• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of Phase Noise on TDMS Based Calibration for Spaceborne Multi-Beam Antennas

    2018-04-04 08:21:15YujieLinXiangyuanBuShuaiWangYuanChaiJianpingAn
    China Communications 2018年3期
    關(guān)鍵詞:單樁樁體承載力

    Yujie Lin, Xiangyuan Bu,*, Shuai Wang, Yuan Chai, Jianping An

    1 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

    2 Institute of Telecommunication Satellite, China Academy of Space Technology, Beijing 100094, China

    * The corresponding author, email: bxy@bit.edu.cn

    I. INTRODUCTION

    Multi-beam antennas (MBAs) equipped in satellite communications systems have attracted growing attention recently due to their flexibility to control beam patterns and their potential to cover the service areas with high-gain spot beams [1]-[3], thereby improving the communication capacity and the spectrum utilization dramatically [4]. Accurate beam pointing is achieved by precise control of attenuators and phase shifters for each element to exhibit the de fined excitations in amplitudes and phases.However, electronic components of the satellite payload suffer from inevitable perturbations in the harsh space environment, such as temperature drift, aging [5], and single event upset (SEU), causing amplitude and phase errors [6], [7]. Therefore, accurate calibration is of crucial importance to maintain the optimal performance of space-borne MBA systems [8].

    Various kinds of calibration techniques have been proposed to obtain the amplitude and phase characteristics for MBA systems in orbit, which can be distinguished into two major categories, i.e., external calibration methods [9] and internal calibration methods [10],[11]. External calibration methods employ an additional source located in the fixed far- field region of the array aperture for monitoring purposes. One drawback of these methods is that the calibration performance is subjected to the space communication link [12], such as the path loss, fading, multipath, near-field scattering, etc. Another drawback is that it is difficult to satisfy the far-field conditions for large-aperture and high-frequency antennas.On the contrary, internal calibration methods inject a dedicated calibration network through coaxial cables to couple parts of the signals back to the calibration receiver. The physical connection ensures that the calibration process is performed with the least disturbance. The internal calibration method has been successfully veri fied in a spaceborne environment by TerraSAR-X launched in 2007 [11].

    With the scale of spaceborne MBAs enlarging continuously [13], the implementation cost of the internal calibration receiver is tremendous and the complex hardware circuit brings heavy burden of the mass and size to the limited satellite payloads [14]. An internal calibration receiver based on time division multiplexed switching (TDMS) [15] is very suitable for large-scale MBA systems. Only one element is activated at a time while the remaining ones are turned off. This procedure is repeated for each element of the array to calibrate the entire array. Since the switching time is in nanoseconds, the amplitude and phase errors are reasonably assumed to be stationary over the calibration time window.The advantage of the TDMS-based calibration receiver is that it requires only one receiving RF chain, no matter how many elements there are to be calibrated. Despite being a cost-effective implementation solution, this method suffers from the phase noise in the local oscillator [16], resulting in significant channel measurement errors [17], [18]. Characterizing how phase noise affects the calibration performance is therefore essential for practical applications. Moreover, to the best of the authors’ knowledge, previous studies lack of the theoretical analysis on the effects of the phase noise on the calibration performance. In fact,most of the calibration methods available in the literatures are under the assumption that the phase response of the oscillator is constant.This is the motivation of our work.

    The rest of this paper is organized as follows. In Section II, the system model for a TDMS-based calibration integrated with the phase noise source is discussed. After that, in Section III the theoretical calibration performance is analyzed in detail. Then the theoretical computation results of different representative cases are assessed by simulations in Section IV. Finally, the conclusions are drawn in Section V.

    Notation: The following notations are used throughout this paper. Boldface lowercase letters (like α ) denote vectors. The symbol [α]idenotes the i-th element of α . Superscript αTdenotes the transpose of the vector α. The notation ||x|| represents the complex modulus of a complex number x. N(μ,σ2) denotes the normal distribution with mean μ and variance σ2. Finally, the operators E(X) and var(X)represent the expectation and variance operations of the variable X, respectively.

    In this paper, we analyze the impact of phase noise on the calibration performance for a MBA system.

    II. SYSTEM MODEL AND PROBLEM FORMULATION

    In this section, a TDMS-based calibration system model integrated with the phase noise source is explained. A MBA is de fined as an antenna capable of producing multiple spot beams simultaneously from a single aperture. Compared with the calibration for receiving array antennas, there are more challenges for trans-mitting array calibration. As shown in figure 1,a TDMS-based calibration system for transmitting multi-beam antennas consists of M beams and K antenna elements. First, M calibrating signals {cm(t)|m=1,2,…,M} enter into the M-input K-output BFN. The BFN is referred as the “heart of the MBA system” because of its ability to control the radiation pattern shape and direction. The internal structure of the M-input K-output BFN is shown in figure 2, where amkand φmkare the excitation coefficients of the attenuator and the phase shifter from the m-th input port to the k-th output port, respectively.The output signal at each channel is the sum of the M signals with attenuations and phase shifts dictated by the desired beam patterns. After the BFN, each output channel is followed by an up convertor (UC), multistage attenuators, power ampli fiers (PAs) and other RF components. In addition, an external oscillator provides clocks with the same frequency for UCs in all the RF chains. Finally, the input composite signal of the k-th antenna element of the MBA system is the sum of the M RF signals which can be described as

    Fig. 1. Block diagram of a TDMS-based calibration system for transmitting MBAs.

    where ftxis the carrier phase at the transmitter and cm(t ) is the m-th calibrating signal.Since all the M input calibrating signals reach an antenna element simultaneously with the same frequency, the calibration receiver must separate each calibrating signal from the composite signal. An effective separation approach is the code-division multiple access (CDMA)scheme [19], where each calibrating signal is encoded according to a unique signature code[20]. As a direct-sequence spread spectrum(DSSS) signal, the m-th calibrating signal can be formulated as [21]

    where h( t) represents the normalized rectangular pulse defined in [0,Tc), Tcis the chip duration, cmis the spreading code vector assigned to the m-th calibrating signal and the elements of the vector cmtake values of +1 or-1 with equal probability, and L is the length of cm(also known as the spreading gain). The relationship of two arbitrary code vectors satis fies the orthogonality as follows

    With the fast development of MBAs to large-scale, the circuit scale of the calibration receiver increases with the number of beams and antenna elements. In order to reduce the hardware implementation cost, the designed receiver in this paper employs the TDMS measurement approach which requires only one receiving RF chain, as shown in the lower right part of figure 1. A front-end electronic single-pole multi-throw (SPMT) RF switch,controlled by the field programmable gate array (FPGA), connects a single- channel signal in turn from all the K channels. The following low noise ampli fier (LNA) ampli fies the signal of the selected channel. Then a down converter (DC) converts the RF signal to a lower intermediate frequency (IF) signal. Without loss of generality, we assume that the first channel is selected. The output noise-free IF analog signal of the DC can be represented as

    試驗(yàn)2-40的樁土荷載分擔(dān)比僅4左右,而試驗(yàn)2-50與試驗(yàn)2-60的樁土荷載分擔(dān)比均近5。在荷載達(dá)到80 kPa前,樁體承擔(dān)荷載比例較大,樁土荷載分擔(dān)比略有上升。荷載達(dá)到80 kPa之后,由于單樁承載力有限,此時(shí)荷載繼續(xù)增加,樁體承擔(dān)比例降低,樁土荷載分擔(dān)比降低。

    where fIFis the IF carrier frequency at the receiver and phase disturbance θ1(t) is the phase noise in the local oscillator while switching to the first channel. The phase noise is widely modeled as a zero-mean Gaussian wide-sense stationary random process [22] expressed as N(0,). In this paper, we assume that the speed of the phase noise variations is faster than the measurement time of one physical channel, thus θ1(t) affects the calibration of the channel mismatch.

    The analog signal is processed by an analog-to-digital converter (ADC) and digital down converter (DDC). Since each calibrating signal corresponds to a unique signature code, K-channel parallel DMFs correlate the baseband composite signal with the following coefficients

    After L? Tcof time, correlation peaks appear on all the M-channel DMFs simultaneously.The peak value is the estimated complex excitation coefficient which can be written as

    where xm1is the additive white Gaussian noise(AWGN) introduced by the propagation channel from the m-th beam to the first element.The real and imaginary parts of xm1,xI,m1and xQ,m1, are independent and identically distributed random variables with mean zero and variance σ2/2. From (8) we can see that the power of the useful signal is constant while the power of the noise is reduced to 1/L2. The parameter SNR is defined as the ratio of the signal power to the noise power. The SNR of the m-th calibrating signal in the first channel can be expressed as

    The purpose of calibration is to estimate the complex excitations (amplitude and phase) of the individual elements and to compensate for the variations between all the M input beams and K output elements [23]. Without loss of generality, we set the first calibrating signal in the first element as the reference signal. The amplitude and phase of other (M-1) signals in this element and signals in other (K-1) elements are normalized to the reference signal.The estimated amplitude in decibel (dB) and phase in degree (deg) of the m-th signal in the k-th element are

    where

    The subscripts I and Q represent the inphase and quadrature components of noise,respectively. For simplicity, we omit the subscript of the above variables in the following analysis.

    III. THEORETICAL ANALYSIS OF CALIBRATION PERFORMANCE

    The calibration performance is in fluenced by various factors, such as power level of the calibrating signal, thermal noise, phase noise introduced by the local oscillator, noise figure of the receiver, and quantization noise, etc. It is of signi ficance to derive the relationship between the calibration performance and impact factors in order to evaluate the performance of the calibration receiver. In this paper, we con-sider only the first three impact factors. Specifically, we derive the relationship between the probability of correct amplitude/phase estimation and the given tolerance region, SNR,standard deviation of phase noise.

    3.1 Probability of correct amplitude estimation

    Given that the tolerance region of the estimated amplitude is ±A(dB), then the probability of correct amplitude estimation in the presence of the phase noise can be replaced as follows

    To further calculate (13), we first have to analyze the statistical characteristics of Z.According to the linear property of normal variables, the random variables Y1and Y2are distributed normally which can be written asandrespectively.Since Z is the sum of squares of two independent standard normally distributed random variables with non-zero mean,2L? Z σ2has a non-central chi-squared distribution with 2 degrees of freedom and (2L? a2)2σ non-centrality parameter. Referring to [24],the non-central chi-squared distribution can be approximated to a normal distribution for the large non-centrality parameter. While using the proposed calibration method, high SNR can be achieved for actual calibration systems because the transmitting signals are connected to the receiver by coaxial cables. Against this backcloth, the variable Z obeys the normal distributionapproximately. Finally, the probability of correct amplitude estimation in the presence of the phase noise can be calculated by

    where the SNR is de fined as (9) and the error function erf(x) is de fined as

    Equation (15) implies that the probability of correct amplitude estimation depends on the preset tolerance region (A), the length of the spreading code (L), and the SNR, instead of the phase noise in the local oscillator. Given the first three system parameters, the probability of correct amplitude estimation can be approximated with (15). Since calibration signals are DSSS signals, the probability of correct estimation can be improved by increasing the length of the spreading code (L) when the SNR is limited.

    3.2 Probability of correct phase estimation

    Given that the tolerance region of the estimated phase is ± Φ (deg) and the true phase is 0(deg), then the probability of correct phase estimation in the presence of the phase noise can be replaced as follows

    First, we analyze the statistical characteristics of Y2/Y1in (11). For a ratio of two independent normal variables, , the second-order Taylor series expansions give the following approximations [25]

    Then the probability of correct phase esti-mation in the presence of the phase noise can be calculated by

    In contrast to (15), the probability of correct phase estimation depends on not only the preset tolerance region (Φ), the length of the spreading code (L), and the SNR, but also the standard deviation of the phase noise.

    IV. SIMULATION RESULTS

    In order to con firm the validity of our theoretical analysis, three scenarios are performed in this section to compare the statistical analysis and simulation results. All calibrating signals are allocated with the equal power. In addition,the length of the spreading code (L) is selected as 256. In the following figures, blue lines are theoretical results discussed in Section III,while red lines represent Monte Carlo simulation results. Simulation results are obtained based on 10000 independent trials. In simulations, the probability of correct amplitude/phase estimation is defined as the number of trials when the amplitude/phase error is less than the tolerance region divided by the total trials.

    Firstly, the approximation accuracy of the theoretical analysis is assessed by the simulations. Figure 3 shows the correct probability of the estimated amplitude versus the SNR without the phase noise. The amplitude tolerance region (A) is set as {0.05dB, 0.1dB, 0.2dB}.We can conclude that theoretical results provide exactly the same performance as simulation results. As the SNR increases, the correct probability steadily increases. In addition, better performance can be achieved obviously for larger tolerance region. Similar conclusions can also be drawn for the estimated phase as depicted in figure 4, where the phase tolerance region (Φ) is set as {0.5deg, 1deg, 2deg}.

    Fig. 4. Probability of correct phase estimation versus SNR without phase noise.

    Fig. 5. Probability of correct amplitude estimation versus SNR with various standard deviation of the phase noise σθ and fixed tolerance region A=0.1dB.

    Fig. 6. Probability of correct phase estimation versus SNR with various standard deviation of the phase noise σθ and fixed tolerance region Φ =1deg.

    Then the impact of the phase noise on the performance is taken into account. Figure 5 illustrates that the probability of correct amplitude estimation versus the SNR with the tolerance region (A) fixed to 0.1dB and the standard deviation of the phase noise (σθ) set as{0.01, 0.02}. It demonstrates that despite the presence of phase noise, the calibration performance in terms of amplitude remains unaffected. When A = 0.2dB and 0.05dB, the curves for the approximation and the simulation with various standard deviations of the phase noise are consistent. They need not be covered here.Figure 6 illustrates that the correct probability of the estimated phase versus the SNR with the tolerance region (Φ) fixed to 1deg and the standard deviation of the phase noise (σθ) set as {0.01, 0.02}. If the standard deviation of the phase noise is as large as 0.02, the correct probability of the phase is only 60% regardless of the SNR. Figure 7 further shows the upper bound of the correct probability of the estimated phase versus σθwith the SNR fixed to be 0dB and the tolerance region (Φ) set as{0.5deg, 1deg, 2deg}. When the standard deviation σθincreases, the performances of all three conditions degrade. It can also be seen that the calibration performance of the theoretical analysis is in good agreement with that of simulations.

    V. CONCLUSIONS

    In this paper, we present an analysis of the impact of phase noise on the calibration performance for transmitting MBA based on TDMS which achieves its advantage in implementation costs. Given speci fic system parameters,the probability of correct estimation in terms of amplitude and phase can be effectively derived. Moreover, it is concluded that the calibration performance of amplitude is independent of the phase noise while the calibration performance of the phase is sensitive to the phase noise. Finally, simulation results assess the accuracy of our theoretical analysis.

    ACKNOWLEDGEMENT

    This work was supported by the NSFC (Joint Foundation of NSFC & Fundamental Research for General Purpose Technologies) under Grant U1636125.

    [1] M. Cheng, S. Yang, and X. Fang, "Adaptive antenna-activation based beamforming for largescale MIMO communication systems of high speed railway," China Communications, vol. 13,no. 9, 2016, pp. 12–23.

    [2] J. M. Montero, A. M. Ocampo, and N. J. G.Fonseca, “C-band multiple beam antennas for communication satellites,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, 2015,pp. 1263–1275.

    [3] P. K. Bailleul, “A new era in elemental digital beamforming for spaceborne communications phased arrays,” Proceedings of the IEEE, vol. 104,no. 3, 2016, pp. 623–632.

    [4] Y. Lin, X. Bu, W. Zhao, and S. Wang, “Parallel calibration method for phased array antennas with orthogonal and nonorthogonal codes,”P(pán)roc. 10th International Conference on Communications and Networking in China (ChinaCom),2015, pp. 883–886.

    [5] C. M. Schmid, S. Schuster, R. Feger, and A. Stelzer,“On the eあects of calibration errors and mutual coupling on the beam pattern of an antenna array,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 8, 2013, pp. 4063–4072.

    [6] W. P. M. N. Keizer, “Fast and accurate array calibration using a synthetic array approach,” IEEE Transactions on Antennas and Propagation, vol.59, no. 11, 2011, pp. 4115–4122.

    [7] D. Wang and Y. Wu, “Array errors active calibration algorithm based on instrumental sensors,”Science China Information Sciences, vol. 54, no.7, 2011, pp. 1500–1511.

    [8] T. Takahashi, Y. Konishi, and I. Chiba, “A novel amplitude-only measurement method to determine element fields in phased arrays,” IEEE Transactions on Antennas and Propagation, vol.60, no. 7, 2012, pp. 3222–3230.

    [9] H. Pawlak and A. F. Jacob, “An external calibration scheme for DBF antenna arrays,” IEEE Transactions on Antennas and Propagation, vol.58, no. 1, 2010, pp. 59–67.

    [10] S. Wang, H. Qi, and W. Yu, “An internal calibration scheme for polarimetric synthetic aperture radar system,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 1, 2011, pp.15–20.

    [11] S. Wang, H. Qi, and W. Yu, “Polarimetric SAR internal calibration scheme based on T/R module orthogonal phase coding,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 12,2009, pp. 3969–3980.

    [12] L. Gao, S. Zhang, Z. Liu, J. Lin, S. Wang, and C.Xing, “An overview of multi-antenna technologies for space-ground integrated networks,”Science China Information Sciences, vol. 59, no.12, 2016, pp. 121301:1–121301:18.

    [13] X. Sun, X. Yang, Z. Zeng, C. Zhang, and B. Bai, "A study on the multi-antenna geometrical depolarization channel modeling," China Communications, vol. 13, no. 3, 2016, pp. 105–114.

    Fig. 7. Upper bound of the probability of correct phase estimation versus σθ with various tolerance region Φ and fixed SNR=0dB.

    [14] S. Wang, J. Dai, Y. Lin, and X. Bu, “A low complexity calibration method for space-borne phased array antennas,” Proc. IEEE 83rd Vehicular Technology Conference (VTC2016-Spring),2016, pp. 1–5.

    [15] D. S. Baum and H. Bolcskei, “Impact of phase noise on MIMO channel measurement accuracy,” Proc. IEEE 60th Vehicular Technology Conference (VTC2004-Fall), 2004, pp. 1614–1618.

    [16] R. Krishnan, M. R. Khanzadi, N. Krishnan, Y. Wu,A. G. Amat, T. Eriksson, and R. Schober, “Linear massive MIMO precoders in the presence of phase noise—a large-scale analysis,” IEEE Transactions on Vehicular Technology, vol. 65, no. 5,2016, pp. 3057–3071.

    [17] A. A. Abouda, H. M. El-Sallabi, and S. G. Haggman, “Reducing impact of phase noise on accuracy of measured MIMO channel capacity,” IEEE Antennas and Wireless Propagation Letters, vol.6, no. 11, 2007, pp. 419–422.

    [18] X. Luo, X. Wang, Z. Suo, and Z. Li, “Efficient InSAR phase noise reduction via total variation regularization,” Science China Information Sciences, vol. 58, no. 8, 2015, pp. 082306:1–082306:13.

    [19] M. Schwerdt, B. Brautigam, M. Bachmann, B.Doring, D. Schrank, and J. H. Gonzalez, “Final TerraSAR-X calibration results based on novel eきcient methods,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 2, 2010,pp. 677–689.

    [20] O. Besson, S. Bidon, and C. L. de Tournemine,“Robust approaches to remote calibration of a transmitting array,” Signal Processing, vol. 90,no. 5, 2010, pp. 1373–1381.

    [21] Y. Zhang, Y. Zhuo, J. Wang, and S. Jiang, " A power reduction method for pilot channel of LEO satellite based on dynamic compensation,"China Communications, vol. 14, no. 3, 2017, pp.55–65.

    [22] X. Yi, S. Hu, H. Zhou, C. Tang, B. Xu, J. Zhang,and K Qiu, “Phase noise eあ ects on phase-modulated coherent optical OFDM,” IEEE Photonics Journal, vol. 8, no. 1, 2016, pp. 1–8.

    [23] H. Chou and D. Cheng, “Beam-pattern calibration in a realistic system of phased-array antennas via the implementation of a genetic algorithm with a measurement system,” IEEE Transactions on Antennas and Propagation, vol.65, no. 2, 2017, pp. 593–601.

    [24] P. B. Patnaik, “The non-central 2-and F-distribution and their applications,” Biometrika, vol. 36,no. 1/2, 1949, pp. 202–232.

    [25] T. Pham-Gia, N. Turkkan, and E. Marchand,“Density of the ratio of two normal random variables and applications,” Communications in Statistics, vol. 35, no. 9, 2007, pp. 1569–1591.

    猜你喜歡
    單樁樁體承載力
    盾構(gòu)隧道近接側(cè)穿引起橋梁樁體的變形規(guī)律*
    樁體模量和加筋體剛度對(duì)路堤穩(wěn)定性影響分析
    地鐵車站支撐拆除對(duì)圍護(hù)結(jié)構(gòu)的影響
    單樁豎向抗壓靜載試驗(yàn)與研究
    基于單樁豎向承載力計(jì)算分析研究
    剛性嵌巖樁單樁剛度系數(shù)推導(dǎo)
    上海公路(2017年2期)2017-03-12 06:23:40
    CFRP-PCP板加固混凝土梁的抗彎承載力研究
    耐火鋼圓鋼管混凝土柱耐火極限和承載力
    基于ABAQUS軟件的單樁靜載試驗(yàn)數(shù)值模擬
    潛艇極限承載力計(jì)算與分析
    99久久无色码亚洲精品果冻| 在线国产一区二区在线| 精品欧美国产一区二区三| 99在线人妻在线中文字幕| 成人国产麻豆网| 欧美+日韩+精品| a级一级毛片免费在线观看| 夜夜夜夜夜久久久久| 午夜福利在线观看吧| 欧美性感艳星| or卡值多少钱| 国产一区二区在线观看日韩| 老熟妇乱子伦视频在线观看| 小蜜桃在线观看免费完整版高清| 久久人妻av系列| 国产成人影院久久av| 国产一区二区在线av高清观看| www.色视频.com| 精品熟女少妇av免费看| 久久亚洲国产成人精品v| 国产色婷婷99| 蜜桃久久精品国产亚洲av| 天天躁日日操中文字幕| 久久久久久大精品| 日韩一本色道免费dvd| 国产成人一区二区在线| 久久精品国产鲁丝片午夜精品| 乱系列少妇在线播放| 成人午夜高清在线视频| a级毛片a级免费在线| 亚洲精品粉嫩美女一区| 国产三级中文精品| 成人高潮视频无遮挡免费网站| 久久久精品大字幕| 成人亚洲精品av一区二区| 午夜激情欧美在线| 99国产精品一区二区蜜桃av| 偷拍熟女少妇极品色| 国产一区二区激情短视频| 亚洲一级一片aⅴ在线观看| 3wmmmm亚洲av在线观看| 神马国产精品三级电影在线观看| 色哟哟哟哟哟哟| 亚洲国产日韩欧美精品在线观看| 男插女下体视频免费在线播放| 久久精品国产亚洲av香蕉五月| 亚洲人成网站在线观看播放| 亚洲不卡免费看| 插阴视频在线观看视频| 免费av毛片视频| 12—13女人毛片做爰片一| 波野结衣二区三区在线| 国产精品国产高清国产av| 欧美人与善性xxx| 国产在线男女| 精品一区二区三区av网在线观看| 老师上课跳d突然被开到最大视频| 高清毛片免费看| 亚洲国产精品成人久久小说 | 国产亚洲精品综合一区在线观看| 欧美色欧美亚洲另类二区| 欧美激情在线99| 成年女人永久免费观看视频| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品粉嫩美女一区| 精品国产三级普通话版| 99国产极品粉嫩在线观看| 在线天堂最新版资源| 亚洲av五月六月丁香网| 看免费成人av毛片| 两性午夜刺激爽爽歪歪视频在线观看| 99热精品在线国产| 亚洲人成网站在线播| 免费看日本二区| 久久99热6这里只有精品| 国产黄色视频一区二区在线观看 | 精品久久久久久久久久免费视频| 亚洲国产色片| 搡老妇女老女人老熟妇| 黄片wwwwww| 国产精品亚洲一级av第二区| 大香蕉久久网| 免费看光身美女| 如何舔出高潮| 国产人妻一区二区三区在| 女人十人毛片免费观看3o分钟| 在线免费观看的www视频| 成人三级黄色视频| 色噜噜av男人的天堂激情| 亚洲精品在线观看二区| 亚洲激情五月婷婷啪啪| 亚洲精品在线观看二区| 国产高清不卡午夜福利| 欧美日本视频| 看片在线看免费视频| 国产高清三级在线| 国产精品一区二区免费欧美| 人妻久久中文字幕网| 国产69精品久久久久777片| 91久久精品电影网| 中文亚洲av片在线观看爽| 变态另类成人亚洲欧美熟女| 变态另类成人亚洲欧美熟女| 小说图片视频综合网站| 在线a可以看的网站| 国产精品久久电影中文字幕| 一本一本综合久久| 舔av片在线| 日韩人妻高清精品专区| 久久亚洲国产成人精品v| 国产色婷婷99| 国产在线精品亚洲第一网站| 99热这里只有精品一区| 精品一区二区三区视频在线| 91在线精品国自产拍蜜月| 亚洲精品粉嫩美女一区| 日韩三级伦理在线观看| 色综合亚洲欧美另类图片| 村上凉子中文字幕在线| 久久久久国产网址| 亚洲av电影不卡..在线观看| 久久久色成人| 欧美日韩乱码在线| 少妇的逼好多水| 国产成年人精品一区二区| 久久久久久久久大av| 日韩精品有码人妻一区| 亚洲精品成人久久久久久| 国产真实伦视频高清在线观看| 国产一级毛片七仙女欲春2| 亚洲国产高清在线一区二区三| 久久精品91蜜桃| 国产成人精品久久久久久| 老熟妇仑乱视频hdxx| 国产av在哪里看| 少妇被粗大猛烈的视频| 此物有八面人人有两片| 1000部很黄的大片| 日日啪夜夜撸| 美女大奶头视频| 亚洲精品在线观看二区| 国产精品久久久久久亚洲av鲁大| 国产精品福利在线免费观看| 欧美bdsm另类| 久久人人精品亚洲av| 在线观看66精品国产| 日本成人三级电影网站| 寂寞人妻少妇视频99o| 欧美激情久久久久久爽电影| 赤兔流量卡办理| 亚洲欧美日韩高清在线视频| 十八禁国产超污无遮挡网站| 亚洲国产精品国产精品| 美女高潮的动态| 亚洲欧美精品综合久久99| 亚洲第一电影网av| 国产探花在线观看一区二区| 内射极品少妇av片p| 中国美白少妇内射xxxbb| 一级毛片aaaaaa免费看小| 精品久久久噜噜| 男女那种视频在线观看| 国产在线男女| 精品少妇黑人巨大在线播放 | 在线免费观看的www视频| 久久久久久大精品| 99国产精品一区二区蜜桃av| 久久国内精品自在自线图片| 免费在线观看成人毛片| 色av中文字幕| 啦啦啦韩国在线观看视频| 国产v大片淫在线免费观看| 午夜精品国产一区二区电影 | 级片在线观看| 国产精品伦人一区二区| 日本撒尿小便嘘嘘汇集6| 中文字幕精品亚洲无线码一区| 嫩草影院入口| 日韩高清综合在线| 日本一二三区视频观看| 在线免费十八禁| 一级av片app| 一本精品99久久精品77| 天堂av国产一区二区熟女人妻| 亚洲欧美日韩东京热| 免费观看在线日韩| 人人妻人人澡欧美一区二区| 精品一区二区免费观看| 一a级毛片在线观看| 久久中文看片网| 亚洲熟妇熟女久久| 久久精品影院6| 五月玫瑰六月丁香| 国产三级中文精品| 午夜福利18| 精品人妻视频免费看| 午夜a级毛片| 日韩欧美三级三区| 日韩欧美免费精品| 成人无遮挡网站| 午夜激情福利司机影院| 久久精品国产鲁丝片午夜精品| 国产伦精品一区二区三区四那| 国产探花极品一区二区| 精品一区二区三区视频在线观看免费| 国产三级在线视频| 美女黄网站色视频| 我的女老师完整版在线观看| 国产国拍精品亚洲av在线观看| 日日干狠狠操夜夜爽| 欧美色视频一区免费| 国产69精品久久久久777片| 夜夜夜夜夜久久久久| 高清毛片免费看| 日日摸夜夜添夜夜添小说| 国产白丝娇喘喷水9色精品| 国产黄片美女视频| 国产熟女欧美一区二区| 欧美又色又爽又黄视频| 丰满的人妻完整版| 97超视频在线观看视频| 国产精品,欧美在线| 国产精品爽爽va在线观看网站| 最近视频中文字幕2019在线8| 日韩成人av中文字幕在线观看 | 99热这里只有是精品50| 久久久久国产网址| 不卡一级毛片| 国产精品福利在线免费观看| 深夜精品福利| 欧美激情在线99| 国内精品宾馆在线| 亚洲欧美精品综合久久99| 国产成人a区在线观看| 天天一区二区日本电影三级| ponron亚洲| 日本 av在线| a级毛片a级免费在线| 在线观看午夜福利视频| 麻豆av噜噜一区二区三区| 国内精品久久久久精免费| 白带黄色成豆腐渣| 亚洲av中文av极速乱| 美女黄网站色视频| 精品免费久久久久久久清纯| 麻豆成人午夜福利视频| 久久精品国产鲁丝片午夜精品| 久久久久免费精品人妻一区二区| 青春草视频在线免费观看| 久久久久久久久久成人| 日日摸夜夜添夜夜添av毛片| 联通29元200g的流量卡| 国产白丝娇喘喷水9色精品| 成人高潮视频无遮挡免费网站| 国产精品乱码一区二三区的特点| 成人特级黄色片久久久久久久| 日韩欧美 国产精品| 精品久久久久久久久亚洲| 中文字幕熟女人妻在线| 老司机影院成人| 国产精品永久免费网站| 亚洲国产日韩欧美精品在线观看| 国产免费一级a男人的天堂| 最新中文字幕久久久久| 深夜精品福利| 国模一区二区三区四区视频| 最近2019中文字幕mv第一页| 干丝袜人妻中文字幕| 老司机午夜福利在线观看视频| 国产av一区在线观看免费| 成人一区二区视频在线观看| 国内精品一区二区在线观看| av在线蜜桃| 久久精品久久久久久噜噜老黄 | 免费看日本二区| 午夜精品一区二区三区免费看| 看十八女毛片水多多多| 久久国产乱子免费精品| 乱人视频在线观看| 欧美成人一区二区免费高清观看| 精品99又大又爽又粗少妇毛片| 亚洲国产日韩欧美精品在线观看| 1000部很黄的大片| 亚洲av免费在线观看| 少妇猛男粗大的猛烈进出视频 | 小说图片视频综合网站| 神马国产精品三级电影在线观看| 国产精品一区二区三区四区久久| 亚洲七黄色美女视频| 久久久色成人| 午夜久久久久精精品| 婷婷亚洲欧美| 国产不卡一卡二| 国产精品三级大全| 日日摸夜夜添夜夜爱| 老司机午夜福利在线观看视频| 欧美潮喷喷水| 免费在线观看影片大全网站| 嫩草影视91久久| 菩萨蛮人人尽说江南好唐韦庄 | 九九久久精品国产亚洲av麻豆| 国产精品三级大全| av在线播放精品| 蜜桃亚洲精品一区二区三区| 午夜免费男女啪啪视频观看 | 欧美激情在线99| 欧美成人免费av一区二区三区| 精品人妻一区二区三区麻豆 | 成人亚洲欧美一区二区av| 91午夜精品亚洲一区二区三区| 久久久成人免费电影| 性插视频无遮挡在线免费观看| 成人亚洲精品av一区二区| 国产伦在线观看视频一区| 我的老师免费观看完整版| 美女黄网站色视频| 国产成人影院久久av| 国产乱人偷精品视频| 成年版毛片免费区| 久久精品夜夜夜夜夜久久蜜豆| 一区二区三区四区激情视频 | 在现免费观看毛片| 啦啦啦观看免费观看视频高清| 国产精品野战在线观看| 1000部很黄的大片| 美女大奶头视频| 一夜夜www| 春色校园在线视频观看| 又黄又爽又刺激的免费视频.| 久久亚洲国产成人精品v| 嫩草影视91久久| 成人国产麻豆网| 国产成人a∨麻豆精品| 国产v大片淫在线免费观看| 国产伦在线观看视频一区| 国产精品福利在线免费观看| 国产精品精品国产色婷婷| 久久99热6这里只有精品| 国产精品99久久久久久久久| 欧美日本亚洲视频在线播放| 听说在线观看完整版免费高清| a级毛色黄片| 国产精品野战在线观看| 国产av在哪里看| 综合色丁香网| 可以在线观看的亚洲视频| 99精品在免费线老司机午夜| 变态另类成人亚洲欧美熟女| 搡老岳熟女国产| 少妇裸体淫交视频免费看高清| 乱系列少妇在线播放| 人妻丰满熟妇av一区二区三区| 亚洲中文字幕日韩| 亚洲美女视频黄频| 免费搜索国产男女视频| 精品日产1卡2卡| 欧美激情久久久久久爽电影| 一a级毛片在线观看| 男女视频在线观看网站免费| 亚洲av电影不卡..在线观看| 久久久久国产网址| 久久人人精品亚洲av| 一夜夜www| 日本三级黄在线观看| 尾随美女入室| 人人妻人人澡欧美一区二区| 狠狠狠狠99中文字幕| 男人狂女人下面高潮的视频| 搞女人的毛片| 国内揄拍国产精品人妻在线| 国产精品久久视频播放| 又黄又爽又刺激的免费视频.| 日本免费一区二区三区高清不卡| 丰满人妻一区二区三区视频av| 夜夜爽天天搞| 一卡2卡三卡四卡精品乱码亚洲| 特级一级黄色大片| av国产免费在线观看| 日本a在线网址| 亚洲国产精品国产精品| av.在线天堂| 丰满的人妻完整版| 国产成人影院久久av| 黄色欧美视频在线观看| 天天躁夜夜躁狠狠久久av| 听说在线观看完整版免费高清| 久久99热6这里只有精品| 国产成人freesex在线 | 午夜精品在线福利| a级一级毛片免费在线观看| 亚洲乱码一区二区免费版| 91在线精品国自产拍蜜月| 国产亚洲av嫩草精品影院| 美女被艹到高潮喷水动态| 久久人人精品亚洲av| 成人午夜高清在线视频| 精品99又大又爽又粗少妇毛片| 久久久久免费精品人妻一区二区| 无遮挡黄片免费观看| 久久久久久久午夜电影| 美女高潮的动态| 欧美高清成人免费视频www| 天天躁夜夜躁狠狠久久av| 免费高清视频大片| 久久精品国产亚洲网站| 亚洲无线观看免费| 蜜臀久久99精品久久宅男| 91久久精品国产一区二区成人| 国产 一区 欧美 日韩| 精品人妻偷拍中文字幕| 天美传媒精品一区二区| 精品久久久久久久久久久久久| 日本-黄色视频高清免费观看| 成人特级av手机在线观看| 成年女人毛片免费观看观看9| 亚洲性久久影院| 免费av毛片视频| 乱系列少妇在线播放| 国产av麻豆久久久久久久| 成年女人看的毛片在线观看| a级毛片a级免费在线| 99久国产av精品| 国产免费男女视频| 深夜a级毛片| 男女那种视频在线观看| 亚洲中文字幕日韩| 床上黄色一级片| 桃色一区二区三区在线观看| 伊人久久精品亚洲午夜| 免费av毛片视频| 99在线视频只有这里精品首页| 看黄色毛片网站| 五月伊人婷婷丁香| 国产亚洲av嫩草精品影院| 国产亚洲精品av在线| 久久精品夜夜夜夜夜久久蜜豆| 午夜精品在线福利| 小蜜桃在线观看免费完整版高清| 成人国产麻豆网| 国内精品宾馆在线| 看黄色毛片网站| eeuss影院久久| 最近手机中文字幕大全| 日韩一区二区视频免费看| 亚洲美女黄片视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站高清观看| 午夜福利18| 国产亚洲av嫩草精品影院| 两性午夜刺激爽爽歪歪视频在线观看| 久久中文看片网| 久久久国产成人精品二区| 亚洲成人av在线免费| 无遮挡黄片免费观看| 观看美女的网站| 国产色爽女视频免费观看| 日本免费一区二区三区高清不卡| 免费搜索国产男女视频| 国产成人freesex在线 | 亚洲精品亚洲一区二区| 综合色av麻豆| 午夜精品国产一区二区电影 | 欧美日本亚洲视频在线播放| 亚洲五月天丁香| 麻豆一二三区av精品| 99久久精品热视频| 久久精品国产亚洲网站| 女同久久另类99精品国产91| 99九九线精品视频在线观看视频| av黄色大香蕉| 国产精品无大码| 国产片特级美女逼逼视频| 婷婷亚洲欧美| 欧美一区二区国产精品久久精品| 老司机福利观看| 久久久午夜欧美精品| 一边摸一边抽搐一进一小说| 伊人久久精品亚洲午夜| 中文字幕熟女人妻在线| av在线老鸭窝| 深夜a级毛片| 别揉我奶头~嗯~啊~动态视频| 国内精品一区二区在线观看| 99久久中文字幕三级久久日本| 亚洲人与动物交配视频| 国语自产精品视频在线第100页| 日韩三级伦理在线观看| 女人被狂操c到高潮| 国产极品精品免费视频能看的| 国产精品精品国产色婷婷| 国产 一区 欧美 日韩| 亚洲成人精品中文字幕电影| 久久九九热精品免费| 一个人看视频在线观看www免费| 国产国拍精品亚洲av在线观看| 特大巨黑吊av在线直播| 1000部很黄的大片| 嫩草影院入口| av在线亚洲专区| 国产国拍精品亚洲av在线观看| 高清毛片免费看| 亚洲自拍偷在线| 中文字幕精品亚洲无线码一区| 寂寞人妻少妇视频99o| 一区二区三区四区激情视频 | 亚洲图色成人| av中文乱码字幕在线| 1024手机看黄色片| 欧美最新免费一区二区三区| 在线观看美女被高潮喷水网站| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美精品v在线| 国产人妻一区二区三区在| 久久精品91蜜桃| 卡戴珊不雅视频在线播放| 精品久久久久久久人妻蜜臀av| 久久这里只有精品中国| 99热6这里只有精品| 精品熟女少妇av免费看| 最近中文字幕高清免费大全6| 99久久精品一区二区三区| 国产私拍福利视频在线观看| 人妻久久中文字幕网| 国产三级在线视频| 美女 人体艺术 gogo| 日韩一本色道免费dvd| 女人十人毛片免费观看3o分钟| 亚洲国产精品合色在线| 免费大片18禁| 中文字幕av在线有码专区| 黑人高潮一二区| 久久精品国产鲁丝片午夜精品| 日本色播在线视频| 少妇熟女欧美另类| 国产高潮美女av| 久久九九热精品免费| 国产高清不卡午夜福利| 两个人视频免费观看高清| 国产午夜精品论理片| 男女边吃奶边做爰视频| 成人美女网站在线观看视频| 99热网站在线观看| 99热这里只有精品一区| 97人妻精品一区二区三区麻豆| 99热这里只有是精品在线观看| 中文亚洲av片在线观看爽| 日本a在线网址| 搞女人的毛片| 床上黄色一级片| 日韩欧美国产在线观看| 丰满的人妻完整版| 免费看av在线观看网站| 三级国产精品欧美在线观看| 老司机影院成人| 国语自产精品视频在线第100页| 狂野欧美激情性xxxx在线观看| 精品国内亚洲2022精品成人| 亚洲美女视频黄频| 成熟少妇高潮喷水视频| 美女大奶头视频| 麻豆av噜噜一区二区三区| 男人舔奶头视频| 可以在线观看的亚洲视频| 亚洲欧美精品自产自拍| 插阴视频在线观看视频| 免费看美女性在线毛片视频| 亚洲欧美成人精品一区二区| 国产精品日韩av在线免费观看| 联通29元200g的流量卡| 长腿黑丝高跟| 免费观看精品视频网站| 少妇的逼好多水| 亚洲av中文字字幕乱码综合| 亚洲无线在线观看| 午夜视频国产福利| 国产精品日韩av在线免费观看| 精品国内亚洲2022精品成人| 免费高清视频大片| 成人一区二区视频在线观看| 长腿黑丝高跟| 人妻丰满熟妇av一区二区三区| 亚洲av.av天堂| 天堂影院成人在线观看| 精品一区二区免费观看| 日本三级黄在线观看| 国产精品av视频在线免费观看| 免费黄网站久久成人精品| 精品久久久久久久久亚洲| 如何舔出高潮| 精品久久久久久久久亚洲| 99久国产av精品| 精品久久久久久久久亚洲| 人妻久久中文字幕网| avwww免费| 直男gayav资源| 国产私拍福利视频在线观看| 国产色爽女视频免费观看| 亚洲18禁久久av| 99热精品在线国产| 九九热线精品视视频播放| 小蜜桃在线观看免费完整版高清| 国产一区二区激情短视频| 日韩一区二区视频免费看| 久久精品综合一区二区三区| 国产伦精品一区二区三区四那| 亚洲无线在线观看| 日韩成人伦理影院| 我要搜黄色片| 看免费成人av毛片| 亚洲va在线va天堂va国产| 日本黄大片高清| 麻豆成人午夜福利视频| 国产精品综合久久久久久久免费| 国产淫片久久久久久久久| 12—13女人毛片做爰片一|