosrawi et al., 2012; Beissner et al., 2013; Kim et al.,2015).

    Nonetheless, there are limited longitudinal studies on plasticity in the somatosensory cortex, as it is difficult to acquire multi-point neuroimaging data clinically. Thus,to address this, we developed a rat model of CTS and investigated cerebral plasticity using small animal fMRI.

    Materials and Methods

    Animals

    Forty female Sprague-Dawley rats weighing from 250 g to 300 g and aged 8 weeks were provided by the Animal Center of the Medical College of Shanghai Jiao Tong University, China (license No. SYXK (Hu) 2016-0020). All rats were housed at 20–25°C and 50 ± 5% humidity with free access to food and water in 12-hour light/dark cycles.All procedures and animal experiments were approved by the Animal Care and Use Committee of Shanghai Jiao Tong University, China (approval No. 2017-0124). Rats were randomly divided into a CTS group (n= 20; chronic median nerve compression) and normal group (n= 20).

    Rat model establishment

    Rats were intraperitoneally anesthetized with pentobarbital sodium (40 mg/kg; Shanghai Longsheng Chemical Co., Ltd., Shanghai, China). A dorsal gluteal splitting approach was used to expose the right median nerve of each rat. The right median nerve at the wrist level was mobilized and a 10-0 prolene suture used for median nerve ligation. This entire procedure was performed using a microscope (Shanghai Eder Medical Technology Inc.Shanghai, China) at 10× magnification. Finally, the incision was closed across all layers, with a tension-free skin closure performed in accordance with previously published methods (Atroshi et al., 1999b; Grace et al., 2010).

    MRI acquisition

    All fMRI scans were performed using a 7.0T horizontal-bore Bruker scanner (Bruker Corporation, Karlsruhe,Germany), which was equipped with a gradient system of 116 mm inner diameter and maximum gradient strength of 400 mT/m. fMRI scanning was performed to investigate cortical plasticity. Rats were anesthetized by sevoflurane inhalation (3% in oxygen) (Shanghai Longsheng Chemical Co., Ltd.), and then fixed on the scanner with the necessary ventilator support. A single transmitting and receiving surface coil consisting of a single copper-wire loop was used. For functional imaging, an interleaved single-shot echo planar imaging (EPI) sequence was applied with the following parameters: flip angle, 90°;slice thickness, 0.5 mm; repetition time, 3,000 ms; echo time, 20 ms; number of averages, 1; and field of view, 32 mm × 32 mm with 64 × 64 points. EPI fMRI volumes covered a relatively restricted area centered approximately on bregma point. The whole scan began with a dummy epoch of 8 seconds, which was automatically discarded by the system. Both “ON” and “OFF” epochs lasted for 30 seconds and these two epochs sequentially formed one cycle. A total of six cycles were performed in one stimulation session, during which only one side was stimulated with electric needles in the palm position.

    Imaging preprocessing

    There are several preprocessing steps that must be performed before data analysis. All images had their pixel dimensions scaled up by a factor of 10 in the Nifti header to avoid scale-dependent issues using standard FSL software(Oxford University, Oxford, UK). Apart from brain extraction and band-pass filtering, all steps were performed using the MELODIC graphical user interface. Preprocessing steps included:

    (1) Brain extraction: brain extraction was manually performed. Specifically, masks were manually created by masking all slices from the first volume of each individual rat to generate a mask file. These mask files were then applied to all volumes in each functional image.

    (2) Band-pass filtering: functional images were band-pass filtered between 0.01 and 0.1 Hz.

    (3) Slice timing correction: because each slice was acquired in interleaved order (0, 2, 4, 6 …1, 3, 5, 7 …), interleaved slice timing correction was used.

    (4) Spatial smoothing: functional data were spatially smoothed to minimize minor registration imperfections.Because we were interested in large-scale networks across the whole brain of a young rat, Gaussian kernel full width at half maximum (FWHM) of 0.7 mm was used to preprocess data and identify relatively large areas of coherent activity.

    (5) Normalization to standard space: animals slightly differ in brain size, which must be taken into account.Therefore, before brain network analysis, individual brains were registered to a standardized anatomical image (see below). Registration of fMRI data to a standard space (in-house adult anatomical rat brain template) was performed using FSL’s flirt, with a freedom affine transformation of 12° and resampling resolution of 0.4 mm.Consequently, for registration, affine transformation was used to ensure proper alignment of each individual rat to the adult rat brain atlas. This step is a pre-requisite for group analysis to identify common networks across all animals. Common expected minimal artifacts were detected across all animals in the brain.

    (6) Post analysis: higher-level analysis was performed using a general linear model. One-samplet-test was first performed in each group for determining the significant area within the group (false discovery rate, FDR correction,P< 0.05). The significant area in each group was extracted and combined into one binary mask. Subsequently, a two-samplet-test was performed within the boundary of the previously-generated mask (FDR correction,P< 0.05). MRIcroGL software (Bonilha et al., 2016)was used to visualize the results.

    Results

    Intragroup differences in the sensory stimulus task at 2 weeks after operation

    In control rats, stimulation to either forepaw generated significant activation of the contralateral sensorimotor cortex. However, in rats with CTS, stimulation to the affected right forepaw at 2 weeks after operation generated a strong signal change in the contralateral primary motor area (M1) and sensory cortex. Additional activation was observed in the cerebellum and thalamus.

    Intergroup differences in the sensory stimulus task at 2 weeks and 2 months after operation

    The extent of activation in the brain was greater in CTS rats than normal control rats at 2 weeks. However, activation in the contralateral primary motor area (M1) and sensory cortex at 2 months was much weaker compared with normal control rats. These results suggest there is dynamic plasticity in the sensorimotor cortex of CTS rats(Figures 1–3).

    Discussion

    Peripheral entrapment neuropathies are common sources of pain and paraesthesia (Neal and Fields, 2010) in clinical practice (Atroshi et al., 1999a; Wilson d’Almeida et al., 2008; Foley and Silverstein, 2015). Entrapment of the median nerve at the wrist, called CTS, accounts for 90% of such neuropathies (Papanicolaou et al., 2001;Kleopa, 2015). Here, we demonstrate a dynamic plastic process of cortical reorganization in CTS rats using a long-term study. Our results show that the sensory map of the affected forepaw expands at the early stage,and then shrinks at the later stage. This suggests a compensatory process in the brain of CTS rats. Similarly,previous neuroimaging studies have shown that while CTS results from compression of the median nerve at the wrist, it is also characterized by structural and functional neuroplasticity in the brain (Tecchio et al., 2002; Maeda et al., 2017). Specifically, CTS patients show decreased primary somatosensory cortex (S1) gray matter volume and cortical thickness contralateral to the affected hand,which is pronounced in paraesthesia dominant symptom subgroups and associated with aberrant median nerve conduction. Further, fMRI shows reduced separation between S1 cortical representations of adjacent median nerve-innervated fi ngers, digits 2 and 3 (D2/D3), which is a reproducible finding in different CTS cohorts using both fMRI and magnetoencephalography. Reduced D2/D3 separation in S1 is associated with median sensory nerve conduction latency, symptom severity, reduced fi ne motor performance, and diminished sensory discrimination accuracy, demonstrating that functional brain neuroplasticity is indeed maladaptive (Baraban et al., 2016;Maeda et al., 2016, 2017).

    In our present study, block-design stimulation of the affected forepaw generated significant activation in the contralateral sensorimotor cortex in normal control rats.However, the same stimulation in CTS rats at the early stage generated extended activation in the contralateral hemisphere, including the primary sensorimotor cortex,cerebellum, and thalamus. This suggests that the brain attempts to compensate for sensory loss after median nerve entrapment by enlarging central representation in the sensorimotor cortex and related brain regions of sensorimotor networks. Interestingly, brain activation decreased remarkably in CTS rats at the later stage. This suggests a maladaptive process in the brain after median nerve entrapment. Possibly with continuously decreased sensory input, the brain is unable to maintain control of the affected forepaw.

    A limitation of our study is that the sensory nerve action potential test was difficult to perform in the rat model. Consequently, we were unable to obtain enough clinical neurophysiology data. Indeed, there were only two time-points in the follow-up investigation. In further studies, we would overcome this limitation by performing more investigations.

    In conclusion, our results strongly support a dynamic plastic process after median nerve entrapment. Cortical reorganization is the foundation of sensorimotor func-tion recovery and may be a treatment biomarker. Our future study will quantify the functional differences so as to objectively compare the temporal changes.

    Author contributions:XYZ was in charge of study design and paper writing. BBB and TG performed animal experiments. BBB and DQQ were responsible for fMRI data collection and analysis. BBB and HYZ participated in the revision of the paper. XYZ supervised the work. All authors discussed the results and commented on the paper, and approved the final version of the paper.

    Conflicts of interest:The authors declare that they have no conflicts of interest.

    Financial support:This work was supported by the National Natural Science Foundation of China, No. 81371965, 81672144; and a grant from the Shanghai Pujiang Program of China, No. 16PJD035. The funding bodies played no role in the study design, collection, analysis and interpretation of data, the writing of the paper, or the decision to submit the paper for publication.

    Research ethics:The study was approved by the Ethics Committee of Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University of China (approval No. 2017-0124). The experimental procedure followed the United States National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23,revised 1985).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewer:José M. Ferrandez, Universidad Politecnica de Cartagena, Cartagena, Spain.

    Additional file:open peerreview report 1.

    Atroshi I, Gummesson C, Johnsson R, Sprinchorn A (1999a) Symptoms, disability, and quality of life in patients with carpal tunnel syndrome. J Hand Surg 24:398-404.

    Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I (1999b) Prevalence of carpal tunnel syndrome in a general population. JAMA 282:153-158.

    Bai J, Xu YB, Xia L, Zhou HZ (2016) The clinical efficacy and safety of endoscopic release versus mini-open release for carpal tunnel syndrome. Zhongguo Zuzhi Gongcheng Yanjiu 20:5009-5016.

    Baraban M, Mensch S, Lyons DA (2016) Adaptive myelination from fish to man. Brain Res 1641:149-161.

    Beissner F, Meissner K, Bar KJ, Napadow V (2013) The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neuroscience 33:10503-10511.

    Bonilha L, Gleichgerrcht E, Nesland T, Rorden C, Fridriksson J(2016) Success of anomia treatment in aphasia is associated with preserved architecture of global and left temporal lobe structural networks. Neurorehabil Neural Repair 30:266-279.

    Chen Y, Zhao CQ, Ye G, Liu CD, Xu WD (2016) Low-power laser therapy for carpal tunnel syndrome: effective optical power. Neural Regen Res 11:1180-1184.

    Dec P, Zyluk A (2018) Bilateral carpal tunnel syndrome - A review.Neurol Neurochir Pol 52:79-83.

    Dhond RP, Ruzich E, Witzel T, Maeda Y, Malatesta C, Morse LR, Audette J, Hamalainen M, Kettner N, Napadow V (2012) Spatio-temporal mapping cortical neuroplasticity in carpal tunnel syndrome.Brain 135:3062-3073.

    Druschky K, Kaltenhauser M, Hummel C, Druschky A, Huk WJ,Stefan H, Neundorfer B (2000) Alteration of the somatosensory cortical map in peripheral mononeuropathy due to carpal tunnel syndrome. Neuroreport 11:3925-3930.

    Foley M, Silverstein B (2015) The long-term burden of work-related carpal tunnel syndrome relative to upper-extremity fractures and dermatitis in Washington State. Am J Ind Med 58:1255-1269.

    Grace PM, Hutchinson MR, Manavis J, Somogyi AA, Rolan PE (2010)A novel animal model of graded neuropathic pain: utility to investigate mechanisms of population heterogeneity. J Neurosci Methods 193:47-53.

    Khosrawi S, Moghtaderi A, Haghighat S (2012) Acupuncture in treatment of carpal tunnel syndrome: a randomized controlled trial study. J Res Med Sci 17:1-7.

    Kim J, Loggia ML, Cahalan CM, Harris RE, Beissner FDPN, Garcia RG, Kim H, Wasan AD, Edwards RR, Napadow V (2015) The somatosensory link in fibromyalgia: functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction. Arthritis Rheumatol 67:1395-1405.

    Kleopa KA (2015) In the Clinic. Carpal Tunnel Syndrome. Ann intern Med 163:ITC1.

    Maeda Y, Kettner N, Lee J, Kim J, Cina S, Malatesta C, Gerber J, Mc-Manus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K, Audette J, Napadow V (2013) Acupuncture evoked response in contralateral somatosensory cortex reflects peripheral nerve pathology of carpal tunnel syndrome. Med Acupunct 25:275-284.

    Maeda Y, Kettner N, Holden J, Lee J, Kim J, Cina S, Malatesta C, Gerber J, McManus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K,Audette J, Tommerdahl M, Napadow V (2014) Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex. Brain 137:1741-1752.

    Maeda Y, Kettner N, Kim J, Kim H, Cina S, Malatesta C, Gerber J,McManus C, Libby A, Mezzacappa P, Mawla I, Morse LR, Audette J, Napadow V (2016) Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome. Pain 157:1085-1093.

    Maeda Y, Kim H, Kettner N, Kim J, Cina S, Malatesta C, Gerber J,McManus C, Ong-Sutherland R, Mezzacappa P, Libby A, Mawla I, Morse LR, Kaptchuk TJ, Audette J, Napadow V (2017) Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture. Brain 140:914-927.

    Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK (2006)Somatosensory cortical plasticity in carpal tunnel syndrome-a cross-sectional fMRI evaluation. NeuroImage 31:520-530.

    Napadow V, Kettner N, Liu J, Li M, Kwong KK, Vangel M, Makris N,Audette J, Hui KK (2007) Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 130:254-266.

    Neal S, Fields KB (2010) Peripheral nerve entrapment and injury in the upper extremity. Am Fam Physician 81:147-155.

    Padua L, Coraci D, Erra C, Pazzaglia C, Paolasso I, Loreti C, Caliandro P, Hobson-Webb LD (2016) Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol 15:1273-1284.

    Papanicolaou GD, McCabe SJ, Firrell J (2001) The prevalence and characteristics of nerve compression symptoms in the general population. J Hand Surg 26:460-466.

    Stapleton MJ (2006) Occupation and carpal tunnel syndrome. ANZ J Surg 76:494-496.

    Tecchio F, Padua L, Aprile I, Rossini PM (2002) Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study.Human brain mapp 17:28-36.

    Wilson d’Almeida K, Godard C, Leclerc A, Lahon G (2008) Sickness absence for upper limb disorders in a French company. Occup Med (Lond) 58:506-508.

    成年美女黄网站色视频大全免费 | 韩国高清视频一区二区三区| 伦理电影免费视频| 爱豆传媒免费全集在线观看| 亚洲自偷自拍三级| 亚洲国产欧美在线一区| 亚洲一级一片aⅴ在线观看| 日韩三级伦理在线观看| 少妇的逼好多水| 日韩中文字幕视频在线看片| 免费不卡的大黄色大毛片视频在线观看| 一级毛片 在线播放| 亚洲内射少妇av| 日韩大片免费观看网站| 国产亚洲av片在线观看秒播厂| 最近的中文字幕免费完整| 亚洲精品第二区| 丝袜在线中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 免费不卡的大黄色大毛片视频在线观看| 一边亲一边摸免费视频| 国产高清国产精品国产三级| 视频中文字幕在线观看| 国模一区二区三区四区视频| 老司机影院成人| 超碰97精品在线观看| 伊人久久国产一区二区| 欧美高清成人免费视频www| 少妇高潮的动态图| 免费播放大片免费观看视频在线观看| 日日爽夜夜爽网站| 51国产日韩欧美| 高清毛片免费看| 久久精品国产a三级三级三级| 嫩草影院新地址| 大香蕉97超碰在线| 久久久久久久久久久丰满| 免费看不卡的av| 中文字幕人妻丝袜制服| 久久精品国产自在天天线| 欧美少妇被猛烈插入视频| 视频中文字幕在线观看| 精品久久久精品久久久| 在线观看www视频免费| 在线观看免费视频网站a站| 亚洲经典国产精华液单| 亚洲天堂av无毛| √禁漫天堂资源中文www| 国产免费视频播放在线视频| 亚洲四区av| 亚洲精品日本国产第一区| 国产视频内射| 中国美白少妇内射xxxbb| 黄色配什么色好看| 久久久久久久久大av| 精品久久久精品久久久| 精品久久久噜噜| 制服丝袜香蕉在线| 一级片'在线观看视频| 日日爽夜夜爽网站| 丝袜脚勾引网站| 欧美xxxx性猛交bbbb| 18禁动态无遮挡网站| 人人妻人人看人人澡| 国产免费福利视频在线观看| av福利片在线| √禁漫天堂资源中文www| 久久国内精品自在自线图片| 欧美成人精品欧美一级黄| 久久狼人影院| 免费观看av网站的网址| 少妇被粗大猛烈的视频| 少妇的逼好多水| 久久97久久精品| 精品人妻熟女av久视频| 久久狼人影院| 精品少妇黑人巨大在线播放| 国产在线视频一区二区| 婷婷色综合大香蕉| 性色avwww在线观看| 日本91视频免费播放| 欧美日韩一区二区视频在线观看视频在线| 亚洲一级一片aⅴ在线观看| 中文字幕精品免费在线观看视频 | av女优亚洲男人天堂| 成年女人在线观看亚洲视频| 欧美精品一区二区免费开放| 亚洲国产最新在线播放| 久久久精品免费免费高清| 日韩av在线免费看完整版不卡| av天堂久久9| 性色av一级| 亚洲在久久综合| 免费观看a级毛片全部| 日日摸夜夜添夜夜爱| 自线自在国产av| 亚洲成人av在线免费| 我的女老师完整版在线观看| 国产美女午夜福利| www.av在线官网国产| 亚洲av成人精品一二三区| 成人无遮挡网站| 国产高清三级在线| 亚洲一区二区三区欧美精品| 啦啦啦中文免费视频观看日本| 成年av动漫网址| av天堂中文字幕网| 亚洲欧洲日产国产| 欧美成人精品欧美一级黄| 老司机影院毛片| 各种免费的搞黄视频| 亚洲国产精品成人久久小说| 国产成人一区二区在线| 日本wwww免费看| 亚洲精品国产av成人精品| 国产淫语在线视频| freevideosex欧美| 中文字幕av电影在线播放| 高清在线视频一区二区三区| 制服丝袜香蕉在线| 亚洲av电影在线观看一区二区三区| 热re99久久精品国产66热6| 少妇高潮的动态图| 国产成人精品婷婷| 国产精品久久久久久精品古装| 国产白丝娇喘喷水9色精品| 日日撸夜夜添| 老司机影院成人| 99热这里只有是精品在线观看| 丰满人妻一区二区三区视频av| 亚洲精品国产成人久久av| 六月丁香七月| 国产精品国产三级国产专区5o| 午夜影院在线不卡| 日韩熟女老妇一区二区性免费视频| 蜜臀久久99精品久久宅男| 777米奇影视久久| 一二三四中文在线观看免费高清| 国产精品国产三级国产专区5o| 男人添女人高潮全过程视频| 99精国产麻豆久久婷婷| 美女主播在线视频| 黑人猛操日本美女一级片| 中文乱码字字幕精品一区二区三区| 又爽又黄a免费视频| www.av在线官网国产| 亚洲天堂av无毛| 久久人人爽av亚洲精品天堂| 99热这里只有是精品在线观看| 丁香六月天网| 免费看av在线观看网站| 青春草视频在线免费观看| 欧美精品一区二区大全| 69精品国产乱码久久久| av在线播放精品| 国产欧美日韩一区二区三区在线 | 久久精品国产a三级三级三级| 十八禁网站网址无遮挡 | 精品卡一卡二卡四卡免费| 久久久久久久亚洲中文字幕| 欧美精品一区二区免费开放| 国产老妇伦熟女老妇高清| 中文资源天堂在线| 一区二区av电影网| 三级国产精品片| 色94色欧美一区二区| 国产成人精品婷婷| 欧美成人午夜免费资源| 免费高清在线观看视频在线观看| 插阴视频在线观看视频| 欧美变态另类bdsm刘玥| 久久久久久伊人网av| 最近2019中文字幕mv第一页| 国产白丝娇喘喷水9色精品| 欧美精品国产亚洲| 51国产日韩欧美| 国产日韩欧美在线精品| 日韩伦理黄色片| 丰满迷人的少妇在线观看| 青春草国产在线视频| 色94色欧美一区二区| 午夜久久久在线观看| 久热久热在线精品观看| 在线观看av片永久免费下载| 国产在线视频一区二区| 黑人高潮一二区| 韩国高清视频一区二区三区| 国产成人精品无人区| 欧美日韩视频高清一区二区三区二| av在线app专区| 亚洲av中文av极速乱| 国产精品久久久久久av不卡| 在线播放无遮挡| 日本vs欧美在线观看视频 | 一区在线观看完整版| 春色校园在线视频观看| 女性生殖器流出的白浆| 99九九线精品视频在线观看视频| 亚洲第一av免费看| 欧美bdsm另类| 久久精品夜色国产| 国产免费福利视频在线观看| 亚洲高清免费不卡视频| 蜜桃在线观看..| 亚洲综合色惰| 乱系列少妇在线播放| 日韩,欧美,国产一区二区三区| 日韩三级伦理在线观看| 老熟女久久久| 亚洲美女黄色视频免费看| 一本久久精品| 九草在线视频观看| 美女xxoo啪啪120秒动态图| 伊人久久国产一区二区| 日韩中字成人| 亚洲国产色片| 亚洲经典国产精华液单| 在线观看国产h片| av黄色大香蕉| 国产 一区精品| 亚洲av免费高清在线观看| 欧美激情国产日韩精品一区| 午夜久久久在线观看| 99热这里只有精品一区| 国产午夜精品久久久久久一区二区三区| 一本久久精品| 黄色一级大片看看| 欧美国产精品一级二级三级 | 色哟哟·www| 九九爱精品视频在线观看| 亚洲激情五月婷婷啪啪| 中文乱码字字幕精品一区二区三区| 成年人免费黄色播放视频 | 精品亚洲成a人片在线观看| av在线观看视频网站免费| 2021少妇久久久久久久久久久| 国产在线视频一区二区| 欧美性感艳星| 国产淫语在线视频| 各种免费的搞黄视频| 亚洲av不卡在线观看| 国产女主播在线喷水免费视频网站| 日日摸夜夜添夜夜爱| 少妇被粗大的猛进出69影院 | 欧美日韩综合久久久久久| 久久久久人妻精品一区果冻| av专区在线播放| 亚洲国产精品专区欧美| 女的被弄到高潮叫床怎么办| 欧美日韩在线观看h| 亚洲av免费高清在线观看| 大香蕉久久网| 人人澡人人妻人| 成人综合一区亚洲| 日韩制服骚丝袜av| 国产精品蜜桃在线观看| 一区二区三区精品91| 日本欧美国产在线视频| 最近中文字幕2019免费版| 9色porny在线观看| 两个人免费观看高清视频 | 久久精品熟女亚洲av麻豆精品| 搡女人真爽免费视频火全软件| 国产视频内射| 一级,二级,三级黄色视频| 春色校园在线视频观看| av有码第一页| 国产黄片视频在线免费观看| 国产成人一区二区在线| 在线观看国产h片| 成人综合一区亚洲| 亚洲自偷自拍三级| 又爽又黄a免费视频| 日本午夜av视频| 乱系列少妇在线播放| 内射极品少妇av片p| 伊人亚洲综合成人网| 亚洲无线观看免费| 日韩av在线免费看完整版不卡| a级毛片免费高清观看在线播放| 国产美女午夜福利| 91精品一卡2卡3卡4卡| 少妇人妻一区二区三区视频| 日日爽夜夜爽网站| 亚洲国产精品国产精品| 国产成人精品无人区| 国产日韩一区二区三区精品不卡 | 青青草视频在线视频观看| 亚洲图色成人| 国内少妇人妻偷人精品xxx网站| 久久ye,这里只有精品| 国产欧美日韩一区二区三区在线 | 黄色毛片三级朝国网站 | 久久免费观看电影| 精品久久国产蜜桃| 国产视频内射| 久久久国产精品麻豆| 国产一区亚洲一区在线观看| 欧美xxxx性猛交bbbb| 成年人免费黄色播放视频 | 成年人午夜在线观看视频| 国产成人午夜福利电影在线观看| 日韩中字成人| 春色校园在线视频观看| 赤兔流量卡办理| 如日韩欧美国产精品一区二区三区 | 人人妻人人澡人人爽人人夜夜| 欧美精品国产亚洲| 久久久国产欧美日韩av| 十分钟在线观看高清视频www | 在线观看免费日韩欧美大片 | 欧美高清成人免费视频www| 国产亚洲欧美精品永久| 一个人免费看片子| 日韩三级伦理在线观看| 精品人妻一区二区三区麻豆| 七月丁香在线播放| 观看免费一级毛片| 免费不卡的大黄色大毛片视频在线观看| 欧美成人午夜免费资源| 最黄视频免费看| 久久精品久久久久久久性| 天天躁夜夜躁狠狠久久av| 在现免费观看毛片| 亚洲精品aⅴ在线观看| 美女cb高潮喷水在线观看| 亚洲成人av在线免费| 91精品伊人久久大香线蕉| 人妻制服诱惑在线中文字幕| 啦啦啦视频在线资源免费观看| 久久久久久久久久成人| 久久99热这里只频精品6学生| 午夜福利,免费看| 国产视频首页在线观看| 97超碰精品成人国产| 91精品伊人久久大香线蕉| 人人妻人人爽人人添夜夜欢视频 | 亚洲三级黄色毛片| 大片电影免费在线观看免费| 精品一区二区三卡| 亚洲精品乱久久久久久| 丁香六月天网| 亚洲自偷自拍三级| 亚洲国产毛片av蜜桃av| 一本—道久久a久久精品蜜桃钙片| 亚洲精品乱码久久久v下载方式| 久久精品久久久久久噜噜老黄| 国产精品蜜桃在线观看| 视频区图区小说| 中文字幕制服av| 久久国产乱子免费精品| 欧美日韩亚洲高清精品| 看非洲黑人一级黄片| 久热久热在线精品观看| 免费播放大片免费观看视频在线观看| 乱人伦中国视频| 亚洲国产av新网站| 久久久久久久国产电影| 人人妻人人澡人人看| 国产欧美日韩一区二区三区在线 | 美女福利国产在线| 亚洲av二区三区四区| 久久国产亚洲av麻豆专区| 日韩,欧美,国产一区二区三区| 久久久久久久精品精品| av有码第一页| 丰满少妇做爰视频| 国产熟女欧美一区二区| av不卡在线播放| 国产成人精品久久久久久| 大香蕉97超碰在线| 久久久久久久久久久久大奶| 少妇 在线观看| freevideosex欧美| 亚洲av综合色区一区| 欧美日韩视频精品一区| 蜜桃久久精品国产亚洲av| 亚洲欧美成人综合另类久久久| 成年av动漫网址| 国产伦精品一区二区三区视频9| 亚洲精品一区蜜桃| 免费不卡的大黄色大毛片视频在线观看| 丝袜喷水一区| 国产精品免费大片| 中文资源天堂在线| 日日爽夜夜爽网站| 大陆偷拍与自拍| 亚洲国产最新在线播放| 亚洲av日韩在线播放| av女优亚洲男人天堂| 在线观看av片永久免费下载| 韩国高清视频一区二区三区| 最黄视频免费看| 高清毛片免费看| 久久久久久伊人网av| 免费黄频网站在线观看国产| 九色成人免费人妻av| a级一级毛片免费在线观看| 多毛熟女@视频| 午夜免费男女啪啪视频观看| 日韩成人av中文字幕在线观看| 久久久久国产网址| av国产久精品久网站免费入址| 插逼视频在线观看| 中文乱码字字幕精品一区二区三区| av网站免费在线观看视频| 乱系列少妇在线播放| 这个男人来自地球电影免费观看 | 国产探花极品一区二区| 日日摸夜夜添夜夜爱| 波野结衣二区三区在线| 国产精品久久久久成人av| 国产免费福利视频在线观看| 亚洲精品第二区| 国产精品福利在线免费观看| 成年av动漫网址| 国产成人免费观看mmmm| 久久狼人影院| 9色porny在线观看| 久久久国产精品麻豆| 日韩免费高清中文字幕av| 美女脱内裤让男人舔精品视频| av不卡在线播放| 天天躁夜夜躁狠狠久久av| 国产乱来视频区| 日本午夜av视频| av线在线观看网站| 在线观看三级黄色| 免费看不卡的av| 国产黄片视频在线免费观看| 欧美区成人在线视频| 99久久精品国产国产毛片| 男的添女的下面高潮视频| 少妇人妻精品综合一区二区| 国产熟女午夜一区二区三区 | 99视频精品全部免费 在线| 国产精品久久久久成人av| 久久久久久久久久久久大奶| 亚洲av综合色区一区| 一区二区av电影网| 99热这里只有是精品50| 久久ye,这里只有精品| 精品人妻熟女毛片av久久网站| av卡一久久| 夜夜看夜夜爽夜夜摸| 久久久久精品性色| 高清黄色对白视频在线免费看 | 99re6热这里在线精品视频| 成年人免费黄色播放视频 | 亚洲色图综合在线观看| 成人美女网站在线观看视频| 亚洲精品日韩av片在线观看| 国产中年淑女户外野战色| 久久99一区二区三区| 一级毛片我不卡| 成人免费观看视频高清| 青青草视频在线视频观看| 国产成人午夜福利电影在线观看| 国产亚洲91精品色在线| 观看免费一级毛片| 亚洲综合色惰| 久久久久久人妻| 99久国产av精品国产电影| 国产精品久久久久成人av| 看免费成人av毛片| 综合色丁香网| 国产午夜精品一二区理论片| 精品午夜福利在线看| 精品亚洲乱码少妇综合久久| 精品国产乱码久久久久久小说| 一级av片app| 欧美日韩在线观看h| 青春草国产在线视频| 国产亚洲5aaaaa淫片| 国产乱来视频区| 亚洲真实伦在线观看| 青春草国产在线视频| 日本与韩国留学比较| 国产精品一二三区在线看| 一区二区三区精品91| 国产日韩欧美视频二区| 午夜日本视频在线| 亚洲欧美中文字幕日韩二区| 国产免费福利视频在线观看| 在现免费观看毛片| 亚洲av日韩在线播放| 久久久久网色| 亚洲精品aⅴ在线观看| 欧美精品亚洲一区二区| 久久热精品热| 丝袜脚勾引网站| 日韩av在线免费看完整版不卡| 欧美日韩av久久| 男女边摸边吃奶| 中文字幕制服av| 大码成人一级视频| 在线精品无人区一区二区三| 亚洲综合精品二区| 免费高清在线观看视频在线观看| 久久精品国产鲁丝片午夜精品| 亚洲欧洲日产国产| 伦理电影大哥的女人| 成年人午夜在线观看视频| 午夜av观看不卡| 极品少妇高潮喷水抽搐| 国产亚洲最大av| 女性生殖器流出的白浆| 乱系列少妇在线播放| 久久精品国产自在天天线| 黄色欧美视频在线观看| 久久99热这里只频精品6学生| av.在线天堂| 青春草国产在线视频| 日本vs欧美在线观看视频 | 九色成人免费人妻av| 欧美日本中文国产一区发布| av不卡在线播放| 日本av免费视频播放| 丝袜喷水一区| 欧美日韩视频高清一区二区三区二| 国产av码专区亚洲av| 三级国产精品片| 七月丁香在线播放| 中文资源天堂在线| 日韩免费高清中文字幕av| 日日摸夜夜添夜夜添av毛片| 亚洲国产最新在线播放| 蜜臀久久99精品久久宅男| 高清在线视频一区二区三区| 久久久久人妻精品一区果冻| 国产有黄有色有爽视频| 啦啦啦啦在线视频资源| 免费不卡的大黄色大毛片视频在线观看| 亚洲无线观看免费| 久久国内精品自在自线图片| 国产 一区精品| 国产免费又黄又爽又色| 久久97久久精品| 欧美精品一区二区大全| 九九爱精品视频在线观看| 国国产精品蜜臀av免费| 日韩熟女老妇一区二区性免费视频| 国产 精品1| 久久国产乱子免费精品| 男女无遮挡免费网站观看| 国产av国产精品国产| 成人毛片a级毛片在线播放| 精品99又大又爽又粗少妇毛片| 国产亚洲午夜精品一区二区久久| 亚洲经典国产精华液单| 国产日韩欧美视频二区| 亚洲精品乱久久久久久| 国产成人freesex在线| 麻豆成人午夜福利视频| 少妇人妻 视频| 国产午夜精品一二区理论片| 日韩欧美精品免费久久| 街头女战士在线观看网站| 国产色爽女视频免费观看| 日韩成人av中文字幕在线观看| 三级国产精品欧美在线观看| 国产爽快片一区二区三区| 午夜久久久在线观看| 国产精品一区二区在线观看99| 99热全是精品| 国产伦精品一区二区三区视频9| 欧美高清成人免费视频www| 国产在视频线精品| 免费观看a级毛片全部| 亚洲丝袜综合中文字幕| 精品卡一卡二卡四卡免费| 亚洲精品,欧美精品| 亚洲第一av免费看| 一二三四中文在线观看免费高清| 亚洲精品亚洲一区二区| 老女人水多毛片| 观看美女的网站| 熟女电影av网| 国产成人aa在线观看| 亚洲av.av天堂| 内射极品少妇av片p| 下体分泌物呈黄色| 少妇人妻久久综合中文| 欧美激情国产日韩精品一区| 国产精品久久久久久精品电影小说| 少妇丰满av| 免费看不卡的av| 国产亚洲精品久久久com| 国产精品无大码| 极品少妇高潮喷水抽搐| 精品久久国产蜜桃| 国产精品99久久久久久久久| 免费观看性生交大片5| 一级黄片播放器| 日韩一本色道免费dvd| 妹子高潮喷水视频| 国内揄拍国产精品人妻在线| 观看免费一级毛片| 久久ye,这里只有精品| 人妻制服诱惑在线中文字幕| 日韩欧美精品免费久久| 亚洲精品久久久久久婷婷小说| 99久久人妻综合| 国产亚洲最大av| 国产av精品麻豆| 麻豆精品久久久久久蜜桃| 日韩中字成人| 免费少妇av软件| 少妇裸体淫交视频免费看高清| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品成人av观看孕妇| 亚洲天堂av无毛| av线在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91 | 一本—道久久a久久精品蜜桃钙片|