• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coordinated Resource Allocation for Satellite-Terrestrial Coexistence Based on Radio Maps

    2018-04-04 08:21:18YanminWangZhouLu
    China Communications 2018年3期

    Yanmin Wang*, Zhou Lu

    China Academy of Electronics and Information Technology, Beijing 100041, China

    * The corresponding author, email: yanmin-226@163.com

    I. INTRODUCTION

    To meet the growing challenge of spectrum scarcity, various spectrum efficiency enhancement strategies are being promoted and putting into practice. Therein lies coexistence of satellite and terrestrial wireless communication systems in the same frequency band, which is considered to be a quite promising solution for unprecedented spectrum demands [1, 2]. Lots of satellite-terrestrial coexistence techniques have been proposed under the cognitive radio framework in literature, including cooperative spectrum sensing, beamforming, and adaptive resource allocation [3, 4, 5], etc. A seminal work can be found in reference [2], in which the practical limitation for spectrum sharing was precisely considered.

    As an enabler for practical cognitive radio networks (CRNs), radio map (RM) is attracting more and more interests from academia and industry [6, 7, 8]. The essential functionality of an RM is to construct a comprehensive dynamic spectrum map for a CRN, by merging multi-domain information from geolocation databases and continuous spectrum measurements collected from sensors. To estimate the state of locations where there is no measurement data, different kinds of RM construction techniques have been presented [9, 10, 11],which can be classified into spatial statistics based methods [9] and transmitter location determination based methods [10]. However,how to efficiently utilize RM for enhancing spectrum efficiency are still open and yet to be explored [7][8].

    Based on the largescale channel state information at the transmitter (CSIT),which is derived from the RM, we propose an optimized power allocation scheme to improve the achievable sum rate of the terrestrial system.

    In this paper, we focus on a scenario where a satellite communication system and a terrestrial distributed antenna system (DAS) coexist via spectrum sharing, and propose a power allocation algorithm for the terrestrial system,as well as an opportunistic user scheduling scheme for the satellite system by utilizing RM. As an advantaged architecture for terrestrial wireless communication systems [12,13, 14], DAS has been widely adopted in 4G wireless networks and will continue to prop up 5G networks [15]. Specifically, the uplink of the satellite communication system acts as the incumbent link, and the downlink of the DAS tries to reuse the same frequency band as the cognitive link. To achieve a maximum system sum rate, power allocation is adopted in DAS to opportunistically transmit to users at less interfered locations, based on the interference distribution information derived from RM.Only the large-scale channel state information at the transmitter side (CSIT) is assumed in DAS, to ease practical implementations [15,16, 17] and match the long-term statistical characteristic of RM as well [7]. For the satellite side, an opportunistic user scheduling scheme is presented, to reduce the harmful interference to the terrestrial mobile users.Similar to the terrestrial case, the scheduling scheme also uses only the large-scale CSIT.

    Fig. 1. Illustration of a spectral coexistence scenario of GEO mobile satellite communication uplink and terrestrial DAS downlink.

    The rest of the paper is organized as follows. The system model is illustrated in Section II, and Section III presents the power allocation algorithm for the terrestrial system and the opportunistic user scheduling scheme for the satellite system based on RM. Simulation results are given in section IV, and Section V concludes the paper. Throughout the paper,lower case and upper case boldface symbols denote vectors and matrices, respectively. Inis an identity matrix with dimension n. (.)Hdenotes the transpose conjugate. ?M×Nrepresents the complex matrix space composed of M×N matrices and CN denotes a complex Gaussian distribution. E(.)and tr(.) represent the expectation and the trace operator, respectively.

    II. SYSTEM MODEL

    2.1 Scenario description

    As illustrated in figure 1, we consider a spectral coexistence scenario of GEO mobile satellite communication uplink and terrestrial DAS downlink, e.g., both in the S band [2]. The satellite uplink is incumbent, and the DAS downlink reuses the same frequency band in a cognitive way. Note that due to the antenna pattern characteristics and the transit power constraints of terrestrial systems, the interference from the DAS to the satellite system can be ignored [2]. Consequently, the DAS only needs to deliberately avoid the interference from satellite terminals (STs) to its own users,and efficiently utilize the transmission power to achieve a maximum system sum rate. For the satellite side, it may adjust user scheduling strategy, so as to reduce the interference to the terrestrial users.

    Assume that L STs are located in the same area with the DAS, and there are N distributed antenna elements (DAEs) and K users in the DAS. To be general, the STs, the DAEs,and the users are all supposed to be geographically randomly deployed in the coverage area [2]. Without loss of generality, each user is equipped with M antenna elements, and N≥MK.

    2.2 Sum rate expression

    With the assumption that all transmitted signals for the N DAEs in the DAS are jointly processed in a centralized processor as shown in figure 1, the received signal yk∈?M×1at user k (k=1,2,...,K ) can be written as

    where Hk∈?M×Nis the channel matrix from the N DAEs to user k, and xk∈?N×1is the transmitted signal of user k (k=1,2,...,K ),andrepresents the channel vector between ST j (j=1,2,...,L ) and user k, and zj∈? is the transmitted signal of ST j, and nkdenotes the white Gaussian noise at user k with

    Composed of both random small-scale fading and slowly-varying large-scale fading [14][16], Hkcan be expressed as

    where Sk∈?M×Nrepresents the small-scale fading, and each entry follows the complex Gaussian distribution, and Lk∈?N×Nis a diagonal matrix, representing the large-scale channel fading. We have

    and

    which indicates the total transmission loss between DAE n and user k. Particularly, λ is the amendment factor depending on concrete propagation environments, and ψknrepresents the shadow fading with lognormal distribution, and dknis the transmission distance, and α denotes the path-loss exponent. λ, ψknand α depend on application scenarios, and these parameters impact the system performance significantly. In general, for the case with larger transmission loss, the interference from STs to the terrestrial system will become more dominant. It can be analogized from (2)thatcan be decomposed as

    As the RM is constructed via spectrum measurement, it can only indicate the large-scale CSIT with a construction cost limitation. Therefore, in the sequel,we assume only Lk(k=1,2,...,K ) and(j=1,2,...,L, k=1,2,...,K ) are available for the coordinated resource allocation optimization.

    Suppose that the elements of xkare all independently complex Gaussian distributed and the transmit power of DAE n for user k is pkn, we can get that

    For the satellite side, we assume the transmit power of ST j as

    Taking expectation over the unknown smallscale CSITwe derive the interference covariance from all the STs to user k as

    Similarly, taking expectation over the unknown small-scale CSIT Sk, we derive the interference covariance from all the other users to user k as

    Correspondingly, de fine

    and the average system sum rate of the DAS Rtcan be written as

    In the following, we try to maximize Rtby coordinated resource allocation at both the terrestrial and the satellite sides.

    III. COORDINATED RESOURCE ALLOCATION

    In this section, we first optimize the power allocation strategy for the DAS system, so as to adapt to the diverse interference level at different users. Then, we present an opportunistic scheduling method for the satellite system, to control its harmful interference to the terrestrial users.

    3.1 Power allocation for the terrestrial side

    Under a transmission power constraint for each user, we can formulate the following optimization problem

    Because of the expectation operator in the objective function, this optimization problem is dif ficult to solve. Moreover, the optimization variables exist in both the numerator and the denominator with the log function, which renders that the problem is non-convex [18].

    In order to simplify the problem, we first approximate Rtas

    with

    Using the random matrix theory [16][19], we can derive (14) and (15).

    Given Wk(k=1,2,...,K ), the problem in(13) can be recast as

    Noting that the log function is monotonically increasing, we can equivalently have the following transformed problem

    The problem in (17) is still challenging. However, we can transform it iteratively into a series of Geometric Programming (GP) problems [20].

    By ι we denote the iterative step. Then,given the power allocation results for the ι?1 step,, we can de fine

    Accordingly, we formulate the following optimization problem

    which fortunately is a standard GP problem.Consequently, we can solve it by using specialized tools. According to the inequality of arithmetic and geometric means and the fact that Rtis upper bounded, it is easy to prove that the iteration converges [13]. The details of the iterative algorithm is summarized in Algorithm 1.

    3.2 Opportunistic scheduling for the satellite side

    As shown in figure 2, for a given ST j, its interference to different terrestrial user is different. We can define the total leakage interference and the strongest leakage interference for ST j as follows

    Then, the L online STs can be selected in an opportunistic fashion. Particularly, an order of all the waiting STs is first generated in the satellite gateway, according to the interference knowledge derived from the RM. The order can be obtained based on either the sum leakage interference as

    or the strongest leakage interference as

    ?

    Fig. 2. Illustration of the inter-system interference. In this example, the leakage interference to user #1 (or #2) is the strongest one among those interference generated by ST #1 (or #2).

    For both cases, STs 1~L will be scheduled. In a mobile communication scenario, the RM will dynamically change, and thereby the order of all the waiting STs should be adaptively updated. Thus, although only the L STs with the smallest leakage interference are scheduled, all the waiting STs can be served in an opportunistic fashion [21].

    Moreover, the proposed scheduling method may largely reduce the leakage interference to the DAS users, hence the performance of the DAS can be improved.

    Fig. 3. Illustration of the simulation setups.

    Table I. Resource allocation schemes considered in the simulation.

    IV. SIMULATION RESULTS

    In this section, we evaluate the performance of the proposed power allocation scheme and opportunistic scheduling scheme. As shown in figure 3, a circular coverage area is assumed.N=12 DAEs, and K=3 users with M=4 antenna elements each are deployed following uniform distribution within the inner circular area with a radius of r1=1000m . 5 STs are randomly deployed in the ring zone with 1000m≤r≤1200m. L=2 STs will be activated among these waiting STs.

    The transmit power for each ST is assumed to be 30dBm, and the transmit power constraint for different users is supposed to be the same, which takes value from 20dBm to 40dBm. For the large-scale channel, the amendment factor is set as λ2= ?30 (in dB),and the path-loss exponent is set as α=4, and the standard deviation of the shadow fading is set to be 8dB. The noise power is -107dBm.

    We first compare the achievable sum rate of different resource allocation schemes. Four schemes have been taken into the comparison, as shown in table I. We can observe from figure 4 that the proposed power allocation scheme significantly outperforms the equal power allocation scheme. Because this scheme is designed according to only the large-scale CSIT (derived from the RM), it is hard to compare it with other existing schemes, which were designed based on full CSIT or imperfect CSIT with Gaussian errors. From the figure,we can also see that the proposed opportunistic scheduling scheme can provide a gain over traditional random scheduling, especially at the low signal to noise ratio (SNR) regime.The scheduling based on the strongest leakage interference performs a little better than that based on the sum leakage interference, which implies that the strongest leakage interference is the most dominant in fluence factor.

    When the number of DAEs goes larger,we give simulation results for scheme #1 in figure 5, when the transmit power constraint equals to 30dBm. It can be seen that network densification [14] is effective for improving the performance of terrestrial systems, under the interference from satellite systems. On one hand, the average access distance can be reduced by deploying more DAEs. On the other hand, it also provides more spatial degree of freedom to utilize the transmit power more efficiently.

    As for computational complexity, it is clear that the scheme #4 requires the least computational complexity. As the proposed opportunistic scheduling scheme only needs sorting the sum or the strongest leakage interference, it occupies negligible computational resources.The dominant computational complexity for schemes #1~#3 lies in the proposed power allocation scheme. In figure 6, the convergence performance of the proposed power allocation scheme is shown. 10 RMs (each RM corresponds to a random-generated system topology) are used in our simulations. We can find that for different RMs, 12 iterations are enough to converge for the proposed scheme.As the computational complexity of each iteration is quite low by adopting the mature tools for standard GP problem, the delay caused by the proposed power allocation scheme is quite short. This enables the practical implementation of the proposed scheme.

    V. CONCLUSIONS

    In this paper, we focus on the challenge of spectrum scarcity. A scenario where a satellite communication system and a terrestrial DAS coexist via spectrum sharing has been investigated. Particularly, we use the RM to derive the large-scale CSIT. For the terrestrial system, we have proposed an iterative power allocation scheme to adjust the transmit power of different DAEs, so as to adapt to the interference from the satellite system. For the satellite side, we have presented an opportunistic scheduling scheme, so as to carefully control the leakage interference. Simulation results have demonstrated that the proposed scheme outperforms traditional methods. Basically,the usage of RMs may greatly reduce the system overhead for channel estimation, thus it is quite promising for future dense hybrid satellite terrestrial networks.

    Fig. 5. System performance with network densi fication.

    Fig. 6. Convergence performance of the proposed power allocation scheme.

    ACKNOWLEDGEMENT

    This work was supported in part by the National Science Foundation of China under grant No. 61701457. The authors would like to sincerely thank the anonymous reviewers for their helpful comments.

    [1] Maleki S, Chatzinotas S, Evans B, et al. Cognitive spectrum utilization in Ka band multibeam satellite communications[J]. IEEE Communications Magazine, 2015, 53(3): 24-29.

    [2] Feng W, Ge N, Lu J. Coordinated satellite-ter-restrial networks: A robust spectrum sharing perspective[C]//Wireless and Optical Communication Conference (WOCC), 2017 26th. IEEE,2017: 1-5.

    [3] Pierucci L, Fantacci R. MIMO cooperative spectrum sensing in hybrid satellite/terrestrial scenario[C]//Communication Workshop (ICCW),2015 IEEE International Conference on. IEEE,2015: 1617-1622.

    [4] Sharma S K, Chatzinotas S, Grotz J, et al. 3D beamforming for spectral coexistence of satellite and terrestrial networks[C]//Vehicular Technology Conference (VTC Fall), 2015 IEEE 82nd.IEEE, 2015: 1-5.

    [5] Lagunas E, Maleki S, Chatzinotas S, et al. Power and rate allocation in cognitive satellite uplink networks[C]//Communications (ICC), 2016 IEEE International Conference on. IEEE, 2016: 1-6.

    [6] Akyildiz I F, Agusti R, Casadevall F, et al. Flexible and spectrum-aware radio access through measurements and modelling in cognitive radio systems[J]. FARAMIR Document: D2. 1,(ICT-248351), 2010.

    [7] Yilmaz H B, Tugcu T, Alagoz F, et al. Radio environment map as enabler for practical cognitive radio networks[J]. IEEE Communications Magazine, 2013, 51(12): 162-169.

    [8] Sharma S K, Bogale T E, Chatzinotas S, et al.Cognitive Radio Techniques Under Practical Imperfections: A Survey[J]. IEEE Communications Surveys and Tutorials, 2015, 17(4): 1858-1884.

    [9] Riihijarvi J, Mahonen P, Sajjad S. Influence of transmitter configurations on spatial statistics of radio environment maps[C]//Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on. IEEE, 2009:853-857.

    [10] Ureten S, Yongacoglu A, Petriu E. A comparison of interference cartography generation techniques in cognitive radio networks[C]//Communications (ICC), 2012 IEEE International Conference on. IEEE, 2012: 1879-1883.

    [11] Yilmaz H B, Tugcu T. Location estimation-based radio environment map construction in fading channels[J]. Wireless communications and mobile computing, 2015, 15(3): 561-570.

    [12] Feng W, Li Y, Gan J, et al. On the deployment of antenna elements in generalized multi-user distributed antenna systems[J]. Mobile Networks and Applications, 2011, 16(1): 35-45.

    [13] Chen Y, Feng W, Zheng G. Optimum placement of UAV as relays[J]. IEEE Communications Letters, to appear, 2017.

    [14] Feng W, Wang Y, Lin D, et al. When mmWave communications meet network densification:A scalable interference coordination perspective[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(7): 1459-1471.

    [15] Wei H, Feng W, Li Y, et al. Energy-efficient resource allocation for small-cell networks: a stable queue perspective[J]. China Communications, 2017, 14(10): 142-150.

    [16] Feng W, Wang Y, Ge N, et al. Virtual MIMO in multi-cell distributed antenna systems: Coordinated transmissions with large-scale CSIT[J].IEEE Journal on Selected Areas in Communications, 2013, 31(10): 2067-2081.

    [17] Chen Y, Feng W, Shi R, et al. Pilot-based channel estimation for AF relaying using energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 6877-6886.

    [18] Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge university press, 2004.

    [19] Zhang Y, Feng W, Ge N. Pilot power adaptation for tomographic channel estimation in distributed MIMO systems[J]. IET Communications,2017, 11(1): 112-118.

    [20] Chiang M, Tan C W, Palomar D P, et al. Power control by geometric programming[J]. IEEE Transactions on Wireless Communications, 2007,6(7).

    [21] Liu X, Chong E K P, Shroff N B. Opportunistic transmission scheduling with resource-sharing constraints in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2001,19(10): 2053-2064.

    国产精品人妻久久久影院| 中文在线观看免费www的网站| 国产精品蜜桃在线观看| 麻豆乱淫一区二区| 高清欧美精品videossex| 欧美日韩av久久| 久久6这里有精品| 精品少妇内射三级| 我要看黄色一级片免费的| 中文乱码字字幕精品一区二区三区| 免费观看的影片在线观看| 黄色视频在线播放观看不卡| 91精品国产九色| 免费黄频网站在线观看国产| 欧美变态另类bdsm刘玥| 成年人免费黄色播放视频 | 热99国产精品久久久久久7| 狂野欧美激情性xxxx在线观看| 99九九线精品视频在线观看视频| 我要看黄色一级片免费的| a级毛色黄片| 欧美丝袜亚洲另类| tube8黄色片| 午夜免费观看性视频| 亚洲人成网站在线观看播放| 成年美女黄网站色视频大全免费 | 黑人巨大精品欧美一区二区蜜桃 | 美女国产视频在线观看| 久久午夜福利片| 美女cb高潮喷水在线观看| 啦啦啦视频在线资源免费观看| 亚洲国产最新在线播放| 丰满饥渴人妻一区二区三| 纯流量卡能插随身wifi吗| 精品亚洲乱码少妇综合久久| h视频一区二区三区| 欧美人与善性xxx| 国产高清不卡午夜福利| 国产精品无大码| 亚洲av中文av极速乱| 男女啪啪激烈高潮av片| 国产成人免费观看mmmm| 国产成人免费观看mmmm| 免费观看无遮挡的男女| 99热全是精品| 精品一区二区三卡| 日韩熟女老妇一区二区性免费视频| 边亲边吃奶的免费视频| 国产免费一级a男人的天堂| 制服丝袜香蕉在线| 一区二区av电影网| 国产黄片视频在线免费观看| 少妇熟女欧美另类| 观看免费一级毛片| 国产成人精品福利久久| 伦理电影大哥的女人| 在线看a的网站| 午夜日本视频在线| 亚洲自偷自拍三级| 天堂8中文在线网| 一本大道久久a久久精品| 狂野欧美激情性bbbbbb| 精品国产一区二区久久| 亚洲真实伦在线观看| 国内揄拍国产精品人妻在线| 国产亚洲91精品色在线| 国产精品一区二区三区四区免费观看| 免费观看的影片在线观看| 亚洲精品456在线播放app| 午夜91福利影院| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩卡通动漫| 自拍欧美九色日韩亚洲蝌蚪91 | 婷婷色综合www| 久久精品久久久久久久性| 久久久a久久爽久久v久久| 欧美 日韩 精品 国产| 国产91av在线免费观看| 国产伦在线观看视频一区| 新久久久久国产一级毛片| 卡戴珊不雅视频在线播放| 精品卡一卡二卡四卡免费| 人妻少妇偷人精品九色| 一级爰片在线观看| 成人亚洲欧美一区二区av| 一级毛片aaaaaa免费看小| 精品亚洲成a人片在线观看| 一级爰片在线观看| 国产有黄有色有爽视频| 国产极品粉嫩免费观看在线 | 午夜视频国产福利| 精品国产露脸久久av麻豆| 亚洲天堂av无毛| 十分钟在线观看高清视频www | 色5月婷婷丁香| 人体艺术视频欧美日本| 国产探花极品一区二区| 亚洲精品乱码久久久v下载方式| 夫妻午夜视频| 亚洲婷婷狠狠爱综合网| 亚洲精品国产av蜜桃| 亚洲精品456在线播放app| 久久久久久久亚洲中文字幕| 亚洲成色77777| 免费看不卡的av| 人妻一区二区av| videos熟女内射| 两个人免费观看高清视频 | 久久精品久久久久久久性| 在线观看人妻少妇| 成年人免费黄色播放视频 | 美女中出高潮动态图| 亚洲欧美日韩东京热| 成人综合一区亚洲| 国产av一区二区精品久久| 久久av网站| 中文字幕人妻丝袜制服| 欧美日韩精品成人综合77777| 国国产精品蜜臀av免费| 欧美日韩国产mv在线观看视频| 高清不卡的av网站| 大香蕉97超碰在线| 最近手机中文字幕大全| 特大巨黑吊av在线直播| 中文资源天堂在线| 久久婷婷青草| 精品人妻熟女毛片av久久网站| a级一级毛片免费在线观看| 看十八女毛片水多多多| 国产精品久久久久久久电影| 国产极品天堂在线| 亚洲一区二区三区欧美精品| 黑人高潮一二区| 一区二区三区四区激情视频| 国产乱来视频区| 99久久人妻综合| 欧美精品亚洲一区二区| 精品视频人人做人人爽| 欧美区成人在线视频| 三级经典国产精品| h日本视频在线播放| 日本免费在线观看一区| 国产成人免费观看mmmm| 亚洲成人手机| 成年av动漫网址| 另类亚洲欧美激情| 久久久亚洲精品成人影院| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品视频女| 日本wwww免费看| 久久综合国产亚洲精品| 免费观看无遮挡的男女| 少妇猛男粗大的猛烈进出视频| 亚洲,一卡二卡三卡| 国产成人aa在线观看| 乱码一卡2卡4卡精品| av视频免费观看在线观看| 久久精品熟女亚洲av麻豆精品| 久久99热6这里只有精品| av线在线观看网站| 另类亚洲欧美激情| 亚洲精品aⅴ在线观看| 久久精品国产自在天天线| 一本—道久久a久久精品蜜桃钙片| 欧美精品国产亚洲| 日本与韩国留学比较| 国产黄片视频在线免费观看| 国产黄色视频一区二区在线观看| 亚洲精华国产精华液的使用体验| 国产精品国产三级专区第一集| 一本色道久久久久久精品综合| 午夜免费鲁丝| 欧美少妇被猛烈插入视频| 国产黄色视频一区二区在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲中文av在线| 日日撸夜夜添| 久久午夜福利片| 欧美精品高潮呻吟av久久| 成人毛片60女人毛片免费| 一本色道久久久久久精品综合| 久久精品夜色国产| 男女无遮挡免费网站观看| 午夜日本视频在线| 成人特级av手机在线观看| 久热久热在线精品观看| 国产男女超爽视频在线观看| 一本—道久久a久久精品蜜桃钙片| 人妻少妇偷人精品九色| av视频免费观看在线观看| 免费观看a级毛片全部| 自拍欧美九色日韩亚洲蝌蚪91 | 五月开心婷婷网| 亚洲av国产av综合av卡| 热re99久久国产66热| 水蜜桃什么品种好| 久久狼人影院| 欧美精品一区二区免费开放| 91在线精品国自产拍蜜月| 国产亚洲精品久久久com| 精品一品国产午夜福利视频| 欧美精品人与动牲交sv欧美| 亚洲精品乱久久久久久| 亚洲成人一二三区av| 一个人看视频在线观看www免费| 亚洲av中文av极速乱| 男男h啪啪无遮挡| 久久久久久久大尺度免费视频| 亚洲久久久国产精品| 我的女老师完整版在线观看| 99热全是精品| 久久精品国产a三级三级三级| 内射极品少妇av片p| 亚洲av.av天堂| 久久午夜福利片| 久久精品熟女亚洲av麻豆精品| 亚洲精品自拍成人| 18禁在线播放成人免费| 午夜影院在线不卡| 日日啪夜夜撸| 免费大片18禁| 久久国产精品男人的天堂亚洲 | 啦啦啦啦在线视频资源| www.av在线官网国产| 18禁裸乳无遮挡动漫免费视频| 久久国内精品自在自线图片| 国产精品国产av在线观看| 国产精品秋霞免费鲁丝片| 好男人视频免费观看在线| 涩涩av久久男人的天堂| 亚洲美女黄色视频免费看| 国产精品女同一区二区软件| 精品一品国产午夜福利视频| 精华霜和精华液先用哪个| 2021少妇久久久久久久久久久| tube8黄色片| 国产精品一区二区在线观看99| 亚洲国产精品专区欧美| 国产淫片久久久久久久久| 免费看光身美女| 日韩伦理黄色片| 亚洲欧美日韩卡通动漫| 成年女人在线观看亚洲视频| 亚洲av国产av综合av卡| 婷婷色综合www| 男人添女人高潮全过程视频| 国产精品无大码| 夜夜骑夜夜射夜夜干| 男人添女人高潮全过程视频| 美女大奶头黄色视频| 美女主播在线视频| 嫩草影院入口| 日韩欧美一区视频在线观看 | 亚洲va在线va天堂va国产| 老女人水多毛片| 成人黄色视频免费在线看| 久久 成人 亚洲| 亚洲精品一区蜜桃| 黄片无遮挡物在线观看| 国产淫片久久久久久久久| 亚洲欧美成人精品一区二区| 一区在线观看完整版| 夜夜骑夜夜射夜夜干| 国产免费又黄又爽又色| 亚洲欧美成人综合另类久久久| 美女内射精品一级片tv| a级片在线免费高清观看视频| 久久99蜜桃精品久久| 国产亚洲精品久久久com| av专区在线播放| 亚洲精品乱码久久久久久按摩| 国产免费一区二区三区四区乱码| 黄色欧美视频在线观看| 国产精品国产三级专区第一集| 亚洲欧美清纯卡通| 亚洲av成人精品一区久久| 欧美精品一区二区免费开放| 中文字幕精品免费在线观看视频 | 2021少妇久久久久久久久久久| 精品视频人人做人人爽| 久久久久久伊人网av| 婷婷色综合www| 国产色婷婷99| 国产极品粉嫩免费观看在线 | 三上悠亚av全集在线观看 | 亚洲成人av在线免费| 国产欧美另类精品又又久久亚洲欧美| 亚洲人与动物交配视频| 精品熟女少妇av免费看| 国产高清国产精品国产三级| 久久99热这里只频精品6学生| 80岁老熟妇乱子伦牲交| 国产精品无大码| 久久久久网色| 亚洲经典国产精华液单| 高清av免费在线| 国产在线一区二区三区精| 欧美日韩一区二区视频在线观看视频在线| av卡一久久| 一级爰片在线观看| 丰满人妻一区二区三区视频av| 91久久精品国产一区二区成人| 国产精品麻豆人妻色哟哟久久| 久久久久精品久久久久真实原创| 久久久久国产精品人妻一区二区| 两个人的视频大全免费| 国产成人免费无遮挡视频| 中国美白少妇内射xxxbb| 26uuu在线亚洲综合色| 亚洲精品国产av成人精品| 欧美97在线视频| 在线观看av片永久免费下载| 亚洲精品日本国产第一区| 日韩精品免费视频一区二区三区 | 人人妻人人看人人澡| 欧美日韩视频精品一区| 下体分泌物呈黄色| 伦理电影大哥的女人| 色视频在线一区二区三区| 久久久久久久久久久丰满| 日产精品乱码卡一卡2卡三| 亚洲高清免费不卡视频| 国产精品99久久久久久久久| 亚洲精品乱久久久久久| 日韩一区二区三区影片| 亚洲欧美一区二区三区黑人 | 成人无遮挡网站| 欧美丝袜亚洲另类| 国产精品一区二区在线观看99| 啦啦啦在线观看免费高清www| 男人和女人高潮做爰伦理| 日韩成人伦理影院| 中文欧美无线码| 99久久精品国产国产毛片| 色网站视频免费| 国国产精品蜜臀av免费| 久久毛片免费看一区二区三区| 国产精品人妻久久久影院| 免费看av在线观看网站| 成人亚洲欧美一区二区av| 亚洲色图综合在线观看| 欧美高清成人免费视频www| 高清av免费在线| 亚洲av不卡在线观看| 日本与韩国留学比较| 美女cb高潮喷水在线观看| 波野结衣二区三区在线| 国产精品人妻久久久影院| 国产精品伦人一区二区| 国产精品一区二区性色av| 久久 成人 亚洲| 国产在线男女| 亚洲欧美成人综合另类久久久| 亚洲人与动物交配视频| 亚洲精品日韩在线中文字幕| 亚洲欧美清纯卡通| av.在线天堂| 亚洲欧美日韩卡通动漫| 亚洲经典国产精华液单| 中国国产av一级| 在线播放无遮挡| 夫妻午夜视频| 亚洲av成人精品一区久久| 一级,二级,三级黄色视频| 精品人妻熟女av久视频| 99视频精品全部免费 在线| 最后的刺客免费高清国语| 在线播放无遮挡| 97超视频在线观看视频| 超碰97精品在线观看| 国产一区二区三区av在线| 夜夜骑夜夜射夜夜干| av.在线天堂| 啦啦啦视频在线资源免费观看| 免费看光身美女| 久久久国产一区二区| 综合色丁香网| 国产一区二区三区综合在线观看 | 久久热精品热| 亚洲高清免费不卡视频| 日韩成人伦理影院| 天美传媒精品一区二区| av视频免费观看在线观看| 欧美少妇被猛烈插入视频| 涩涩av久久男人的天堂| 国产极品天堂在线| 男人和女人高潮做爰伦理| 永久免费av网站大全| 精品少妇内射三级| 你懂的网址亚洲精品在线观看| 久久影院123| 国产伦在线观看视频一区| 国产精品三级大全| 日韩成人伦理影院| 大片电影免费在线观看免费| 99久久精品一区二区三区| 99热国产这里只有精品6| 女的被弄到高潮叫床怎么办| 亚洲一区二区三区欧美精品| 在现免费观看毛片| 久久久久久久久久久久大奶| 亚洲国产精品成人久久小说| 久久人妻熟女aⅴ| 一本大道久久a久久精品| 国产成人精品福利久久| 午夜老司机福利剧场| 亚洲,欧美,日韩| av在线播放精品| 国产成人午夜福利电影在线观看| 校园人妻丝袜中文字幕| 熟女av电影| 丰满迷人的少妇在线观看| 久久精品国产鲁丝片午夜精品| 色婷婷av一区二区三区视频| 精品99又大又爽又粗少妇毛片| 久久久久精品久久久久真实原创| 麻豆乱淫一区二区| 国产精品偷伦视频观看了| 色婷婷久久久亚洲欧美| 在线天堂最新版资源| 日韩亚洲欧美综合| 国产av码专区亚洲av| 成人无遮挡网站| 国产精品一区二区三区四区免费观看| 免费久久久久久久精品成人欧美视频 | 夜夜爽夜夜爽视频| 国产精品国产三级国产av玫瑰| 黄色视频在线播放观看不卡| 黄片无遮挡物在线观看| 嘟嘟电影网在线观看| 久久免费观看电影| 在线免费观看不下载黄p国产| 免费观看在线日韩| 国产黄片视频在线免费观看| 亚洲成人av在线免费| 欧美日韩视频高清一区二区三区二| www.av在线官网国产| 久久人人爽人人爽人人片va| 三上悠亚av全集在线观看 | 在线亚洲精品国产二区图片欧美 | 成人亚洲精品一区在线观看| 亚洲国产精品一区三区| 亚洲av成人精品一区久久| 国国产精品蜜臀av免费| 久久精品国产a三级三级三级| 一级,二级,三级黄色视频| 亚洲av免费高清在线观看| 成人亚洲精品一区在线观看| av免费观看日本| 国产乱来视频区| 成人亚洲精品一区在线观看| 校园人妻丝袜中文字幕| 特大巨黑吊av在线直播| 九九在线视频观看精品| 卡戴珊不雅视频在线播放| 久久这里有精品视频免费| 91久久精品电影网| 国产老妇伦熟女老妇高清| 欧美老熟妇乱子伦牲交| 男女边吃奶边做爰视频| 人妻系列 视频| 三级经典国产精品| 亚洲综合色惰| 五月天丁香电影| 成人亚洲精品一区在线观看| 免费观看性生交大片5| www.av在线官网国产| 日日摸夜夜添夜夜爱| 你懂的网址亚洲精品在线观看| 成人无遮挡网站| 国产成人精品久久久久久| 国产在视频线精品| 在线精品无人区一区二区三| 亚洲精品国产色婷婷电影| 99久久精品一区二区三区| 啦啦啦在线观看免费高清www| kizo精华| 国产免费视频播放在线视频| 三级经典国产精品| 亚洲欧美中文字幕日韩二区| 男女免费视频国产| 国产无遮挡羞羞视频在线观看| 亚洲真实伦在线观看| 免费看av在线观看网站| 久久99蜜桃精品久久| 少妇熟女欧美另类| 亚洲精品乱码久久久久久按摩| 男男h啪啪无遮挡| 两个人的视频大全免费| 亚洲国产色片| av.在线天堂| 亚洲婷婷狠狠爱综合网| a级毛片在线看网站| 国产淫片久久久久久久久| 最新的欧美精品一区二区| 韩国高清视频一区二区三区| 一区二区av电影网| 自线自在国产av| 久久人人爽人人爽人人片va| av专区在线播放| 国产高清有码在线观看视频| 国产精品99久久久久久久久| 亚洲精品国产av成人精品| 黑丝袜美女国产一区| 简卡轻食公司| 亚洲av日韩在线播放| 女性被躁到高潮视频| 国产熟女欧美一区二区| 韩国高清视频一区二区三区| 日日撸夜夜添| 少妇精品久久久久久久| 久久影院123| 国产色婷婷99| 18禁在线播放成人免费| 99国产精品免费福利视频| 夜夜骑夜夜射夜夜干| 岛国毛片在线播放| 女性被躁到高潮视频| 久久久久国产网址| 亚洲国产色片| 国产成人精品无人区| 春色校园在线视频观看| 最新的欧美精品一区二区| 国产精品国产三级国产专区5o| 亚洲欧洲国产日韩| 亚洲图色成人| 夫妻午夜视频| av在线老鸭窝| 在线观看美女被高潮喷水网站| 麻豆成人av视频| 99久久精品国产国产毛片| 夜夜看夜夜爽夜夜摸| 国产精品嫩草影院av在线观看| 国产精品福利在线免费观看| 国产精品久久久久久久久免| 日韩中文字幕视频在线看片| 国产中年淑女户外野战色| 视频区图区小说| 欧美日韩亚洲高清精品| 69精品国产乱码久久久| 国产亚洲av片在线观看秒播厂| 国产精品人妻久久久影院| 亚洲久久久国产精品| 91在线精品国自产拍蜜月| 边亲边吃奶的免费视频| 国产精品熟女久久久久浪| 哪个播放器可以免费观看大片| 免费少妇av软件| 国产亚洲午夜精品一区二区久久| 精品人妻熟女毛片av久久网站| 综合色丁香网| 纵有疾风起免费观看全集完整版| 久久久久网色| 少妇丰满av| 国产在线一区二区三区精| 亚州av有码| 两个人免费观看高清视频 | 夜夜爽夜夜爽视频| 丰满乱子伦码专区| 亚洲成色77777| 亚洲国产最新在线播放| 国产精品久久久久久久电影| 丝袜在线中文字幕| 久久精品久久久久久噜噜老黄| 欧美97在线视频| 亚洲欧洲日产国产| 亚洲成人av在线免费| 午夜91福利影院| 亚洲第一区二区三区不卡| 国产精品久久久久久精品古装| 国产免费一级a男人的天堂| 特大巨黑吊av在线直播| 日本猛色少妇xxxxx猛交久久| 国产精品人妻久久久久久| 插阴视频在线观看视频| 亚洲欧美精品自产自拍| 国产爽快片一区二区三区| 91久久精品国产一区二区三区| 亚洲,欧美,日韩| 亚洲精品日本国产第一区| 2022亚洲国产成人精品| 日本91视频免费播放| 亚洲国产欧美在线一区| 乱人伦中国视频| 免费大片18禁| 国产黄片美女视频| 热99国产精品久久久久久7| 久久免费观看电影| videossex国产| 肉色欧美久久久久久久蜜桃| 免费看日本二区| 精品久久国产蜜桃| 人人妻人人爽人人添夜夜欢视频 | 伊人久久国产一区二区| 偷拍熟女少妇极品色| 久久人妻熟女aⅴ| 简卡轻食公司| 国产成人免费观看mmmm| 中文在线观看免费www的网站| 亚洲精品久久午夜乱码| 九草在线视频观看| 免费在线观看成人毛片| 国内少妇人妻偷人精品xxx网站| 晚上一个人看的免费电影| 久久久精品94久久精品| 欧美日本中文国产一区发布| 免费黄色在线免费观看| 久久久久久伊人网av| a级一级毛片免费在线观看| 插阴视频在线观看视频| 黑丝袜美女国产一区| 国产日韩欧美视频二区| 黑人高潮一二区| 国产av一区二区精品久久| 99久久精品国产国产毛片|