紀(jì) 偉, 吳洪坤, 周 琳
(第二軍醫(yī)大學(xué)長征醫(yī)院實(shí)驗(yàn)診斷科,上海 200003)
多發(fā)性骨髓瘤(multiple myeloma,MM)是一個(gè)復(fù)雜的血液惡性腫瘤,其特點(diǎn)是骨髓中漿細(xì)胞的異??寺≡鲋砙1]。MM為第二大常見血液疾病,占血液腫瘤的10%[2]。MM的發(fā)病是一個(gè)逐步演化的過程,從最初的意義不明的單克隆丙球蛋白?。╩onoclonal gammopathy of undetermined significance,MGUS)到冒煙型、髓內(nèi)MM,最后演化為非骨髓MM /漿細(xì)胞白血?。╬lasma cell leukemia,PCL)[3]。骨髓瘤的診斷標(biāo)準(zhǔn)包括骨髓中至少有10%的骨髓瘤細(xì)胞,血液和尿液中有單克隆免疫球蛋白,骨髓瘤相關(guān)的終末器官和組織損傷(包括高鈣血癥、腎功能障礙、貧血、免疫缺陷和骨質(zhì)破壞)[1]。在臨床治療中,盡管免疫調(diào)節(jié)因子(來那度胺、泊馬度胺)或蛋白酶體抑制劑(硼替佐米、卡非佐米)等新興療法顯著提高了患者的治療反應(yīng)率和總體生存率,但MM仍然不可治愈[4]。
人類基因組計(jì)劃顯示,至少90%的人類基因組轉(zhuǎn)錄RNA,但是只有不到2%的RNA編碼蛋白質(zhì)[5-6]。非編碼RNA(non-coding RNA,ncRNA)是一類沒有或很少有蛋白質(zhì)合成能力的RNA,其中包括核糖體RNA(rRNA)、轉(zhuǎn)運(yùn)RNA(tRNA)、微小RNA(microRNA,miRNA)和長鏈非編碼RNA(long non-coding RNA,lncRNA)等。miRNA是一種短非編碼RNA,長度為20~24個(gè)核苷酸,可以抑制翻譯或降解mRNA[7]。miRNA通過參與基因表達(dá)控制多種生物過程如細(xì)胞生長、分化、發(fā)育和細(xì)胞凋亡[8]。在多種疾病中,有些miRNA分子目前被認(rèn)為是促癌基因或抑癌基因。lncRNA長度超過200個(gè)核苷酸[9-10],其功能是作為重要的監(jiān)管者,參與轉(zhuǎn)錄時(shí)基因的調(diào)控、轉(zhuǎn)錄后表觀遺傳水平的表達(dá)[9-11],并參與多種疾病的生物學(xué)過程[12]。我們圍繞lncRNA在MM的生物學(xué)功能、臨床參數(shù)以及治療應(yīng)用等方面進(jìn)行綜述。
miRNA在MM中的漿細(xì)胞分化發(fā)育、信號(hào)通路分子、骨髓微環(huán)境調(diào)控表觀遺傳等方面發(fā)揮重要的調(diào)控作用。一項(xiàng)針對(duì)正常人、MGUS和MM患者的研究發(fā)現(xiàn),骨髓漿細(xì)胞中部分異常表達(dá)的miRNA分子與MM的進(jìn)展密切相關(guān),特別是在MGUS 和 MM患者中,miRNA-181、miRNA-106b~25原癌簇 (miRNA-93、miRNA-106b和miRNA-25)以及miRNA-21的表達(dá)水平明顯上調(diào),在MM樣本中,只有miRNA-32和miRNA-17~92簇,尤其是miRNA-19a和miRNA-19b的表達(dá)明顯上調(diào)。這些miRNA分子可能通過參與漿細(xì)胞的功能調(diào)節(jié)在MM的疾病進(jìn)展中發(fā)揮調(diào)控作用[13]。
此外,miRNA分子通過調(diào)控抑癌基因P53腫瘤蛋白(tumor protein P53,TP53)網(wǎng)絡(luò)在骨髓細(xì)胞增殖和分化中起關(guān)鍵作用。miRNA-25和miRNA-30d在MM患者中的表達(dá)水平高于健康人群,并且TP53的表達(dá)水平與這2個(gè)miRNA的表達(dá)水平呈顯著負(fù)相關(guān)。當(dāng)抑制這2個(gè)miRNA功能時(shí),可以顯著提高TP53表達(dá)水平,增強(qiáng)骨髓細(xì)胞凋亡。在MM中miRNA-192和miRNA-215通過靶向胰島素生長因子(insulin-like growth factor,IGF)信號(hào)通路防止?jié){細(xì)胞遷移到骨髓中。在MM中,常存在13q14染色體的缺失,miRNA-15a和miRNA-16位于該區(qū)域,這2個(gè)miRNA分子通過靶向調(diào)控蛋白激酶B(protein kinase B,PKB)、核糖體蛋白S6、絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、核因子-κB(nuclear factor kappa B,NF-κB)活化因子有絲分裂原激活蛋白3激酶(mitogenactivated protein 3 kinase,MAP3K)和三磷酸肌醇(inositol trisphosphate,IP3)來調(diào)控骨髓細(xì)胞增殖和生長[14]。進(jìn)一步的體內(nèi)外實(shí)驗(yàn)表明,其能抑制MM細(xì)胞導(dǎo)致的內(nèi)皮細(xì)胞生長和毛細(xì)血管的形成,抑制MM細(xì)胞在骨髓微環(huán)境中的遷移和增殖,對(duì)逆轉(zhuǎn)骨髓基質(zhì)細(xì)胞有促進(jìn)作用,從而發(fā)揮抗MM作用。
表觀遺傳畸變,包括DNA甲基化和/或組蛋白修飾,已成為miRNA異常調(diào)節(jié)的主要原因[15-17]。以MM患者為研究對(duì)象,采用甲基化聚合酶鏈反應(yīng)分析4個(gè)miRNA分子的甲基化,結(jié)果發(fā)現(xiàn)在啟動(dòng)子區(qū)超甲基化的miRNA-34a和miRNA-124-1在MM的發(fā)病機(jī)制和疾病進(jìn)展中并不像在其他疾病中那樣發(fā)揮作用,相反在復(fù)發(fā)或進(jìn)展患者中常常發(fā)現(xiàn)抑癌基因miRNA-34b被表觀遺傳沉默。而miRNA-203的甲基化則出現(xiàn)在骨髓發(fā)病早期,通過靶向環(huán)磷酸腺芳反應(yīng)元件結(jié)合蛋白-1(cyclic AMP response element-binding protein-1,CREB-1)來抑制細(xì)胞增殖[18]。有研究探討復(fù)發(fā)或難治性患者中的miRNA的甲基化狀態(tài),發(fā)現(xiàn)miRNA-152、miRNA-10b-5p和miRNA-34c-3p存在超甲基化調(diào)控,且在MM中表達(dá)水平下調(diào),當(dāng)去甲基化或過表達(dá)上述miRNA分子時(shí),發(fā)現(xiàn)可以誘導(dǎo)細(xì)胞凋亡,抑制細(xì)胞增殖,并能下調(diào)這些miRNA分子的靶基因—DNA甲基轉(zhuǎn)移酶1(DNA methyctransferace 1,DNMT1)、E2F轉(zhuǎn)錄因子3(E2F transcription factor 3,E2F3)、β-轉(zhuǎn)導(dǎo)重復(fù)相容蛋白(beta-transducin repeat containing,BTRC)和Myc結(jié)合蛋白(Myc-binding protein,MYCBP)的表達(dá)水平[19]。
除了畸變的DNA甲基化,在MM患者中通過組蛋白修飾調(diào)節(jié)的miRNA也有報(bào)道。有t(4;14)突變的MM患者,miRNA-126的下調(diào)是通過MM MSE結(jié)合域蛋白(multiple myeloma SET domain,MMSET)的染色修飾來進(jìn)行的,導(dǎo)致c-Myc上調(diào),加強(qiáng)MM細(xì)胞的擴(kuò)散[20]。
近年來,lncRNA在MM的分子發(fā)病機(jī)制中的作用逐漸被重視。最近有文獻(xiàn)報(bào)道,在一項(xiàng)關(guān)于20例MGUS患者、33例冒煙型MM患者、170例MM患者、36例髓外MM和9名健康人群的研究中,運(yùn)用一種新的微陣列方法來檢測(cè)lncRNA在漿細(xì)胞的表達(dá),結(jié)果發(fā)現(xiàn)相比于正常對(duì)照組,有31例MM患者樣本中l(wèi)ncRNA異常表達(dá),其中肺腺癌轉(zhuǎn)移相關(guān)轉(zhuǎn)錄子1(metastasisassociated lung adenocarcinoma transcript 1,MALAT1)在MM患者中顯著上調(diào),進(jìn)一步分析發(fā)現(xiàn)該分子與多種信號(hào)分子途徑密切相關(guān),可以調(diào)節(jié)細(xì)胞增殖,涉及細(xì)胞周期調(diào)控、P53調(diào)節(jié)的DNA損傷反應(yīng)和miRNA的成熟過程。短暫的MALAT1過表達(dá)還可增強(qiáng)MM細(xì)胞的增殖和裸小鼠腫瘤的形成[21-22]。另外,還發(fā)現(xiàn)有21個(gè)lncRNA的表達(dá)在漿細(xì)胞惡性階段逐步下調(diào),提示這些lncRNA可能在疾病的進(jìn)展中起一定的作用[23],但有關(guān)lncRNA在漿細(xì)胞惡性疾病中的作用和意義研究則較為少見。
有研究表明,除了在分子發(fā)病機(jī)制中的作用外, miRNA還在分析臨床參數(shù)如危險(xiǎn)分層和生存期方面等存在一定的應(yīng)用價(jià)值,miRNA-15a和miRNA-16在國際分期系統(tǒng)(international staging system,ISS) Ⅲ期MM患者中表達(dá)水平顯著降低,然而在ISS Ⅰ和ISS Ⅱ期的MM患者中表達(dá)水平明顯升高[24]。與此相反,miRNA-181a和miRNA-181b在ISS Ⅱ和ISS Ⅲ期患者中則表達(dá)較高[14]。miRNA-886-5p、miRNA-17和miRNA-18a表達(dá)高的MM患者總體生存期更短。因此,miRNA-866-5p、miRNA-17和miRNA-18a可以對(duì)預(yù)后進(jìn)行分層,進(jìn)一步提升基于ISS和熒光標(biāo)記的原位雜交技術(shù)(fluorescence in situ hybridization,F(xiàn)ISH)的骨髓瘤疾病危險(xiǎn)分層的敏感性[25]。最近的研究發(fā)現(xiàn),循環(huán)miRNA分子具有作為新型生物標(biāo)志物的潛力。與健康人的血漿相比,6個(gè)miRNA(miRNA-148a、miRNA-181a、miRNA-20a、miRNA-221、miRNA-625和miRNA-99b)在MM患者血漿中的表達(dá)水平顯著上調(diào)。miRNA-1308和miRNA-720對(duì)MM和MGUS具有一定的鑒別診斷作用[26]。血清中miRNA-34a和let-7e組合應(yīng)用可以鑒別診斷正常人群和MM患者,敏感性為80.6%,特異性為86.7%。miRNA-744和let-7e表達(dá)低的MM患者總體生存期更短并且有較高的復(fù)發(fā)率。低水平的miRNA-744、let-7d、let-7e與高ISS分期有關(guān),且低水平的miRNA-744、miRNA-130a、let-7d還與高DS(Durie-Salmon)分期有關(guān)[27]。
最近的研究報(bào)道,除了miRNA分子外,lncRNA也具有一定的臨床預(yù)示價(jià)值,相比正常健康人群,MALAT1在MM患者中顯著高表達(dá)[28-29],這表明MALAT1在MM患者中有異常表達(dá)。當(dāng)MM患者治療后,MALAT1的表達(dá)水平顯著降低,并與正常健康人的表達(dá)水平相近。與治療后的MM患者相比,MALAT1在進(jìn)展期以及復(fù)發(fā)MM患者中的表達(dá)顯著增加。另外,MALAT1的動(dòng)態(tài)變化與MM的疾病狀態(tài)相一致,說明MALAT1可以作為早期預(yù)測(cè)疾病進(jìn)展的標(biāo)志,而且lncRNA在初診MM患者中的異常表達(dá)也提示其有作為MM診斷和預(yù)后標(biāo)志物的潛力[30]。
miRNA通過下游靶分子控制多種重要的基因和信號(hào)通路,在癌癥治療方面有一定的潛力。如在MM細(xì)胞株和MM小鼠動(dòng)物模型中,miRNA-29b已經(jīng)被證明可以抑制骨髓瘤細(xì)胞的生長,其可以加強(qiáng)硼替佐米的抗腫瘤活性,增強(qiáng)硼替佐米引起的細(xì)胞凋亡作用[31]。進(jìn)一步研究還發(fā)現(xiàn),miRNA-29b抑制骨髓瘤細(xì)胞的功能是通過靶向DNA甲基轉(zhuǎn)移酶(DNA methyltransferase,DNMT),繼而去甲基化,激活抑制細(xì)胞因子信號(hào)1(suppressor of cytokine signalling 1,SOCS1)來抑制白細(xì)胞介素6-酪氨酸激酶-信號(hào)傳導(dǎo)與轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription 3,STAT3)信號(hào)[32]。又如在骨髓微環(huán)境中,miRNA-21可以抑制MM細(xì)胞的生長,還可以與地塞米松和阿霉素發(fā)揮協(xié)同作用[13-33],而且STAT3可以直接誘導(dǎo)miRNA-21的上調(diào),從而增強(qiáng)STAT3的致癌潛力。另外, miRNA-21還可以靶向STAT3的蛋白抑制劑(protein inhibitor of activated STAT3,PIAS3),通過形成一個(gè)負(fù)反饋回路來間接抑制STAT3。
近來有研究發(fā)現(xiàn),miRNA192、miRNA-194和miRNA-125可能通過靶向IGF1和胰島素樣生長因子1受體(insulin-like growth factor 1 receptor,IGF1R)來抑制MM細(xì)胞的遷移和侵襲[34]。據(jù)報(bào)道,miRNA-15a也與骨髓微環(huán)境密切相關(guān),miRNA-15a的表達(dá)水平在MM患者骨髓微環(huán)境中是降低的,下調(diào)miRNA-15a能降低骨髓瘤細(xì)胞對(duì)硼替佐米和美法侖的敏感性[21-35]。在骨髓微環(huán)境中,恢復(fù)miRNA-15a對(duì)蛋白激酶B、NF-κB和血管內(nèi)皮生長因子的抑制活性,可以發(fā)揮抗腫瘤效應(yīng)[14-24]。
總之,miRNA在MM的發(fā)病分子機(jī)制中作用關(guān)鍵,具有改善MM的診斷和治療現(xiàn)狀的潛力。未來的研究應(yīng)集中在探討MM患者中miRNA的特征和在MM診斷治療預(yù)后中的臨床應(yīng)用,從而更好地為MM疾病的分層、預(yù)測(cè)和治療服務(wù)。在MM的治療中,miRNA可以說是最有前景的治療方式之一,可以單獨(dú)或結(jié)合目前治療策略提高對(duì)MM的治療效果。在MM的發(fā)病機(jī)制研究中,lncRNA的研究是一個(gè)新興領(lǐng)域,其可以調(diào)節(jié)關(guān)鍵的生物過程,包括細(xì)胞增殖和分化,很多l(xiāng)ncRNA的調(diào)節(jié)在不同形式的漿細(xì)胞表達(dá)中失調(diào)??傊琺iRNA的異常表達(dá)與MM密切相關(guān)。
[1] BIANCHI G, ANDERSON K C. Understanding biology to tackle the disease: multiple myeloma from bench to bedside, and back[J]. CA Cancer J Clin, 2014,64(6): 422-444.
[2] ALLART-VORELLI P, PORRO B, BAGUET F, et al. Haematological cancer and quality of life:a systematic literature review[J]. Blood Cancer J,2015,5: e305.
[3] MITSIADES C S, MITSIADES N, MUNSHI N C, et al. Focus on multiple myeloma[J]. Cancer Cell, 2004,6(5): 439-444.
[4] KUMAR S K, RAJKUMAR S V, DISPENZIERI A, et al. Improved survival in multiple myeloma and the impact of novel therapies[J]. Blood, 2008,111(5): 2516-2520.
[5] BERTONE P, STOLC V, ROYCE T E, et al.Global identification of human transcribed sequences with genome tiling arrays[J]. Science, 2004,306(5705): 2242-2246.
[6] International Human Genome Sequencing Consortium.Finishing the euchromatic sequence of the human genome[J]. Nature, 2004,431(7011): 931-945.
[7] AMBROS V. The functions of animal microRNAs[J].Nature, 2004, 431(7006): 350-355.
[8] YU Z, TOZEREN A, PESTELL R G. Function of miRNAs in tumor cell proliferation[J]. Springer Netherlands, 2013,431(7006): 13-27.
[9] MERCER T R, DINGER M E, MATTICK J S.Long non-coding RNAs: insights into functions[J].Nat Rev Genet, 2009,10(3): 155-159.
[10] PONTING C P, OLIVER P L, REIK W. Evolution and functions of long noncoding RNAs[J]. Cell,2009,136(4): 629-641.
[11] KORNIENKO A E, GUENZL P M, BARLOW D P, et al. Gene regulation by the act of long noncoding RNA transcription[J]. BMC Biol, 2013,11: 59.
[12] FATICA A, BOZZONI L. Long non-coding RNAs:new players in cell differentiation and development[J].Nat Rev Genet, 2014,15(1): 7-21.
[13] WANG X, LI C, WANG Y, et al. Myeloma cell adhesion to bone marrow stromal cells confers drug resistance by microRNA-21 up-regulation[J]. Leuk Lymphoma, 2011,52(10): 1991-1998.
[14] ROCCARO A M, SACCO A, THOMPSON B, et al. MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma[J]. Blood, 2009,113(26): 6669-6680.
[15] SAITO Y, LIANG G, EGGER G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells[J]. Cancer Cell, 2006,9(6): 435-443.
[16] BANDRES E, AGIRRE X, BITARTE N, et al.Epigenetic regulation of microRNA expression in colorectal cancer[J]. Int J Cancer, 2009,125(11): 2737-2743.
[17] BALLABIO E, MITCHELL T, VAN KESTER M S, et al. MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential[J]. Blood, 2010,116(7):1105-1113.
[18] WONG K Y, LIANG R, SO C C, et al.Epigenetic silencing of MIR203 in multiple myeloma[J]. Br J Haematol, 2011,154(5):569-578.
[19] ZHANG W, WANG Y E, ZHANG Y, et al.Global epigenetic regulation of microRNAs in multiple myeloma[J]. PLoS One, 2014,9(10):e110973.
[20] MIN D J, EZPONDA T, KIM M K, et al.MMSET stimulates myeloma cell growth through microRNA-mediated modulation of c-MYC[J].Leukemia, 2013,27(3): 686-694.
[21] HAO M, ZHANG L, AN G, et al. Suppressing miRNA-15a/-16 expression by interleukin-6 enhances drug-resistance in myeloma cells[J]. J Hematol Oncol, 2011,4:37.
[22] ROCCARO A M, SACCO A , MAISO P, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression[J]. J Clin Invest,2013,123(4): 1542-1555.
[23] RONCHETTI D, AGNELLI L, TAIANA E,et al. Distinct lncRNA transcriptional fingerprints characterize progressive stages of multiple myeloma[J]. Oncotarget, 2016,7(12): 14814-14830.
[24] SUN C Y, SHE X M, QIN Y, et al. miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF[J]. Carcinogenesis, 2013,34(2): 426-435.
[25] PICHIORRI F, SUH S S, LADETTO M, et al.MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis[J]. Proc Natl Acad Sci U S A, 2008,105(35): 12885-12890.
[26] JONES C I, ZABOLOTSKAYA M V, KING A J, et al. Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma[J].Br J Cancer, 2012,107(12): 1987-1996.
[27] KUBICZKOVA L,KRYUKOV F,SLABY O,et al.Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance[J]. Haematologica, 2014,99(3):511-518.
[28] ZHUANG W, GE X, YANG S, et al.Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription[J]. Stem Cells, 2014,33(6):1985-1997.
[29] CHO S F, CHANG Y C, CHANG C S, et al.MALAT1 long non-coding RNA is overexpressed in multiple myeloma and may serve as a marker to predict disease progression[J]. BMC Cancer, 2014,14: 809.
[30] ZHOU M, ZHAO H, WANG Z, et al.Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma[J]. J Exp Clin Cancer Res,2015,34: 102.
[31] AMODIO N, DI MARTINO M T, FORESTA U,et al. miR-29b sensitizes multiple myeloma cells to bortezomib-induced apoptosis through the activation of a feedback loop with the transcription factor Sp1[J].Cell Death Dis, 2012,3: e436.
[32] L?FFLER D, BROCKE-HEIDRICH K, PFEIFER G, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer[J]. Blood, 2007,110(4): 1330-1333.
[33] LEONE E, MORELLI E, DI MARTINO M T,et al. Targeting miR-21 inhibits in vitro and in vivo multiple myeloma cell growth[J]. Clin Cancer Res,2013,19(8): 2096-2106.
[34] PICHIORRI F, SUH S S, ROCCI A, et al.Downregulation of p53-inducible microRNAs 192,194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development[J]. Cancer Cell, 2010,18(4): 367-381.
[35] ROCCARO A M, SACCO A, MAISO P, et al.BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression[J]. J Clin Invest, 2013,123(4): 1542-1555.