• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Roll Compensation Method for Two-Axis Transportable Satellite Antennas

    2018-04-04 08:21:16LaidingZhaoJidongXieXiaodongBaiZhichengQu
    China Communications 2018年3期

    Laiding Zhao , Jidong Xie , Xiaodong Bai , Zhicheng Qu

    1 College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

    2 Satellite Communication and Navigation Collaborative Innovation Center, Nanjing 210003, China

    I. INTRODUCTION

    Currently, transportable satellite antennas(TSAs) can be categorized into four-axis [1],three-axis [2]-[5] and two-axis (TA) [3]-[9]kinds based on the structure of antenna pedestal. Since four-axis and three-axis antenna platforms have higher tracking costs, then the TA platform is widely adopted in transportable satellite communication systems due to its advantages of simpler mechanical structure and much lower cost. Generally, there are several methods to measure the pitch and roll angle of TATSAs. The inertial navigation system(INS) with high-precise gyroscope can read high space directing accuracy but this method is expensive [10]. Using differential global positioning system (GPS) to determine the azimuth direction also has disadvantages of slow locating output rate and long installation baseline even though it has a medium cost[11], [12]. When utilizing the electronic compass, due to the disturbance of the magnetic declination and environmental magnetic field,horizontal rotating calibration for long period of time is needed to avoid severe directing deviation [13]. Therefore, all these methods have limitations in engineering realization.

    The principle of gravity acceleration can also be adopted to measure the pitch and roll angle with a much lower cost than the aforementioned methods [14]-[16]. When horizontally placed it has the highest accuracy and the measure error increases with the increased tilt angle. Based on this, the acceleration sensor should be directed at a certain angle from the axis of antenna beam in practical engineering design. However, when the roll axis is non-ze-ro, there will be a shift to both the azimuth angle and the pitch angle of the TSAs, which will deteriorate the received signal. Satellite antennas with roll axis can easily sense the angle variation and compensate it by means of turning the roll axis around. However, for the low cost TA, it only has the azimuth and elevation axes due to its simple structure.Thus, conventional TATSAs receivers in sale track the target satellite by using wide-range tracking. However, this method has a very long tracking time and it will even fail to work in some conditions such as large roll angle.Thus, users are usually asked to lay antennas horizontally to the greatest extent to ensure reliable link performance.

    In order to solve these problems of TATSAs,we propose a novel roll compensation (RC)method for the low-cost TATSAs to achieve faster tracking even if when the antenna has no azimuth sensor. By analyzing projection of the change of roll axis to the azimuth elevation and polarization axes, formulas of the tracking method are derived. Also, simulations of measuring error are conducted. Results indicate that with roll angle ≤ 30°, utilizing the RC method enables system to lock satellite by only a single round of tracking, which increases the efficiency of initial searching step remarkably. In addition, compared with conventional tracking modes, tracking in the ellipse trace with the RC method provides the highest tracking efficiency. Experiments show that the RC method is an effective engineering method.

    The paper proposes a novel roll compensation (RC) method for the low-cost TATSAs to achieve faster tracking even if when the antenna has no azimuth sensor.

    Fig. 1. Structure of the TATSA system.

    II. MECHANICAL STRUCTURES OF TATSA

    Generally, the structures of the TATSA pedestal structure can be classi fied into X-Y pedestals [17]-[19] and elevation-over-azimuth pedestals [20], [21]. For X-Y pedestals, when the target satellite has a lower pitch angle, the outputs of the control system will have large variation, which requires a much stricter overloading than elevation-over-azimuth pedestals.Meanwhile, this variation requires higher tracking speed and acceleration, which makes the system dif ficult to react in time. Therefore,X-Y pedestals tend to lose the target satellite in the scenario of low orbit pitch angle.

    For elevation-over-azimuth pedestals, the azimuth is the angle between antenna pointing and due north, where the positive angular values are assumed to be corresponding to clockwise. The elevation is the angle between terminal-satellite link and the horizon, where the positive angular values are assumed to be corresponding to upper angles. When the target satellite is geostationary earth orbit (GEO)satellite, the TATSA system can track the target accurately and stably. When the target satellite is polar-orbit satellite with lower pitch angle, the azimuth axis can also achieve stable tracking. When the target satellite passes over the top, the azimuth axis should turn around 180° instantly. This requires infinite angular speed and acceleration, which is very hard to realize. However, in practical application of TATSA systems, the scenario of target satellite passing over the top seldom appears in the antenna’s elevating mode. Therefore, proposed RC method will be discussed and analyzed based on the common elevation-over-azimuth pedestals TATSA system.

    The speci fic structure diagram of the TATSA system is shown in figure 1. The locations and rotation modes are also shown in the figure. Three electric motors, i.e., the azimuth motor, the elevation motor and the polarization motor, are used in the TATSA structure.

    III. THEORETICAL MODEL

    In this section, three-axis earth coordinate system and three-axis geographic coordinate system are used for discussion, respectively.As shown in figure 2, earth coordinate system is set as OeXeYeZe, which take the geocentre as origin and OeZe-axis as the direction of due north of earth. Plane OeXeYeis in the equatorial plane with OeXe-axis pointing longitude 0° and OeYe-axis pointing east longitude 90°. The geographic coordinate system is set as OXgYgZgwhich take the pattern of the north-east-ground coordinate system with OXg-axis pointing to north, OYg-axis pointing to east and OZg-axis pointing to the gravity direction, respectively.

    Assumingrsat_cenandrstation_cenare vectors from geocentre to the target satellite and the TATSA system, respectively, in earth coordinate system. After transform from earth coordinate system to geographic coordinate system, we can get

    WhereTstation_cenis the transition matrix, which can be written as [12]-[16] shown in bottom at this page.

    Here φsatand ηsatare the longitude and latitude of the TATSA system, respectively.

    Assuming the polarization angle of satellite is κsat, φsatand ηsatare the longitude and latitude of the satellite, therefore, the transition from the satellite coordinate system to the earth coordinate system can be seen as the rotation around OeXe-axis by κsatfirst, then OeYe-axis by ?ηsat, and finally OeZe-axis by φsatin order, respectively. These can be respectively represented by:

    The transition matrix from the satellite to receiving station can be calculated as:

    whereTsat_stationcan be also written as:

    Thus, the theoretical locating matrix of the receiving station can be described as:

    Fig. 2. Satellite in the geographic coordinate system.

    where each coordinate component is given as:

    Assuming that σel, σazand σpolare the theoretical locating elevation, azimuth and polarization angles of the receiving station. As a result, they can be finally derived as follows,respectively:

    To be noticed, the atan2 (*, *) in formulas is a function, and it is de fined as:

    IV. PROPOSED RC METHOD

    Fig. 3. Schematic diagram of the beam change caused by the roll angle variation.

    The existence of the roll angle will diverge the antenna’s direction from the satellite, which tends to cause loss of satellite. Also, it is hard to search for the satellite since the searching trace will be tilted when the roll angle exists. However, since the TATSA system does not have roll axis, the angle generated in the roll direction cannot be compensated for by roll axis. Therefore, to maintain azimuth and elevation angles (in geographic coordinate system) of the antenna in the TATSA system,three-axis compensation must be conducted to project the change of roll axis to azimuth elevation and polarization axes by means of adjusting corresponding motors. Such compensation is the key to locking the satellite accurately.

    Generally, three-dimensional derivation is adopted to achieve compensation [22]-[27]owing to the high accuracy of three-dimensional space sensor. However, these sensors are dif ficult to apply due to high costs. Therefore, wide scanning is the common searching method in engineering applications. In this section, the proposed RC method, which can ensure the accuracy in the elevation and polarization without azimuth sensor, is presented.Meanwhile, it enables antennas to search for the satellite quickly under the circumstance of one-dimension vague.

    As discussed before, cheap tilt sensors commonly base on gravity acceleration principle. The performance of these sensors will be worse when the pitch angle becomes wider.Based on this reason, there should be a fixed angle α(∠BOC) between elevation axis and the beam axis in sensor coordinate system. In figure 3, OB represents the beam axis. Assuming the elevation angle of the tilt sensor to be β(∠C′ OC) and the roll angle γ(∠FGB′) to be 0°, the elevation axis of the sensors and the roll axis are parallel to OC and CD, respectively. Thus, the tilt sensor can be shifted to be placed in C on plane OCD. When all the outputs of three dimensions are zero, sensor coordinate system coincides with geographic coordinate system.

    When the roll angle exists, CB rotates to CB′ by γ′(∠B′ GD). Let B′ D be parallel to BC and plane CFD is actually the projection of plane CB′ D on the horizontal plane. Also,plane OC′ D′ is the projection of plane OCD on the horizontal plane through point O. Ifthen we can get

    Here we establish the antenna coordinate system as OXaYaZa. Assuming that the geographic azimuth of the tilt sensor is ?, if ?= α=β =γ=0, then OXaYaZacoincides with

    Since OXaYaZacan be actually generated by rotating OXgYgZgfor several times, the rotation matrix is given as:

    From the rotating relationship in the last section, (17) can be given as (19) shown in the bottom at this page.

    Assuming the antenna’s elevation azimuth and polarization angle are σe′l, σa′zand σ′pol,respectively, the angles can be given as:

    Finally, according to the result from Eq.(20) to (22), we can conduct roll compensation in the TATSA system.

    The theoretical alignment angle σel, σazand σpolof two-axis transportable satellite antenna (TATSA) on satellite communication earth station, according to the latitude and longitude of current earth station and satellite parameters, can be derived using proposed formulas (1)~(16). The beam angle σe′l, σa′zand σ′polof satellite antenna, according to the two-dimensional angle output by the tilt sensor on satellite communication earth station and position of the tilt sensor relative to the antenna surface, can be derived using proposed formulas (17)~(22). Above calculation can be realized by DSP. The DSP can drive the motors to reduce the difference between σe′l,σa′z, σ′poland σel, σaz, σpol. This is the socalled correction process.

    V. SIMULATION RESULTS AND DISCUSSIONS

    5.1 Pointing angle deviation

    Fig. 4. Azimuth deviation.

    Fig. 5. Pitch deviation.

    When antennas have roll angle, the real three-dimensional attitude angle will be deviated from the original one without the roll angle. These deviations can be denoted by δel,δazand δpol, respectively, which are further represented as

    Figure 4~figure 6 show simulated results of the azimuth elevation and polarization deviation of the TATSA system. Here antenna’s beam angle is assumed to be 2°, α=63.48°,0°≤α+β<90°, ?45°≤γ≤45°.

    From Fig. 4 we can see that when the roll angle γ=0°, the azimuth deviation is zero.When γ is nonzero, the azimuth deviation is highly related to the pitch angle β and the roll angle γ. For instance, the azimuth deviation increases with the increased roll angle. When the roll angle is less than 10°, the azimuth deviation is nearly linear to the roll angle.

    From Fig. 5, under the circumstance of the fixed pitch angle, larger absolute value of roll angle will lead to higher pitch deviation.Results indicate that when 0°≤α+β<80°,and ? 7°≤γ≤7°, the pitch deviation is less than 1.914°, which is also less than the beam angle. Thus, adopting dynamic approaching scanning method will find the largest angle. When ?15°≤γ≤15°, the pitch deviation reaches 7.202°, which will impose a severe influence on the locating satellite.When ?30°≤γ≤30°, the pitch deviation is 20.072°

    From figure 6, larger roll angle will lead to higher polarization deviation. When the roll angle is relatively small, the polarization deviation is proportional to the roll angle approximately. The deviation of the space direction sensor is resulted from several reasons such as the direction error caused by the antennas’roll angle and the disturbance on antennas. In following part, the performance evaluation of the proposed error compensation method will be separated into two parts: the error compensation in initial searching step and the error compensation after losing the satellite.

    5.2 Error compensation in initial searching step

    The general method of initial searching for the target satellite has three steps: (a) add a fixed deviation angle on the output of the pitch angle sensor; (b) raise the pitch and polarization angle to the theoretical value; and (c)change the fixed pitch angle and then repeat the azimuth one-dimensional searching if the searching fails in the last round of operation,respectively.

    As discussed before, assuming the beam angle of antennas to be 2° and the roll angle γ>7°, if no deviating compensation has been taken, the azimuth searching trace will be a slant with a certain angle to horizontal plane,which makes the deviation larger than 1.9°.As a result, the azimuth searching cannot lock satellite in only one time and the initial searching time will be very long. However, after adopting the proposed RC method, if the tilt sensor is accurate, then the TATSA system can ensure locking the target satellite within only one azimuth searching.

    Since the tilt sensor with high accuracy is usually expensive, then the accuracy level must be considered in practical engineering application.

    Assuming that the two axes’ outputs of an tilt sensor, whose accuracies are 1°, are β0and γ0, α=63.48°, α+β=52.5°,?30°≤γ≤30°.Thus,

    Thus the pitch deviation ?′el, brought by accuracy after inclined angle compensation can be given as (28) shown in the bottom at this page.

    Assuming γ0to be 0°, 10°, 20° and 30°, respectively, the simulated results of ?′elare shown in figure 7.

    From figure 7 we can see that wider roll angle will lead to lower inclined angle accuracy level as well as higher ?′el. If the required precision of initial searching pitch angle is 1°,with the roll angle of ?30°≤γ≤30°, in order to ensure the accuracy of initial searching, the accuracy of tilt sensor must be superior to 1°.Thus, in this paper, the accuracy is chosen as 0.5°.

    5.3 Error compensation after losing the satellite

    Fig. 7. Pitch deviation brought by accuracy after inclined angle compensation.

    After the antenna locking the satellite, some disturbance will cause losing the target. At the beginning of losing target, satellite must be near the beam direction of the antenna. Commonly, two kinds of searching methods can be adopted: (a) operating the azimuth and el-evation motor in different time with the space trace to be a rectangular; and (b) operating the azimuth and elevation motor at the same time with the space trace to be an ellipse. In the presence of the roll angle, both the rectangular and ellipse trace will be inclined. By adopting the RC method, the long side of rectangular trace and the major axis of ellipse trace will be parallel to X-axis, respectively.

    Assuming that the accuracy of antenna tilt sensor is 0.5°. The theoretical two-dimension direction coordinates are set at (168.4°,52.1°) and the actual coordinates after losing satellite are set at (159.2°, 49.6°), which has a (?9.2°, ?2.5°) deviation. The roll angle of antenna is assumed to be 10° Both the azimuth and elevation searching speed are 0.04° /ms. When the antenna’s beam enters the circle with the center at (168.4°, 52.1°)and the radius equal to 2°, the target satellite is deemed to be locked. We simulate four different searching traces including inclined rectangular, rectangular, inclined ellipse and ellipse trace searching. Results are provided in figure 8 with t to be the searching time.

    From figure 8, both searching along the rectangular and ellipse trace need less searching time than their inclined version.

    To avoid contingency, simulations have been done under different deviating conditions. The value of original deviation and the comparison of the searching time are shown in Table I, respectively.

    Fig. 8. The simulated searching trace with the original deviation of (?9.2°,?2.5°).

    We can see from Table.1 that when the azimuth is less than 4°, the difference of the searching time is small. When azimuth is more than 4° and less than 10°, searching in the rectangular trace can save searching time. However, when the azimuth is more than 10°, the searching time will be much longer.Besides, comparing with other three methods,the ellipse trace searching method needs much less searching time in most conditions. Especially, under the circumstance of large deviations, adopting the ellipse trace will reduce the searching time remarkably. Therefore, with the proposed RC method, searching in the ellipse trace can improve the tracking efficiency effectively.

    VI. ENGINEERING TEST

    In order to verify the effectiveness of the proposed method, we experimentally searched ChinaSat 6A, which has the theoretical coordinates of (168.4°, 52.1°), with a TATSA.The accuracy of the antenna tilt sensor is 0.5°. Both the azimuth and elevation searching speed are 0.04°/ms. The received signals of the TATSA are ampli fied by LNA and then demonstrated in spectrum analyzer as well as satellite beacon receiver (SBR), respectively.SBR output voltage is collected by the controller. The test environment is shown in figure 9.

    First step is to test initial searching of antenna. Assuming the actual coordinates are set at (159.2°, 49.6°). figure 10 and 11 show the output signals of SBR without and with the proposed RC method, respectively.

    Moreover, by substantive testing with variable initial direction of TATSA and no roll compensation, results show that with the roll angle less than 5° and the pitch angle at its theoretical value, the system can track the satellite only by azimuth rotation. However, the pitch angle should be adjusted for much more times to track the satellite hardly with a larger roll angle. After the proposed method is adopted, the azimuth need to be rotated only one time with the roll angle of ?30°≤γ≤30°.This veri fies the correctness of the RC method,which also increases the tracking efficiency.

    Finally, the condition for satellite searching of the TATSA with the disturbance is tested.Assuming the initial direction of the TATSA to be (180.4°, 56.1°), figure 12 shows theoutput voltages of SBR by adopting the inclined rectangular, rectangular, inclined ellipse and ellipse trace searching, respectively. The results are consistent with those in Table 1,which proves the correctness of the simulated analysis. Moreover, it can be concluded that the ellipse trace searching method with the proposed RC method has the highest efficiency.

    Table I. Comparison among four different searching methods

    Fig. 9. Test environment.

    Fig. 10. Output of SBR without RC.

    Fig. 11. Output of SBR with RC.

    VII. SUMMARY

    The TSA system based on the simplified TA structure features it slow costs on machinery and sensors. However, the in fluence of antenna roll angle is non-ignorable. In order to avoid wide-range searching, shorten the searching time and even lock satellites in extreme scenarios, we propose a novel three-axis RC method. The method can effectively ensure the accuracy of the pitching and polarization even though in the absence of azimuth sensor. Simulation and measurement results have proved that the proposed RC method can effectively reduce the initial searching time for the sat-ellite. By searching in the ellipse trace, the TATSA system will have the highest searching efficiency in most conditions.

    Fig. 12. Output of SBR after losing the satellite with the original deviation of (12°,4°).

    ACKNOWLEDGEMENTS

    This work was jointly sponsored by scientif

    ic research foundation NUPTSF (Grant No.NY-214144 and Grant No. NY-215073), and NSFC (Grant No. 61701260).

    [1] M. D. Baldé, S. Avrillon, C. Brousseau, D. Lemur,and B. Uguen, “Spatial scanner channel sounder for space diversity studies,” Proc. 2016 10th European Conference on Antennas and Propagation (EuCAP), 2016, pp. 1-3.

    [2] T. Matsuzaki, M. Takemoto, S. Ogasawara, S.Ota, K. Oi, and D. Matsuhashi, “Novel Structure of Three-Axis Active-Control-Type Magnetic Bearing for Reducing Rotor Iron Loss,” Ieee Transactions on Magnetics, vol. 52, Jul. 2016, pp.1-4.

    [3] S. Leghmizi, S. Liu, R. Fraga, and A. Boughelala,“Dynamics Modeling for Satellite Antenna Dish Stabilized Platform,” Machine Design and Manufacturing Engineering, vol. 566, 2012, pp. 187-196.

    [4] P. C. P. Chao and C.-W. Chiu, “Design and experimental validation of a sliding-mode stabilizer for a ship-carried satellite antenna,” Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol.18, Sep. 2012, pp. 1651-1660.

    [5] B. Bishop, R. Gargano, A. Sears, and M. Karpenko, “Rapid maneuvering of multi-body dynamic systems with optimal motion compensation,”Acta Astronautica, vol. 117, Dec. 2015, pp. 209-221.

    [6] X. Zhou, H. Zhang, and R. Yu, “Decoupling control for two-axis inertially stabilized platform based on an inverse system and internal model control,” Mechatronics, vol. 24, Dec 2014, pp.1203-1213.

    [7] M.-J. Jeon and D.-S. Kwon, “An optimal antenna motion generation using shortest path planning,” Advances in Space Research, vol. 59, Mar.15 2017, pp. 1435-1449.

    [8] Z. F. Bai, Y. Q. Liu, and Y. Sun, “Investigation on dynamic responses of dual-axis positioning mechanism for satellite antenna considering joint clearance,” Journal of Mechanical Science and Technology, vol. 29, Feb. 2015, pp. 453-460.

    [9] J. Wan, S. Lu, X. Wang, and Y. Ai, “A Steerable Spot Beam Re flector Antenna for Geostationary Satellites,” IEEE Antennas and Wireless Propagation Letters, vol. 15, 2016, pp. 89-92.

    [10] Y. Chen, S. Zhao, and J. A. Farrell, “Computationally Eきcient Carrier Integer Ambiguity Resolution in Multiepoch GPS/INS: A Common-Position-Shift Approach,” IEEE Transactions on Control Systems Technology, vol. 24, Sep. 2016,pp. 1541-1556.

    [11] B. Hou, X. Zhang, “A Dual-Satellite GNSS Positioning Algorithm of High Accuracy in Incomplete Condition,” China Communications, vol.13,no. 10, Oct. 2016, pp.58-68.

    [12] Z. Wu, M. Yao, H. Ma, W. Jia, and F. Tian, “Low-Cost Antenna Attitude Estimation by Fusing Inertial Sensing and Two-Antenna GPS for Vehicle-Mounted Satcom-on-the-Move,” IEEE Transactions on Vehicular Technology, vol. 62,Mar. 2013, pp. 1084-1096.

    [13] P. C. Farese, G. Dall’Oglio, J. O. Gundersen, B. G.Keating, S. Klawikowski, L. Knox, et al., “COMPASS: An upper limit on cosmic microwave background polarization at an angular scale of 20 ‘,” Astrophysical Journal, vol. 610, Aug. 2004,pp. 625-634.

    [14] C. Chen, H. Qiushi, J. Shiyu, Z. Wei, and Z. Fuxue, “Research and design of micro-machined gas-pendulum dual-axis tilt sensors commonmode restraining acceleration interference,”Proc. 2008 International Conference on Information and Automation, 2008, pp. 1485-1489.

    [15] P. Gui, L. Tang, and S. Mukhopadhyay, “MEMS based IMU for tilting measurement: Comparison of complementary and kalman filter based data fusion,” Proc. 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA),2015, pp. 2004-2009.

    [16] T. H. Tsai, W. C. Chou, W. Y. Lin, and M. Y. Lee,“The design of a tilt sensing companion chip for accelerometers,” Proc.2016 IEEE International Conference on Consumer Electronics-Taiwan(ICCE-TW), 2016, pp. 1-2.

    [17] M. Tavan, A. Khaki-Sedigh, M. R. Arvan, and A.R. Vali, “X-Y pedestal: partial quasi-linearization and cascade-based global output feedback tracking control,” Nonlinear Dynamics, vol. 81,Aug. 2015, pp. 1459-1473.

    [18] A. Taheri, M. A. Shoorehdeli, H. Bahrami, and M.H. Fatehi, “Implementation and Control of X-Y Pedestal Using Dual-Drive Technique and Feedback Error Learning for LEO Satellite Tracking,”IEEE Transactions on Control Systems Technology, vol. 22, Jul. 2014, pp. 1646-1657.

    [19] N. M. Tehrani, E. Javanfar, A. Vali, H. M. Tehrani,and IEEE, “Full Extracting Kinematic and Dynamic Equations of X/Y Pedestal with Velocity Analysis,” 2014 Cacs International Automatic Control Conference (Cacs 2014), 2014, pp. 215-221.

    [20] B. K. Chung, H. T. Chuah, and J. W. Bredow, “A microwave anechoic chamber for radar-cross section measurement,” IEEE Antennas and Propagation Magazine, vol. 39, Jun. 1997, pp. 21-26.

    [21] G. Cortes-Medellin and T. Herter, “Optical de-sign of CCAT - art. no. 62672F,” Proc. Conference on Ground-Based and Airborne Telescopes, Orlando, FL, 2006, pp. F2672-F2672.

    [22] Q. Fan and Y. Wang, “Design of Vehicle Antenna Servo Tracking System Controller,” Proceedings of the International Conference on Advances in Mechanical Engineering and Industrial Informatics, vol. 15, 2015, pp. 887-892.

    [23] M. N. Soltani, R. Izadi-Zamanabadi, and R.Wisniewski, “Reliable Control of Ship-Mounted Satellite Tracking Antenna,” IEEE Transactions on Control Systems Technology, vol. 19, Jan. 2011,pp. 221-228.

    [24] T. Shiozumi, A. Ming, T. Kida, C. Kanamon, Y. Kobayashi, M. Satoh, et al., “Vibration suppression of ship-mounted antennas using a nonlinear passive vibration isolator,” Proc. 2007 IEEE International Conference on Integration Technology,Proceedings, 2007, pp. 568.

    [25] H. C. Tseng and D. W. Teo, “Ship-mounted satellite tracking antenna with fuzzy logic control,”IEEE Transactions on Aerospace and Electronic Systems, vol. 34, Apr. 1998, pp. 639-645.

    [26] A. Ming, T. Yamaoka, T. Kida, C. Kanamori,and M. Satoh, “Accuracy improvement of ship mounted tracking antenna for satellite communications,” Proc. 2005 IEEE International Conference on Mechatronics and Automations, Vols 1-4, Conference Proceedings, 2005, pp. 1369-1374.

    [27] S. Leghmizi and L. Sheng, “Kinematics Modeling for Satellite Antenna Dish Stabilized Platform,”Proc. 2010 International Conference on Measuring Technology and Mechatronics Automation,2010, pp. 558-563.

    一本一本久久a久久精品综合妖精| 亚洲色图综合在线观看| 老司机在亚洲福利影院| 亚洲第一av免费看| 最近中文字幕2019免费版| tocl精华| 成人影院久久| a级毛片黄视频| 国产日韩欧美亚洲二区| 99国产综合亚洲精品| 午夜精品久久久久久毛片777| 国产成人啪精品午夜网站| 午夜福利影视在线免费观看| 亚洲第一av免费看| 亚洲av欧美aⅴ国产| 日韩大片免费观看网站| 国产成人a∨麻豆精品| 超碰97精品在线观看| 热99久久久久精品小说推荐| av超薄肉色丝袜交足视频| 狂野欧美激情性xxxx| 色播在线永久视频| 悠悠久久av| av视频免费观看在线观看| 亚洲欧美精品自产自拍| 久久这里只有精品19| 成人国语在线视频| 久9热在线精品视频| 视频区欧美日本亚洲| 日韩三级视频一区二区三区| a级片在线免费高清观看视频| 午夜影院在线不卡| 99国产精品一区二区三区| 多毛熟女@视频| 国产极品粉嫩免费观看在线| 日韩三级视频一区二区三区| 欧美日韩黄片免| 欧美成人午夜精品| 国产一级毛片在线| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲欧美激情在线| 国产免费视频播放在线视频| 一区二区三区乱码不卡18| 老司机亚洲免费影院| a 毛片基地| 欧美性长视频在线观看| 亚洲一区中文字幕在线| 男人添女人高潮全过程视频| 欧美精品人与动牲交sv欧美| 国产片内射在线| 秋霞在线观看毛片| 日韩三级视频一区二区三区| 亚洲av男天堂| 国产老妇伦熟女老妇高清| 波多野结衣av一区二区av| 俄罗斯特黄特色一大片| 各种免费的搞黄视频| 在线观看舔阴道视频| 乱人伦中国视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人精品久久二区二区免费| tocl精华| 国产精品二区激情视频| 在线亚洲精品国产二区图片欧美| 亚洲伊人色综图| 国产又爽黄色视频| 波多野结衣av一区二区av| 亚洲精品美女久久久久99蜜臀| 亚洲男人天堂网一区| 国产高清视频在线播放一区 | 99国产极品粉嫩在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲一区二区三区欧美精品| 在线永久观看黄色视频| 精品国产超薄肉色丝袜足j| 每晚都被弄得嗷嗷叫到高潮| 欧美亚洲日本最大视频资源| 咕卡用的链子| 又黄又粗又硬又大视频| 不卡av一区二区三区| 亚洲国产精品一区三区| 中文精品一卡2卡3卡4更新| 狠狠婷婷综合久久久久久88av| 亚洲欧美日韩另类电影网站| 国产精品欧美亚洲77777| av网站免费在线观看视频| 精品久久蜜臀av无| 黑人巨大精品欧美一区二区mp4| 91麻豆精品激情在线观看国产 | 男人舔女人的私密视频| 久久中文字幕一级| 亚洲国产中文字幕在线视频| 动漫黄色视频在线观看| 99精品欧美一区二区三区四区| 一区在线观看完整版| 真人做人爱边吃奶动态| 国产日韩欧美在线精品| 永久免费av网站大全| 免费久久久久久久精品成人欧美视频| 国产精品久久久久久精品古装| 精品少妇黑人巨大在线播放| 99久久国产精品久久久| 亚洲中文日韩欧美视频| 欧美黑人精品巨大| a在线观看视频网站| 久久热在线av| av在线app专区| 久久人妻福利社区极品人妻图片| 91麻豆av在线| 亚洲精品成人av观看孕妇| 1024香蕉在线观看| 视频区图区小说| 王馨瑶露胸无遮挡在线观看| 午夜影院在线不卡| 欧美精品一区二区免费开放| 9191精品国产免费久久| av视频免费观看在线观看| 久久性视频一级片| 亚洲色图综合在线观看| 女人高潮潮喷娇喘18禁视频| 伊人亚洲综合成人网| 欧美久久黑人一区二区| 在线亚洲精品国产二区图片欧美| 肉色欧美久久久久久久蜜桃| 国产高清videossex| 久久久精品区二区三区| 成在线人永久免费视频| 熟女少妇亚洲综合色aaa.| 欧美精品亚洲一区二区| 欧美激情极品国产一区二区三区| 99热网站在线观看| 国产亚洲av高清不卡| 亚洲精品美女久久av网站| 国产极品粉嫩免费观看在线| 高清欧美精品videossex| 日韩电影二区| 一区在线观看完整版| 久久精品国产综合久久久| 日本91视频免费播放| 最近最新中文字幕大全免费视频| 啦啦啦中文免费视频观看日本| 日韩欧美国产一区二区入口| 国产福利在线免费观看视频| 精品少妇久久久久久888优播| 嫩草影视91久久| 51午夜福利影视在线观看| 国产亚洲午夜精品一区二区久久| 久久精品亚洲熟妇少妇任你| 国产精品二区激情视频| 亚洲综合色网址| 亚洲欧美日韩另类电影网站| 午夜福利免费观看在线| 国产精品一区二区在线不卡| 好男人电影高清在线观看| 黄频高清免费视频| 男女国产视频网站| 不卡一级毛片| 亚洲av电影在线进入| 成年女人毛片免费观看观看9 | 成人影院久久| 天天躁夜夜躁狠狠躁躁| 精品免费久久久久久久清纯 | 婷婷丁香在线五月| 免费在线观看影片大全网站| 亚洲精品中文字幕一二三四区 | 一级黄色大片毛片| 日韩欧美一区视频在线观看| 老汉色av国产亚洲站长工具| 日本黄色日本黄色录像| 亚洲人成77777在线视频| 婷婷成人精品国产| 欧美日韩精品网址| av不卡在线播放| 欧美日韩黄片免| 另类精品久久| 国产免费av片在线观看野外av| 高清视频免费观看一区二区| 黄色视频,在线免费观看| 日韩人妻精品一区2区三区| 日韩有码中文字幕| 成人国产av品久久久| 精品欧美一区二区三区在线| 丁香六月欧美| 久热这里只有精品99| 欧美日韩视频精品一区| 女性被躁到高潮视频| 亚洲久久久国产精品| 免费观看a级毛片全部| 日日夜夜操网爽| av线在线观看网站| 叶爱在线成人免费视频播放| 亚洲天堂av无毛| 欧美精品av麻豆av| 在线十欧美十亚洲十日本专区| 亚洲国产精品成人久久小说| 午夜福利视频在线观看免费| 91精品三级在线观看| 亚洲av日韩在线播放| 成人国产av品久久久| 2018国产大陆天天弄谢| 丰满少妇做爰视频| 精品少妇一区二区三区视频日本电影| 国产真人三级小视频在线观看| 国产一区二区激情短视频 | 黄色 视频免费看| 最近中文字幕2019免费版| 男女高潮啪啪啪动态图| 中文字幕制服av| cao死你这个sao货| 亚洲国产av新网站| 啦啦啦啦在线视频资源| 51午夜福利影视在线观看| 色视频在线一区二区三区| 国产精品久久久av美女十八| 国产欧美日韩综合在线一区二区| 久久国产精品影院| 肉色欧美久久久久久久蜜桃| 男男h啪啪无遮挡| 精品视频人人做人人爽| 桃花免费在线播放| 每晚都被弄得嗷嗷叫到高潮| 欧美精品人与动牲交sv欧美| 咕卡用的链子| 精品人妻一区二区三区麻豆| 最近最新免费中文字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 成人亚洲精品一区在线观看| 制服人妻中文乱码| 在线观看一区二区三区激情| 国产人伦9x9x在线观看| tube8黄色片| 大香蕉久久成人网| 丁香六月天网| av超薄肉色丝袜交足视频| 男男h啪啪无遮挡| 男女无遮挡免费网站观看| 欧美成狂野欧美在线观看| 欧美日韩国产mv在线观看视频| 久热这里只有精品99| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一区二区精品视频观看| 久久中文字幕一级| 亚洲欧美日韩高清在线视频 | videosex国产| 免费在线观看日本一区| 亚洲精品久久成人aⅴ小说| 久久这里只有精品19| 欧美日韩av久久| 欧美日韩中文字幕国产精品一区二区三区 | 精品熟女少妇八av免费久了| 老司机影院成人| 国产免费现黄频在线看| 成人影院久久| 亚洲欧美色中文字幕在线| 亚洲精品自拍成人| 国产av国产精品国产| 久久狼人影院| 可以免费在线观看a视频的电影网站| 12—13女人毛片做爰片一| 永久免费av网站大全| 91精品伊人久久大香线蕉| 欧美老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 精品亚洲成a人片在线观看| 黄片大片在线免费观看| 少妇 在线观看| 美女脱内裤让男人舔精品视频| 精品第一国产精品| 欧美在线黄色| 中文字幕色久视频| av天堂在线播放| 久久性视频一级片| 国产精品国产三级国产专区5o| 精品免费久久久久久久清纯 | 国产成人av激情在线播放| 久久国产精品男人的天堂亚洲| av福利片在线| 黑人巨大精品欧美一区二区mp4| 天堂中文最新版在线下载| 亚洲色图综合在线观看| 亚洲精品美女久久久久99蜜臀| 国产精品欧美亚洲77777| 一个人免费看片子| 成人国产av品久久久| 亚洲成人国产一区在线观看| 男女国产视频网站| 80岁老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久| 欧美97在线视频| 99久久精品国产亚洲精品| 国产亚洲av高清不卡| 欧美激情 高清一区二区三区| 日本vs欧美在线观看视频| 久久久久久免费高清国产稀缺| 满18在线观看网站| 免费日韩欧美在线观看| 99re6热这里在线精品视频| 亚洲天堂av无毛| 九色亚洲精品在线播放| 国产av一区二区精品久久| 男人操女人黄网站| 建设人人有责人人尽责人人享有的| 亚洲欧美精品自产自拍| 国产精品久久久久成人av| 大香蕉久久网| 久久 成人 亚洲| 欧美老熟妇乱子伦牲交| 制服人妻中文乱码| 欧美午夜高清在线| 欧美国产精品一级二级三级| 青春草视频在线免费观看| 在线观看免费日韩欧美大片| 天堂俺去俺来也www色官网| 国产精品 国内视频| 亚洲精品国产av成人精品| 久久精品人人爽人人爽视色| 伦理电影免费视频| 久久狼人影院| 国产精品免费大片| 欧美黑人精品巨大| svipshipincom国产片| 在线观看人妻少妇| av片东京热男人的天堂| 国产野战对白在线观看| 极品人妻少妇av视频| 欧美亚洲日本最大视频资源| 麻豆国产av国片精品| 亚洲精品成人av观看孕妇| 啪啪无遮挡十八禁网站| 国产精品一区二区精品视频观看| av超薄肉色丝袜交足视频| 五月天丁香电影| 亚洲精品美女久久av网站| 久久综合国产亚洲精品| a级片在线免费高清观看视频| 欧美国产精品一级二级三级| 国产精品久久久人人做人人爽| 精品欧美一区二区三区在线| 国产真人三级小视频在线观看| 十分钟在线观看高清视频www| av线在线观看网站| e午夜精品久久久久久久| 久久久久久久大尺度免费视频| 欧美亚洲 丝袜 人妻 在线| 亚洲午夜精品一区,二区,三区| 精品国产乱码久久久久久男人| 午夜福利视频精品| 亚洲av日韩精品久久久久久密| 精品一区二区三区av网在线观看 | 成人免费观看视频高清| 色视频在线一区二区三区| 国产av一区二区精品久久| 18禁黄网站禁片午夜丰满| 国产成人啪精品午夜网站| 亚洲三区欧美一区| 亚洲国产看品久久| av有码第一页| 极品人妻少妇av视频| 在线十欧美十亚洲十日本专区| 久久国产精品男人的天堂亚洲| 免费观看a级毛片全部| 一级毛片女人18水好多| 欧美 日韩 精品 国产| 国产有黄有色有爽视频| 一本色道久久久久久精品综合| 亚洲免费av在线视频| 在线观看舔阴道视频| 精品人妻1区二区| 久久人妻熟女aⅴ| 两个人看的免费小视频| 80岁老熟妇乱子伦牲交| av天堂久久9| 日韩欧美一区二区三区在线观看 | 狠狠狠狠99中文字幕| 不卡av一区二区三区| 日本a在线网址| 欧美人与性动交α欧美软件| 亚洲欧美精品自产自拍| 国产精品一区二区精品视频观看| a在线观看视频网站| 日韩中文字幕欧美一区二区| 国产熟女午夜一区二区三区| 日韩制服丝袜自拍偷拍| 黄色片一级片一级黄色片| 国产精品一区二区精品视频观看| 久久女婷五月综合色啪小说| 人人妻人人澡人人看| 亚洲av成人一区二区三| 999精品在线视频| 亚洲性夜色夜夜综合| 老司机午夜十八禁免费视频| 夜夜骑夜夜射夜夜干| 国产亚洲av片在线观看秒播厂| 性高湖久久久久久久久免费观看| 中文字幕色久视频| 亚洲中文字幕日韩| 久久精品人人爽人人爽视色| 国产片内射在线| 纯流量卡能插随身wifi吗| 亚洲黑人精品在线| 久久 成人 亚洲| 另类亚洲欧美激情| 一区二区av电影网| 黑人巨大精品欧美一区二区mp4| 午夜福利免费观看在线| 久久久久国产一级毛片高清牌| 婷婷色av中文字幕| 90打野战视频偷拍视频| 搡老熟女国产l中国老女人| 国产av精品麻豆| 超碰成人久久| 美女大奶头黄色视频| 精品少妇一区二区三区视频日本电影| tocl精华| 99国产极品粉嫩在线观看| 日韩大片免费观看网站| 欧美黑人精品巨大| 91老司机精品| www.av在线官网国产| 色播在线永久视频| 最近最新中文字幕大全免费视频| 亚洲五月色婷婷综合| 十八禁人妻一区二区| 国产亚洲av高清不卡| 国产一区二区三区av在线| 婷婷成人精品国产| 99久久精品国产亚洲精品| 欧美精品高潮呻吟av久久| 免费久久久久久久精品成人欧美视频| 黄片小视频在线播放| 91老司机精品| 国产成人精品在线电影| 女性被躁到高潮视频| 午夜福利在线观看吧| 精品国产超薄肉色丝袜足j| 亚洲人成电影免费在线| 波多野结衣av一区二区av| 高清av免费在线| 成年动漫av网址| 欧美大码av| 成年人免费黄色播放视频| 成人18禁高潮啪啪吃奶动态图| 麻豆乱淫一区二区| 亚洲欧美精品自产自拍| 一区二区三区乱码不卡18| 19禁男女啪啪无遮挡网站| 国产亚洲午夜精品一区二区久久| 天天躁狠狠躁夜夜躁狠狠躁| 日本wwww免费看| 老司机靠b影院| 男女边摸边吃奶| av不卡在线播放| 黄色视频,在线免费观看| 黄色毛片三级朝国网站| 欧美激情 高清一区二区三区| 亚洲国产中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩制服骚丝袜av| 国产成人欧美| a在线观看视频网站| 下体分泌物呈黄色| 午夜福利免费观看在线| 久久热在线av| 亚洲精品久久成人aⅴ小说| 99热国产这里只有精品6| 亚洲精品在线美女| 免费高清在线观看视频在线观看| 亚洲一区中文字幕在线| 狠狠狠狠99中文字幕| 欧美精品啪啪一区二区三区 | 十分钟在线观看高清视频www| 久久久久久免费高清国产稀缺| 国产精品成人在线| 国产精品一二三区在线看| 欧美日韩成人在线一区二区| 国产精品一二三区在线看| 欧美日韩成人在线一区二区| 亚洲欧美日韩另类电影网站| 亚洲国产欧美一区二区综合| 亚洲专区字幕在线| 一个人免费在线观看的高清视频 | 不卡一级毛片| 永久免费av网站大全| 国产成人免费无遮挡视频| 亚洲精品一二三| 国产精品欧美亚洲77777| 午夜福利乱码中文字幕| 久久久久国产一级毛片高清牌| 狠狠精品人妻久久久久久综合| 麻豆av在线久日| 亚洲国产欧美网| 精品乱码久久久久久99久播| 夫妻午夜视频| avwww免费| 久久久久国产一级毛片高清牌| 一个人免费看片子| 亚洲成国产人片在线观看| 极品少妇高潮喷水抽搐| 日本vs欧美在线观看视频| av天堂在线播放| 免费不卡黄色视频| 极品少妇高潮喷水抽搐| av一本久久久久| 成人免费观看视频高清| 黄色视频在线播放观看不卡| 一区在线观看完整版| 亚洲国产毛片av蜜桃av| 黄片播放在线免费| 久久国产精品大桥未久av| 国产精品99久久99久久久不卡| av福利片在线| 涩涩av久久男人的天堂| 久久久久视频综合| 波多野结衣av一区二区av| 在线观看免费午夜福利视频| 欧美亚洲日本最大视频资源| 久9热在线精品视频| 激情视频va一区二区三区| 麻豆av在线久日| 久热爱精品视频在线9| 丝袜人妻中文字幕| 国产亚洲一区二区精品| 亚洲一区二区三区欧美精品| 男人爽女人下面视频在线观看| 精品国产乱码久久久久久男人| 咕卡用的链子| 日韩,欧美,国产一区二区三区| www.熟女人妻精品国产| 美女中出高潮动态图| 各种免费的搞黄视频| 极品少妇高潮喷水抽搐| 少妇人妻久久综合中文| 国产野战对白在线观看| 久久亚洲精品不卡| 日韩中文字幕视频在线看片| 97在线人人人人妻| 日本wwww免费看| 国产精品久久久人人做人人爽| 精品高清国产在线一区| 伊人亚洲综合成人网| 男人舔女人的私密视频| 欧美少妇被猛烈插入视频| 人人妻人人澡人人爽人人夜夜| 老熟妇乱子伦视频在线观看 | 在线 av 中文字幕| 久久精品久久久久久噜噜老黄| 国产主播在线观看一区二区| 美女福利国产在线| 纵有疾风起免费观看全集完整版| 亚洲专区中文字幕在线| 国产激情久久老熟女| 亚洲av日韩精品久久久久久密| 狂野欧美激情性bbbbbb| 日本vs欧美在线观看视频| 久久亚洲国产成人精品v| 夜夜骑夜夜射夜夜干| tocl精华| 精品一品国产午夜福利视频| 中文字幕高清在线视频| 18在线观看网站| 无遮挡黄片免费观看| 色视频在线一区二区三区| 国产福利在线免费观看视频| 18禁观看日本| 欧美精品av麻豆av| 中文字幕另类日韩欧美亚洲嫩草| 美女视频免费永久观看网站| 欧美一级毛片孕妇| av有码第一页| 一边摸一边做爽爽视频免费| 国产成人免费观看mmmm| www.999成人在线观看| av不卡在线播放| 精品熟女少妇八av免费久了| av视频免费观看在线观看| 91九色精品人成在线观看| 十八禁人妻一区二区| 国产精品麻豆人妻色哟哟久久| 亚洲 欧美一区二区三区| 日韩人妻精品一区2区三区| 97在线人人人人妻| 色视频在线一区二区三区| 精品福利永久在线观看| 乱人伦中国视频| 日本猛色少妇xxxxx猛交久久| 十八禁网站免费在线| a 毛片基地| 操美女的视频在线观看| 久久av网站| a级毛片黄视频| 菩萨蛮人人尽说江南好唐韦庄| 一本一本久久a久久精品综合妖精| 在线 av 中文字幕| 亚洲国产av影院在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲午夜精品一区,二区,三区| 国产国语露脸激情在线看| 亚洲第一青青草原| 色老头精品视频在线观看| 日韩制服骚丝袜av| 99国产精品免费福利视频| 女性被躁到高潮视频| 国产一区二区在线观看av| 99国产精品免费福利视频| 国产精品99久久99久久久不卡| 久久久久久亚洲精品国产蜜桃av| 亚洲国产日韩一区二区| 国产亚洲av高清不卡| 777米奇影视久久| 亚洲人成77777在线视频| 亚洲精品中文字幕在线视频| 欧美日韩亚洲国产一区二区在线观看 | 高清欧美精品videossex| 免费在线观看黄色视频的| 国产伦理片在线播放av一区|