• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-scale thermodynamic analysis method for 2D SiC/SiC composite turbine guide vanes

    2018-02-02 08:10:10XinLIUXiuliSHENLongdongGONGPengLI
    CHINESE JOURNAL OF AERONAUTICS 2018年1期

    Xin LIU,Xiuli SHEN,*,Longdong GONG,Peng LI

    aSchool of Energy and Power Engineering,Beihang University,Beijing 100083,China

    bNavigation and Control Technology Research Institute of China Ordnance Industries,Beijing 100089,China

    1.Introduction

    The high-temperature resistance of hot aero engine components,such as the guide vane of a high-pressure turbine,has increased with the growth of the thrust–weight ratio.The turbine inlet temperature of an aero engine with a thrust–weight ratio of 15:20 reaches 1900–2100 °C.1Under the consideration of blade cooling and thermal barrier coating,high-pressure turbine guide vanes need to resist temperatures exceeding 1300°C.2The SiC/SiC Ceramic Matrix Composite(CMC)possesses high-temperature resistance(can resist temperature reaching 1450°C1),corrosion resistance,and low density.As the result,this material not only meets the temperature requirements of the high-pressure turbine guide vane but also increases the thrust–weight ratio by reducing the weight of the guide vane.

    Present studies on CMC turbine guide vanes are mainly based on experiments and macroscopic numerical simulations.Brewer et al.calculated the macroscopic stress distribution of a 2D woven CMC turbine guide vane through a numerical simulation and indicated that the maximum stress occurred on the trailing edge.3Verrilli et al.conducted a thermal shock test of a 2D woven SiC/SiC-CMC turbine guide vane processed by Chemical Vapor Infiltration(CVI).The temperature field and the macroscopic stress distribution of the vane were simulated in the given test condition with the conclusion that high stress distribution appeared at the leading edge.4

    Homogenized stress and strainfields are generally obtained from the Finite Element Method(FEM)in the macroscopic numerical simulation of CMC turbine guide vanes to conduct strength evaluation.Given that woven CMC exhibits inhomogeneity at the microscopic scale,the microscopic stress distribution cannot be reflected by the homogenized macroscopic stressfield.5Since there are differences between the mechanical properties of the compositefiber and matrix,it is necessary to obtain the stress distribution of thefiber and matrix separately by microscopic analysis.Afterward,accurate judgments can be made about turbine guide vane failure.Although the experimental method can be adopted to obtain the macroscopic failure criterion of a certain CMC turbine guide vane,the mechanical properties of the material can change with differentfiber volume fraction,braided structure,porosity and so on.This fact leads to the change in the failure criterion of CMC turbine guide vanes at the macroscopic scale.Considering the high cost and complexity of CMC turbine guide vane experimentation,the test method is generally adopted forfinal verification.However,the mechanical properties of the fiber and matrix do not change with the structural characteristics of the material,and the micro-analysis method can be applied to CMC turbine guide vanes with different materials and processes.

    Complete material thermodynamic properties are the basis of the numerical simulation of CMC turbine guide vanes.The in-plane mechanical properties of 2D woven CMC can be measured through an experiment,but the out-plane normal mechanical properties can only be obtained through numerical analysis at present.6The structure of a CMC turbine guide vane processed by CVI is complex,and the influence of periodic structure modeling,matrix porosity,and thermal–mechanical load should be considered in performance prediction.7Therefore,it is essential to generate a method to predict the thermodynamic properties of CVI-processed 2D woven CMC.

    In the 1970s,Lions8and Kesavan9,10proposed the multiscale method based on homogenization theory.Cun and Cao proved that this method converges to the real solution in mathematics.11Hassani and Hinton introduced the multi-scale asymptotic analysis method.12–14Multi-scale asymptotic homogenization has become an important method to analyze periodic composite structures.Prediction of the thermodynamic properties of woven CMC and multi-scale stress and strain analysis of CMC turbine guide vanes can be conducted with this method.Barroqueiro et al.studied the actual use of the multi-scale homogenization method in calculation software.The thermodynamic properties and stress distribution of a micro Representative Volume Element(RVE)for both unidirectionalfiber-reinforced composite and standard tensile test specimen were predicted as examples.15Gong and Shen established the multi-scale thermal–mechanicalcoupling method and conducted numerical simulation of a unidirectionalfiber-reinforced composite.The calculation results of the material parameters were in good agreement with the experimental results.16This work serves as a theoretical basis for the application of the multi-scale homogenization method in 2D woven CMC turbine guide vanes.

    Overall,the previous work cannot meet the demand for the prediction of the thermodynamic properties of 2D SiC/SiCCMC and the multi-scale stress and strain analysis of CMC turbine vanes.Firstly,the research of 2D woven composites is mainly based on void free RVE model.17,18However,the microstructure of CVI SiC/SiC-CMC is complex with a large number of voids which influence the material property.19A reasonable and effective RVE model fully considering void structure is needed.Secondly,the numerical simulation of the CMC turbine guide blade stays at the macro level without considering the inhomogeneous distribution of the micro stress.There is no method of calculating the distribution of micro stress from the macroscopic response of the CMC turbine vane.It is not conducive to judging the failure of guide vanes accurately and making full use of the designable advantage.Some researchers have been carried out aiming at the above problems in this paper.

    This study investigated the multi-scale thermodynamic analysis method.Initially,a 2D woven composite RVE model with porosity was established based on the minimum energy principle20to predict the thermodynamic properties of CVI-processed 2D woven SiC/SiC-CMC.Moreover,the macroscopic response of the vane under given conditions was predicted with the material distribution model according to the processing technology of the 2D woven SiC/SiC-CMC turbine guide vane.Finally,the stress distribution of the micro-scale RVE model was simulated,and the microscopic stress distribution characteristics were analyzed.Strictly,a complete and feasible multi-scale thermodynamic analysis method was established for SiC/SiC-CMC turbine guide vanes.The predicted material properties and the macroscopic response of the turbine guide vane were in good agreement with the experimental results.

    2.Multi-scale thermal–mechanical coupling method and finite element implementation

    2.1.Mathematical derivation

    The linear thermal–mechanical problem is provided as

    where σ,λ,andtare the component of stress tensors,thermal conductivity,and temperature,respectively;iandjrepresent 3 orthogonal directions;f is the load per unit volume;ψ represents the heat generated by the inner source per unit volume in unit time;xiis the coordinate in different directions.

    On account of the similar forms of mechanical equilibrium and heat conduction differential equations,extended differential operator matrix and combinedfield quantity are introduced.Then,Eq.(1)can be written in a unified form as

    where L is the differential operator matrix,C is the extended matrix of stiffness and thermal conductivity coefficient,U is the combinedfield of displacement and temperature,A is the thermal expansion coefficient matrix,and F is the combinedfield of external loads and internal heat source.

    As shown in Fig.1,for periodic composites,the macro displacement vector is a function of not only macro coordinate x but also micro coordinate y.Define a small parameter ε(0 < ε<1)as the ratio of the actual length of a unit vector in the micro coordinates to the realistic length of a unit vector in the macro coordinates,and y=x/ε.Therefore,any field vector φεhas the following form:

    whereYis the micro period andn=0,1,2,....

    The small parameter asymptotic expansion of U in Eq.(2)is

    Through asymptotic expansion derivation,we conclude that the generalized equilibrium equations are

    The macroscopic homogenization matrix of stiffness and thermal conductivity coefficient CUis

    where Ω is the integral variable.

    The macroscopic homogenization matrix of the thermal expansion coefficient AUis

    The relationship between micro stress σεand macroscopic physical quantities is expressed as

    whereVis the micro cell volume,M(y)and P(y)are coefficient matrices related to micro coordinate y,and U0is the macrofield of displacement and temperature.

    2.2.Finite element solution of macro thermodynamic properties

    By introducing shape function N,thefinite element solution of M(y)and P(y)can be written as

    where q and q*can be obtained by the following equations:

    Fig.1 Periodic structural unit of composites.

    where q and q*are the extended displacement vectors of the nodes,B=LN is the extended strain matrix,and J is the Jacobian matrix,ξ,η,ζ are the integral variable.

    We conclude that

    The elastic modulus,Poisson’s ratio,thermal conductivity,and thermal expansion coefficient are easily obtained from CUand AU.

    2.3.Finite element solution of micro stress distribution

    From Eqs.(8)–(10),the expression of micro stress σεcan be derived as

    Eq.(15)shows the relationship between micro stress distribution and macro physical quantities.q and q*are viewed as microscopicfluctuations caused by the distribution of material properties.Lyi(Nq*)U0in Eq.(15)contains the micro temperaturefluctuation caused by the thermal conductivity coefficient distribution.This part represents the effect of micro temperaturefluctuation on micro stress distribution.

    According to this derivation,a multi-scale thermodynamic analysis program was developed in VC++6.0.This program can calculate the thermodynamic properties of the materials and the stress distribution of the micro-scale RVE model.

    3.Prediction of thermodynamic properties of SiC/SiC-CMC

    3.1.RVE model offiber bundle and 2D woven CMC

    The microstructure of thefiber bundle obtained with a Scanning Electron Microscope(SEM)is shown in Fig.2.

    Thefiber volume fraction of thefiber bundle was 89.3%,as measured from the SEM microstructure photographs.The RVE model of thefiber bundle was established(shown in Fig.3)according to this.The effect of the pore on thefiber bundle was disregarded because of the negligible amount.

    The micro structure of the 2D woven CVI-processed SiC/SiC-CMC is illustrated in Fig.4.

    The characteristics of the microstructure of CVI-processed woven CMC can be concluded from the SEM images as follows.First,the preform is uniformly distributed.Thefiber bundle is connected by the matrix with a consistent crosssectional shape.Second,the matrix thicknesses in each direction along the surface of thefiber bundles are the same,and each layer is closed by the connection matrix along the thickness direction after deposition.Third,the pores are periodically distributed in the matrix and the position and shape are basically similar.

    The structural parameters were obtained from the data collected from SEM images of different parts of the material with statistical analysis.According to the modeling method provided by Ref.20,the RVE model of 2D woven composites in consideration of porosity was established as Fig.5.To reveal the internal structure of the RVE model,the layer was adjusted to become transparent.The model illustrates the internal structure of 2D woven composites ideally,and the effect of porosity is fully considered.

    3.2.Thermodynamic performance calculation and experimental verification

    Thermodynamic parameters of SiCfiber and SiC matrix are the basis of CMC performance prediction.The material supply unit only provided the thermal expansion coefficient of the SiC matrix,and the existing researches focus on the mechanical properties or thermal conductivity,but cannot provide the complete original parameters.Therefore,through the analysis of the parameters of thefiber and the matrix material provided by a number of literatures,the thermodynamic parameters of the SiC-matrix and SiC-fiber are listed in Table 1.

    The calculated thermodynamic properties of thefiber bundles are shown in Table 2,whereEis the modulus of elasticity,Gis the shear modulus,μ is the Poisson ratio,and α is the coef-ficient of thermal expansion.The multi-scale thermodynamic analysis method and the RVE model of thefiber bundle were used to calculate.Subscripts 1 and 2 represent the transverse directions of thefiber bundle,and subscript 3 represents the longitudinal direction.The equivalent performance parameters offiber bundles are orthotropic.

    Based on the thermodynamic properties of thefiber bundle and matrix,the properties of 2D woven SiC/SiC-CMC were predicted with the multi-scale thermodynamic analysis method and the RVE model.The result is shown in Table 3.Subscripts 1 and 2 represent the in-plane warp and weft directions,and subscript 3 represents the out-plane normal direction.The performance parameters of the material are orthotropic.

    To verify the accuracy of the prediction results,a uniaxial tensile test was conducted on 2D woven SiC/SiC-CMC.A comparison of the test and predicted results(Table 4)shows that the relative error is 4.18%,which means that the calculated material performance parameters can be used to analyze the thermodynamic response of CMC turbine guide vanes at micro and macro scales.

    Fig.2 Micro structure offiber bundle.

    Fig.3 RVE model offiber bundle.

    Fig.4 Micro structure of 2D woven CVI-processed SiC/SiCCMC.

    Fig.5 RVE model of 2D woven composites with porosity.

    4.Thermodynamic response analysis of a CMC turbine guide vane in multiple scales

    4.1.Thermal deformation test of CMC turbine vane

    To acquire the temperaturefield and validate the guide vane analysis method,a static experiment was conducted on a CMC turbine guide vane.Strain distribution was observed with a temperature difference of more than 150°C at the trailing edge.To facilitate strain measurement,the hightemperature resistant metal part is open at the end,as shown in Fig.6.

    Eleven temperature control points were arranged on the CMC turbine guide vane,as shown in Fig.7.The change in temperature at each point was measured by a thermocouple.The output power of the high-frequency induction furnace was kept stable when the temperature difference between points 2 and 10 exceeded 150°C.The temperature at each point is listed in Table 5.

    As shown in Fig.8,thefirst principal strain at the trailing edge was measured with a VIC-3D HSt full-field strain measurement system.Points P0,P1,and P2 were selected randomly in the test section;the strain values are 2.935×10-3,2.777×10-3,and 2.211×10-3,respectively.The average value of thefirst principal strain in the test section is 2.913×10-3(C0).

    Table 1 Thermodynamic properties of component materials.

    Table 2 Thermodynamic properties offiber bundle.

    Table 3 Thermodynamic properties of 2D woven SiC/SiC-CMC.

    Table 4 Comparison of calculated and experimental values of material properties.

    Fig.6 Heating device of experiment.

    Fig.7 Distribution of temperature control points.

    4.2.Macro mechanical response calculation

    Thefinite element model of the CMC turbine guide vane is shown in Fig.9.The macroscopic equivalent thermodynamic properties of 2D woven SiC/SiC-CMC were predicted.

    The property distribution model of the material was established according to the manufacturing process of the CMC turbine guide vane.When the vane was processed,the SiCfiber cloth was wrapped on an inner cavity mold initially.Then,the blank was deposited through CVI.Finally,the CMC turbine guide vane was obtained by mechanical processing.In this manufacturing process,although the local coordinate system of the 2D woven CMC turbine guide vane changed with the shape of the component,the material properties were kept continuous.Thus,the material principal axis was determined by the woven structure and shape of the curved surface.The material distribution model involved two aspects.First,the in-plane warp or weft direction offiber bundle was regarded as thefirst principal axis direction.Second,the local normal direction of the turbine guide vane surface was regarded as the third principal axis direction.The second principal axis direction was determined by the right-hand rule.After mapping the material distribution to thefinite element model of the turbine guide vane,the local model was showed with the enlarged material distribution coordinate of the local unit as Fig.10.

    The location and temperature of the 11 controlling points are shown in Fig.7 and Table 5.The convective heat transfer coefficient on the inner wall of the turbine guide vane is 10 W/(m2·°C).The atmospheric temperature is 25 °C.Temperature distribution was obtained through thermal–mechanical coupling analysis,as shown in Fig.11.To simulate the boundary condition in the test state,axial and circumferential displacement constraints were imposed on the sixth controlling point and a radial displacement constraint was imposed on the upper cross section of the turbine guide vane.

    Thefirst principal strain distribution of the vane obtained from the macro analysis is shown in Fig.12 and the trailing edge is enlarged in Fig.13.The maximum and minimumfirst principal strains are 2.774×10-3and 2.574×10-3,respectively.The average value of thefirst principal strain at the trailing edge is 2.650×10-3.Table 6 provides a comparison of the analysis and experimental results.The relative error is 9.7%.

    Fig.8 First principal strain distribution at trailing edge of CMC guide vane.

    Fig.9 Finite element model of CMC turbine guide vane.

    Fig.11 Distribution of temperature on guide vane.

    Fig.12 First principal strain distribution of guide vane.

    Fig.10 Local model of material coordinate mapping.

    Fig.13 First principal strain distribution of guide vane on trailing edge.

    Table 6 Comparison of calculated and experimental values of thefirst principal strain.

    4.3.Simulation of micro stress distribution

    The equivalent stress distribution of the vane is shown in Fig.14.The maximum equivalent stress is located at node 3256 near the trailing edge of the guide vane.The local coordinate system number of this node is 1251.Different from the turbine guide vane of isotropic metal materials,that of the composite material is orthotropic.The properties in normal and in-plane directions are different.Thus,interlaminar and in-plane stress should be discussed separately.

    The macro stress distribution of the trailing edge in local coordinate system 1251 is shown in Fig.15.According to the processing characteristics of the CMC turbine guide vane,the warp or weft direction of thefiber bundle represents the in-plane stress level(stress-Xin Figs.15 and 16).The normal direction of the blade curved surface represents the interlaminar stress level(stress-Yin Figs.15 and 16).

    The macro strain,displacement,and temperature of node 3256 were inputted to the microfluctuating matrix to calculate the stress parameters of the nodes attached to the micro RVE model.The micro stress distribution of the 2D woven RVE model simulated with Tecplot software is shown in Fig.16.The macro stress and the maximum value of micro stress distribution of node 3256 are summarized in Table 7.In both directions,the maximum value of micro stress distribution is more than 1.5 times larger than that of macro stress distribution.

    Fig.14 Distribution of equivalent stress.

    Fig.15 Macroscopic stress distribution of trailing edge in local coordinate system.

    Fig.16 Microscopic stress distribution of RVE model.

    Table 7 Comparison of macroscopic and maximum microscopic stresses.

    Fig.17 Locations and numbers of nodes.

    To verify the universality of the results,the macro stress and the maximum value of micro stress distribution of several other nodes in local coordinate systems were calculated.The positions and numbers of the points are shown in Fig.17.The calculation results are compared in Table 8.The maximum value of micro stress distribution is larger than that of macro stress at different positions on the turbine guide vane.The vane could be destroyed because the stress at the microscopic scale is too large before macro strength reaches its limitation.Therefore,the influence of micro stress distribution should be considered when the stress and strain of CMC turbine guide vanes are analyzed through a numerical method.

    Fig.18 shows the cross-section where the micro stress of node 3256 is maximum in the interlaminar normal direction.The maximum value is on the upper surface,which can be considered as an interlayer matrix of CMC.The characteristic of stress distribution is consistent with the delamination failure of the 2D woven composites.As shown in Fig.19,the distribution of high stress on the cross section is consistent with the location of the pores in the RVE model.Stress increases with the rise of the pore volume and reaches the maximum value at the connections ofA,B,C,andD.We assume that the high stress distribution in the interlayer matrix is due to the porosity in the composites and the stress in the interlayer matrix increases with the increase in pore volume.The relevant laws require further study.

    Table 8 Comparison of macroscopic and maximum microscopic stresses of nodes.

    Fig.18 Section of maximum stress in inter laminar normal direction.

    5.Conclusions

    (1)The multi-scale thermodynamic analysis method of the CMC turbine vane was investigated in this paper.The thermodynamic properties of CVI-processed SiC/SiC-CMC were predicted with an RVE model with porosity.The relative error between the calculated and experimental in-plane tensile moduli is 4.2%.The analysis method is accurate and effective,which can provide complete data for component analysis.A macroscopic numerical simulation and an experiment were conducted on the CMC turbine guide vane under given conditions.The relative error between the predicted strain on the trailing edge and the experimental value is 9.7%.

    Fig.19 Comparison of pore and stress distributions.

    (2)The micro stress distribution of the CMC turbine guide vane was simulated.The maximum value of micro stress is larger than that of macro stress.Thus,the influence of micro distribution should be considered when the stress and strain of CMC turbine guide vanes are analyzed through a numerical method.The maximum value of stress in the interlaminar normal direction is located in the interlayer matrix.The high stress distribution of the interlayer matrix is due to the porosity in the composites.The stress in the interlayer matrix increases with the rise of the pore volume.

    1.Wen SQ,He AJ.Application of CMC on thermal parts of aeroengine.J Aeronaut Manuf Technol2009;(Z):4–7[Chinese].

    2.Vedula V,Shi J,Jarmon D,Zadrozny G.Ceramic matrix composite turbine vanes for gas turbine engines.ASME turbo expo:power for land,sea,and air;2005 June 6–9;Reno,USA.New York:ASME;2005.p.247–51.

    3.Brewer D,Verrilli M,Calomino A.Ceramic matrix composite vane subelement burst testing.ASME turbo expo:power for land,sea,and air;2006 May 8–11;Barcelona,Spain.New York:ASME;2006.p.279–84.

    4.Verrilli M,Calomino A,Robinson RC,Thomas DJ.Ceramic matrix composite vane subelement testing in a gas turbine environment.In:ASME turbo expo:power for land,sea,and air;2004 June 14–17;Vienna,Austria.New York:ASME;2004.p.393–9.

    5.Dong JW,Sun LG,Hong P.Homogenization-based method for simulating micro-stress of 3D braided composites.J Acta Materiae Compositae Sinica2005;22(6):801–5[Chinese].

    6.Murthy PLN,Nemeth NN,Brewer DN,Mital S.Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane.J Compos Part B Eng2008;39(4):694–703.

    7.Li J,Jiao GQ,Wang B,Li L,Yang CP.Damage characteristics and constitutive modeling of the 2D C/SiC composite:Part I–Experiment and analysis.Chinese J Aeronaut2014;27(6):1586–97.

    8.Lions JL.Some methods in the mathematical analysis of systems and their control.Beijing:Science Press;1981.

    9.Kesavan S.Homogenization of elliptic eigenvalue problem I.J Appl Math Optim1979;5(1):153–67.

    10.Kesavan S.Homogenization of elliptic eigenvalue problem II.J Appl Math Optim1979;5(1):197–216.

    11.Cun JZ,Cao LQ.Finite element method based on two scale asymptotic analysis.J Mathematica Numerica Sinica1998;20(1):89–102[Chinese].

    12.Hassani B,Hinton E.A review of homogenization and topology optimization I-Homogenization theory for media with periodic structure.J Comput Struct1998;69(6):707–17.

    13.Hassani B,Hinton E.A review of homogenization and topology optimization II-Analytical and numerical solution of homogenization equations.J Comput Struct1998;69(6):719–38.

    14.Hassani B,Hinton E.A review of homogenization and topology optimization III-Topology optimization using optimality criteria.J Comput Struct1998;69(6):739–56.

    15.Barroqueiro B,Dias-de-Oliveira J,Pinho-da-Cruz J,Andrade-Campos A.Practical implementation of asymptotic expansion homogenisation in thermoelasticity using a commercial simulation software.J Compos Struct2016;141:117–31.

    16.Gong LD,Shen XL.Thermal-elastic two-scale asymptotic analysis method for micro periodic composites and implementation utilizing finite element method.J Propuls Technol2016;37(1):18–24[Chinese].

    17.Bakar IAA,Kramer O,Bordas S,Rabczuk T.Optimization of elastic properties and weaving patterns of woven composites.J Compos Struct2013;100(5):575–91.

    18.Obert E,Daghia F,Ladeve`ze P,Ballere L.Micro and meso modeling of woven composites:transverse cracking kinetics and homogenization.J Compos Struct2014;117:212–21.

    19.Chateau C,Ge′le′bart L,Bornert M,Cre′pin J.Micromechanical modeling of the elastic behavior of unidirectional CVI SiC/SiC composites.J Int J Solids Struct2015;58(1):322–34.

    20.Shen XL,Gong LD.Numerical modeling of braided composites using energy method.ASME international mechanical engineering congress and exposition;2014 November 14–20;Montreal,Canada.New York:ASME;2014.p.1–6.

    21.Lamon J,Thommeret B,Percevault C.Probabilistic-statistical approach to matrix damage and stress-strain behavior of 2-D woven SiC/SiC ceramic matrix composites.J Eur Ceram Soc1998;18(13):1797–808.

    22.Katoh Y,Ozawa K,Shih C,Nozawa T,Shinavski RJ,Hasegawa A,et al.Continuous SiCfiber,CVI SiC matrix composites for nuclear applications:Properties and irradiation effects.J Nucl Mater2014;448(1–3):448–76.

    23.Youngblood GE,Senor DJ,Jones RH,Graham S.The transverse thermal conductivity of 2D-SiCf/SiC composites.J Compos Sci Technol2002;62(9):1127–39.

    日韩不卡一区二区三区视频在线| 十分钟在线观看高清视频www| 亚洲精品美女久久av网站| 精品99又大又爽又粗少妇毛片| 美女cb高潮喷水在线观看| 中文字幕av电影在线播放| 一级毛片 在线播放| 插逼视频在线观看| 国产成人午夜福利电影在线观看| 十八禁高潮呻吟视频| 国产精品久久久久久精品电影小说| 国产免费一区二区三区四区乱码| 国产精品国产三级国产av玫瑰| 亚洲av中文av极速乱| 国产免费现黄频在线看| 高清视频免费观看一区二区| 特大巨黑吊av在线直播| 毛片一级片免费看久久久久| 国产精品欧美亚洲77777| 哪个播放器可以免费观看大片| 久久鲁丝午夜福利片| 亚洲av在线观看美女高潮| av不卡在线播放| 最近中文字幕高清免费大全6| 97在线视频观看| 国产伦精品一区二区三区视频9| 精品人妻偷拍中文字幕| 精品酒店卫生间| 久久av网站| 秋霞伦理黄片| 免费黄频网站在线观看国产| 欧美成人精品欧美一级黄| 狂野欧美激情性bbbbbb| 最近手机中文字幕大全| 久久午夜福利片| 综合色丁香网| 国产精品一区二区在线不卡| 日韩中文字幕视频在线看片| 最新中文字幕久久久久| 日本-黄色视频高清免费观看| 久久久久久久久久成人| 日韩欧美一区视频在线观看| 成年av动漫网址| 亚洲国产色片| 91精品国产国语对白视频| 哪个播放器可以免费观看大片| 天天操日日干夜夜撸| 久久久久久久久久成人| 午夜福利视频在线观看免费| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线不卡| 亚洲精品乱久久久久久| 26uuu在线亚洲综合色| 欧美精品一区二区大全| 国产毛片在线视频| 老女人水多毛片| 成年av动漫网址| 人妻系列 视频| 在现免费观看毛片| av电影中文网址| av国产精品久久久久影院| 国产精品免费大片| 亚洲av福利一区| 99热网站在线观看| 亚洲伊人久久精品综合| 亚洲精品日韩av片在线观看| 国产精品 国内视频| 夜夜看夜夜爽夜夜摸| 99精国产麻豆久久婷婷| 黄色一级大片看看| 黄色配什么色好看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产最新在线播放| av国产精品久久久久影院| 黑人猛操日本美女一级片| 777米奇影视久久| 国产欧美另类精品又又久久亚洲欧美| 黄片无遮挡物在线观看| 人成视频在线观看免费观看| av.在线天堂| 亚洲经典国产精华液单| 九草在线视频观看| 五月开心婷婷网| 九草在线视频观看| 久久久久久久精品精品| 久久99一区二区三区| 看免费成人av毛片| 亚洲丝袜综合中文字幕| 久久久欧美国产精品| 秋霞伦理黄片| 亚洲av成人精品一区久久| 免费少妇av软件| 黑人巨大精品欧美一区二区蜜桃 | 免费黄色在线免费观看| 美女内射精品一级片tv| 欧美性感艳星| 国产一区亚洲一区在线观看| 五月伊人婷婷丁香| 2022亚洲国产成人精品| 国产成人精品久久久久久| 全区人妻精品视频| 成人毛片60女人毛片免费| 美女脱内裤让男人舔精品视频| 在线天堂最新版资源| 国产男女超爽视频在线观看| 国产白丝娇喘喷水9色精品| 人妻制服诱惑在线中文字幕| 九草在线视频观看| 黑丝袜美女国产一区| 国产成人精品在线电影| 亚洲成色77777| 亚洲人成77777在线视频| 高清午夜精品一区二区三区| 国产精品一区二区在线观看99| 老司机影院毛片| 九九在线视频观看精品| 在线天堂最新版资源| 人妻夜夜爽99麻豆av| 欧美xxⅹ黑人| 午夜福利网站1000一区二区三区| 一级,二级,三级黄色视频| 我的老师免费观看完整版| 日韩av在线免费看完整版不卡| 成人毛片a级毛片在线播放| 夜夜看夜夜爽夜夜摸| 国产免费一级a男人的天堂| 在线看a的网站| 国产免费福利视频在线观看| 亚洲av日韩在线播放| 亚洲国产精品一区二区三区在线| 亚洲精品亚洲一区二区| 一级,二级,三级黄色视频| 国产 一区精品| 精品一区二区免费观看| 国产一区二区在线观看av| 亚洲欧洲国产日韩| 亚洲综合色惰| 日韩av免费高清视频| 国产精品女同一区二区软件| 色视频在线一区二区三区| 人人妻人人添人人爽欧美一区卜| 国产免费视频播放在线视频| 人人妻人人添人人爽欧美一区卜| 日本午夜av视频| 国产一区二区在线观看日韩| 少妇丰满av| 日韩大片免费观看网站| 桃花免费在线播放| 少妇丰满av| 国产一区亚洲一区在线观看| av又黄又爽大尺度在线免费看| 国产精品秋霞免费鲁丝片| 久久久久久久久大av| 国产伦精品一区二区三区视频9| 久久精品国产自在天天线| 五月伊人婷婷丁香| 午夜av观看不卡| 国产一区二区在线观看av| 汤姆久久久久久久影院中文字幕| 中文字幕亚洲精品专区| 亚洲图色成人| 日日啪夜夜爽| 狠狠婷婷综合久久久久久88av| 涩涩av久久男人的天堂| 91精品国产九色| 精品久久久噜噜| 国产淫语在线视频| 不卡视频在线观看欧美| 99国产综合亚洲精品| 亚洲精品乱码久久久久久按摩| 欧美人与性动交α欧美精品济南到 | 尾随美女入室| 欧美+日韩+精品| 国产av精品麻豆| 狠狠婷婷综合久久久久久88av| 久久久午夜欧美精品| 成人手机av| 欧美亚洲 丝袜 人妻 在线| 日本av手机在线免费观看| 精品卡一卡二卡四卡免费| 一本一本综合久久| 免费日韩欧美在线观看| 亚洲精品av麻豆狂野| 毛片一级片免费看久久久久| 嫩草影院入口| 性色avwww在线观看| 国产免费一区二区三区四区乱码| 99久国产av精品国产电影| 在线观看www视频免费| 国产精品久久久久久久久免| 精品亚洲乱码少妇综合久久| 在线观看人妻少妇| a级片在线免费高清观看视频| 少妇高潮的动态图| av有码第一页| 人人妻人人澡人人爽人人夜夜| 熟女电影av网| 国产免费一级a男人的天堂| 亚洲av中文av极速乱| 国产午夜精品久久久久久一区二区三区| 亚洲国产av影院在线观看| 国产亚洲午夜精品一区二区久久| 日日摸夜夜添夜夜爱| av电影中文网址| 在线免费观看不下载黄p国产| 另类精品久久| 久久久a久久爽久久v久久| 成人午夜精彩视频在线观看| 亚洲在久久综合| 一级毛片黄色毛片免费观看视频| a级毛片在线看网站| 少妇被粗大猛烈的视频| √禁漫天堂资源中文www| 热re99久久国产66热| 男人爽女人下面视频在线观看| 超碰97精品在线观看| 精品亚洲乱码少妇综合久久| 亚洲国产精品999| 免费av不卡在线播放| 男女边摸边吃奶| 26uuu在线亚洲综合色| 免费久久久久久久精品成人欧美视频 | 国产欧美日韩一区二区三区在线 | 最新中文字幕久久久久| 国产男人的电影天堂91| 青青草视频在线视频观看| 亚洲欧美清纯卡通| 免费看av在线观看网站| 午夜福利视频在线观看免费| 赤兔流量卡办理| 免费高清在线观看日韩| 久久免费观看电影| 国产成人91sexporn| 丰满迷人的少妇在线观看| 99久久综合免费| 欧美丝袜亚洲另类| 男女无遮挡免费网站观看| 女人久久www免费人成看片| 亚洲精品视频女| 菩萨蛮人人尽说江南好唐韦庄| 人人妻人人添人人爽欧美一区卜| 亚洲四区av| 精品99又大又爽又粗少妇毛片| 少妇的逼水好多| 满18在线观看网站| 少妇被粗大猛烈的视频| 一边亲一边摸免费视频| 卡戴珊不雅视频在线播放| 国产69精品久久久久777片| 久久久国产欧美日韩av| 不卡视频在线观看欧美| a级毛片在线看网站| 日韩大片免费观看网站| 国产精品女同一区二区软件| 老司机影院成人| 丝袜喷水一区| 性高湖久久久久久久久免费观看| 只有这里有精品99| 国产精品免费大片| 18禁在线无遮挡免费观看视频| 日本黄色片子视频| 两个人免费观看高清视频| 中文字幕人妻丝袜制服| 男人操女人黄网站| 欧美亚洲 丝袜 人妻 在线| 日本vs欧美在线观看视频| 亚洲av.av天堂| 久久久久人妻精品一区果冻| 欧美 亚洲 国产 日韩一| 午夜精品国产一区二区电影| 亚洲国产精品999| 天天操日日干夜夜撸| 亚洲av.av天堂| av国产精品久久久久影院| 建设人人有责人人尽责人人享有的| 成年女人在线观看亚洲视频| 99精国产麻豆久久婷婷| 美女主播在线视频| 精品一区在线观看国产| 曰老女人黄片| 一个人免费看片子| 女人久久www免费人成看片| 91aial.com中文字幕在线观看| √禁漫天堂资源中文www| 毛片一级片免费看久久久久| a级毛色黄片| 赤兔流量卡办理| 满18在线观看网站| 日本wwww免费看| 国产白丝娇喘喷水9色精品| 成人毛片a级毛片在线播放| 成人国产麻豆网| 欧美性感艳星| 一边摸一边做爽爽视频免费| 国产高清三级在线| 99视频精品全部免费 在线| 欧美人与性动交α欧美精品济南到 | 亚洲精品日韩在线中文字幕| 国产精品人妻久久久影院| 国产精品熟女久久久久浪| 亚洲成人手机| 久久精品国产亚洲网站| 免费少妇av软件| 国产免费现黄频在线看| 国产精品偷伦视频观看了| 一级片'在线观看视频| 在现免费观看毛片| 精品亚洲成国产av| 美女脱内裤让男人舔精品视频| 久久久久精品久久久久真实原创| 午夜免费鲁丝| 少妇人妻精品综合一区二区| 黄色欧美视频在线观看| 成人亚洲欧美一区二区av| 美女主播在线视频| 精品少妇久久久久久888优播| 亚洲五月色婷婷综合| 亚洲人成网站在线观看播放| 高清黄色对白视频在线免费看| 亚洲一级一片aⅴ在线观看| 久久韩国三级中文字幕| 晚上一个人看的免费电影| 十八禁网站网址无遮挡| 成人黄色视频免费在线看| 国产日韩一区二区三区精品不卡 | 国产一区有黄有色的免费视频| 国产成人精品在线电影| 亚洲伊人久久精品综合| 久久青草综合色| 亚洲国产欧美日韩在线播放| 日本黄色日本黄色录像| 午夜av观看不卡| 亚洲情色 制服丝袜| 国产视频内射| 97超碰精品成人国产| 日产精品乱码卡一卡2卡三| av一本久久久久| 免费黄色在线免费观看| 欧美激情 高清一区二区三区| 满18在线观看网站| 少妇的逼好多水| 最近的中文字幕免费完整| 黄色欧美视频在线观看| 国产欧美亚洲国产| 视频区图区小说| 人妻人人澡人人爽人人| 十八禁高潮呻吟视频| 亚洲第一区二区三区不卡| 欧美精品国产亚洲| 在线 av 中文字幕| 亚洲三级黄色毛片| 边亲边吃奶的免费视频| 男女边吃奶边做爰视频| 成年人午夜在线观看视频| 国产日韩欧美在线精品| 最近中文字幕2019免费版| av免费在线看不卡| 中文乱码字字幕精品一区二区三区| 日韩电影二区| 街头女战士在线观看网站| 国产高清国产精品国产三级| 在线观看www视频免费| 精品人妻熟女毛片av久久网站| 欧美日韩在线观看h| 在线观看国产h片| 热re99久久精品国产66热6| 午夜福利,免费看| 国产一区二区三区av在线| 91精品国产国语对白视频| 18禁观看日本| 欧美激情极品国产一区二区三区 | 男的添女的下面高潮视频| 国产亚洲欧美精品永久| 久久久久国产精品人妻一区二区| 一级毛片aaaaaa免费看小| 纵有疾风起免费观看全集完整版| 国产男女内射视频| 最近2019中文字幕mv第一页| 大又大粗又爽又黄少妇毛片口| 国产av码专区亚洲av| 日韩三级伦理在线观看| 国产精品一区www在线观看| 在线观看免费视频网站a站| 母亲3免费完整高清在线观看 | 国产男人的电影天堂91| 2021少妇久久久久久久久久久| 国产成人精品一,二区| 亚洲成人av在线免费| 最近最新中文字幕免费大全7| 精品少妇内射三级| 精品亚洲成a人片在线观看| 伊人亚洲综合成人网| 伦理电影免费视频| 狂野欧美白嫩少妇大欣赏| 国产精品99久久久久久久久| 日韩不卡一区二区三区视频在线| 久久韩国三级中文字幕| 国产色婷婷99| 免费人妻精品一区二区三区视频| 国产成人免费无遮挡视频| 极品少妇高潮喷水抽搐| 男的添女的下面高潮视频| 中国国产av一级| 新久久久久国产一级毛片| 一级,二级,三级黄色视频| 国产综合精华液| 亚洲精品乱码久久久v下载方式| 中文字幕人妻丝袜制服| 国产亚洲最大av| 亚洲av不卡在线观看| 看十八女毛片水多多多| 99久久中文字幕三级久久日本| 日韩 亚洲 欧美在线| 国产成人freesex在线| 成人国语在线视频| 国产 精品1| 看免费成人av毛片| 色吧在线观看| 在线免费观看不下载黄p国产| 日韩熟女老妇一区二区性免费视频| 一本—道久久a久久精品蜜桃钙片| 日韩 亚洲 欧美在线| 99国产精品免费福利视频| 精品久久久久久久久亚洲| 午夜福利影视在线免费观看| 高清视频免费观看一区二区| 亚洲av福利一区| 三级国产精品片| 女人久久www免费人成看片| 九色成人免费人妻av| 在线观看www视频免费| 黑丝袜美女国产一区| 一级毛片电影观看| 中文字幕免费在线视频6| 肉色欧美久久久久久久蜜桃| 久久久精品94久久精品| 欧美日韩亚洲高清精品| 亚洲国产精品一区二区三区在线| 免费大片18禁| 免费黄频网站在线观看国产| 国产黄频视频在线观看| 99九九在线精品视频| 99久久精品一区二区三区| 3wmmmm亚洲av在线观看| 人妻少妇偷人精品九色| 黄色配什么色好看| 亚洲欧洲日产国产| 亚洲,一卡二卡三卡| 91久久精品国产一区二区成人| 日韩视频在线欧美| 国产一区二区三区av在线| 亚洲四区av| 国产白丝娇喘喷水9色精品| 一级毛片电影观看| 极品少妇高潮喷水抽搐| 只有这里有精品99| 午夜老司机福利剧场| a级片在线免费高清观看视频| 精品国产一区二区久久| 一本一本综合久久| 国产精品不卡视频一区二区| 女人精品久久久久毛片| 在线观看www视频免费| 成人毛片60女人毛片免费| 国产成人a∨麻豆精品| 久久久精品免费免费高清| 人人妻人人澡人人看| 51国产日韩欧美| 欧美三级亚洲精品| 日本av手机在线免费观看| 亚洲欧美色中文字幕在线| 欧美日韩精品成人综合77777| 51国产日韩欧美| 欧美三级亚洲精品| 黄色怎么调成土黄色| 久久久国产欧美日韩av| av福利片在线| 秋霞在线观看毛片| 寂寞人妻少妇视频99o| 中文字幕av电影在线播放| 男女无遮挡免费网站观看| 精品一区二区免费观看| 亚洲欧美日韩另类电影网站| 国产高清不卡午夜福利| 成人漫画全彩无遮挡| 国产一区有黄有色的免费视频| 哪个播放器可以免费观看大片| 久久久久国产精品人妻一区二区| 高清午夜精品一区二区三区| 国产成人av激情在线播放 | a级片在线免费高清观看视频| 亚洲av福利一区| 国产日韩欧美亚洲二区| 国产精品一国产av| 久久久久精品性色| 全区人妻精品视频| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲av涩爱| 伦理电影免费视频| 一级爰片在线观看| 亚洲综合色惰| 丝袜在线中文字幕| 我的老师免费观看完整版| 国产精品三级大全| 美女福利国产在线| av不卡在线播放| 另类精品久久| 人妻 亚洲 视频| 熟女av电影| 日本黄大片高清| 成人亚洲欧美一区二区av| √禁漫天堂资源中文www| 熟妇人妻不卡中文字幕| 亚洲精品久久久久久婷婷小说| 夜夜骑夜夜射夜夜干| 黄色一级大片看看| 国产精品女同一区二区软件| 日韩视频在线欧美| 日韩大片免费观看网站| 晚上一个人看的免费电影| 91午夜精品亚洲一区二区三区| 国产老妇伦熟女老妇高清| 你懂的网址亚洲精品在线观看| 国产精品女同一区二区软件| 精品人妻在线不人妻| 久久久久视频综合| 久久久久久久久久久丰满| 欧美日韩在线观看h| 丝袜脚勾引网站| 制服丝袜香蕉在线| 99久国产av精品国产电影| 美女脱内裤让男人舔精品视频| av国产精品久久久久影院| 亚洲,欧美,日韩| 成人影院久久| 另类亚洲欧美激情| 2018国产大陆天天弄谢| av线在线观看网站| 又大又黄又爽视频免费| 999精品在线视频| 蜜臀久久99精品久久宅男| 九色亚洲精品在线播放| 国产av码专区亚洲av| 王馨瑶露胸无遮挡在线观看| 性高湖久久久久久久久免费观看| 在线观看国产h片| 午夜免费男女啪啪视频观看| 多毛熟女@视频| 97在线人人人人妻| 欧美bdsm另类| 特大巨黑吊av在线直播| 69精品国产乱码久久久| 妹子高潮喷水视频| 只有这里有精品99| 国产 精品1| 亚洲国产精品一区二区三区在线| 大香蕉97超碰在线| 寂寞人妻少妇视频99o| 国内精品宾馆在线| 你懂的网址亚洲精品在线观看| av电影中文网址| 日本免费在线观看一区| 99久久精品国产国产毛片| 熟女电影av网| 亚洲精品国产av成人精品| 亚洲人成77777在线视频| 丝袜美足系列| 夫妻性生交免费视频一级片| 国产免费一区二区三区四区乱码| 久久久久久久久久久免费av| 国产精品女同一区二区软件| 欧美变态另类bdsm刘玥| 日韩强制内射视频| 熟女av电影| 在线观看美女被高潮喷水网站| 精品少妇黑人巨大在线播放| av国产精品久久久久影院| 国产成人精品福利久久| videossex国产| 免费看光身美女| 精品久久久精品久久久| 纵有疾风起免费观看全集完整版| 国产精品国产三级国产专区5o| 欧美日韩精品成人综合77777| 久久久久久久久久久丰满| 永久网站在线| 99热网站在线观看| 欧美精品高潮呻吟av久久| 国产精品欧美亚洲77777| 亚洲国产精品999| 国产成人a∨麻豆精品| 在线看a的网站| 热re99久久精品国产66热6| 国产欧美日韩综合在线一区二区| 国产爽快片一区二区三区| 日韩三级伦理在线观看| 午夜影院在线不卡| 亚洲精品国产色婷婷电影| 免费看光身美女| 母亲3免费完整高清在线观看 | 国国产精品蜜臀av免费| 美女中出高潮动态图| 国产精品欧美亚洲77777| 欧美激情 高清一区二区三区| 国产综合精华液| 成人亚洲精品一区在线观看| videossex国产| 三级国产精品欧美在线观看| 免费黄色在线免费观看| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久久久免| 日本wwww免费看| 久久久国产欧美日韩av| 亚州av有码| 两个人免费观看高清视频|