• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A direct position determination method with combined TDOA and FDOA based on particlefilter

    2018-02-02 08:10:21ZhiyuLUBinBAJinhuiWANGWenchoLIDmingWANG
    CHINESE JOURNAL OF AERONAUTICS 2018年1期

    Zhiyu LU,Bin BA,Jinhui WANG,Wencho LI,Dming WANG

    aChina National Digital Switching System Engineering&Technological R&D Cente,Zhengzhou 450000,China

    bJiuquan Satellite Launch Center,Jiuquan 735000,China

    1.Introduction

    Target localization is widely used in civil and militaryfields.Localization algorithms have been developed rapidly,among which the traditional two-step algorithm is the most signifi-cant.Under the two-step framework,the signal measurements,such as the Time of Arrival(TOA),1Angle of Arrival(AOA),2,3Time Difference of Arrival(TDOA),4and Frequency Difference of Arrival(FDOA),5should be extractedfirst from the received source signal.Then the target position is estimated by calculating the location equation.Vast literatures have shown that the two-step method has better performance at high Signal-to Noise Ratio(SNR).6,7However,it ignores the intrinsic link between the positioning parameters of the receivers.The signal parameters acquired in thefirst step are not in accordance with the source position found in the second step,leading to the loss of the location information.Furthermore,it is inevitable to involve processing errors in the step by step calculation.Therefore,the two-step method is suboptimal,failing to get the best positioning performance.8Compared with the traditional two-step approach,the DPD algorithm proposed in recent years does not need to estimate the signal parameters or calculate the position step by step,but acquires the source position from the received signals directly based on the maximum likelihood criterion.Because of its better performance,it has become a hot research topic.9–15

    Ref.9gives a systematic analysis of the DPD algorithm,and proposes a target approach for single narrowband signal emitter,which proves that the DPD algorithm outperforms the two-step method especially at low SNR.In order to further explore the advantages of DPD algorithm,Refs.10–15give a variety of improved algorithms with the integration of TOA,AOA,etc.,but these algorithms are mainly based onfixed receivers to estimate a narrowband signal emitter.With the increase of signal bandwidth and the wide use of moving receivers,such as aircraft-based,ship-based and vehicle-based platforms,it is urgent to research the DPD algorithms for wideband signal emitters in the moving receiver system.

    In this paper,we focus on the location of wideband signal emitters based on moving observation platforms.To this end,the common method partitions the received signal into multiple short-time signal segments,in which the narrowband localization algorithm can still play a role to obtain the position by the joint use of all the signal segments.A DPD algorithm based on Doppler shift received by moving platforms is proposed for narrowband emitters in Ref.16,which is more precise compared with the two-step algorithms.On the basis of Refs.16,17gives a DPD algorithm which is combined with TOA and Doppler shift based on non-coherent summation of short-time signal segments.To further improve the positioning performance,Ref.18proposes an improved DPD algorithm exploiting the coherent summation of multiple short-time signal segments,while solves the problem of phase synchronization error between the receivers and the target to make the algorithm more practical.

    In the passive location system,the synchronization is not accurate between the receivers and the target,so the DPD algorithm using delay and Doppler is difficult to get better performance.To solve this problem,Ref.19presents an adaptive DPD algorithm based on TDOA with least mean square(LMS)filtering,achieving good positioning accuracy.Combined with the Doppler information obtained by the moving receiver,a distributed DPD algorithm based on TDOA and FDOA is proposed in Ref.20.But the correlation between the short-time signal segments is not taken into account,so there is still room for the positioning accuracy improvement.Besides,it is very difficult to obtain the analytical solution because of the high nonlinearity of the above DPD algorithms.So in order to obtain the maximum likelihood estimation,the ergodic search method is used,which makes the positioning accuracy reach the CRLB with huge computation load and communication bandwidth.To overcome these problems,novel information technology can be used.For example,the intelligent algorithm21and the cloud computing and storage technology22,23can be used to reduce the computation loads,and the compressive sensing technology24and automatic network management technology25are helpful for reducing the communication bandwidth.Filteriterative algorithm is another method for parameter estimation,such as Extended Kalman Filter(EKF),26Unscented Kalman Filter(UKF)27and Particle Filter(PF),28which has good performance.Especially,the PF algorithm can solve the strong non-linear and non-Gaussian estimation problem,which has been proven in a variety of applications.

    In summary,there are still some deficiencies in the existing DPD algorithms when the positioning of wideband signal emitters is executed based on TDOA and FDOA.How to make use of more location information contained in the signal segments to improve positioning accuracy,while avoiding the problem of large computation cost,has tremendous challenge and research merit.To accomplish this target,this paper proposes a DPD algorithm with combined TDOA and FDOA based on particlefilter,using coherent summation of the short-time signal segments to improve positioning accuracy(labeled as PFC-TF DPD).Compared with the existing literatures,the contributions of this paper lie in:

    (1)The algorithm proposed in this paper makes full use of the location information contained in the coherency among the signal segments to improve positioning accuracy.The CRLB of the source position is derived,which shows that the positioning accuracy is better compared with the existing algorithms.

    (2)One iterative maximum likelihood estimation method based on particlefilter is designed to solve the problem of high computation load,which improves the estimated efficiency.

    (3)The influence of different parameters on the positioning performance is analyzed in the simulation part.It is shown that the positioning accuracy of the proposed DPD algorithm is proportional to interception interval of two adjacent signal segments and the number of short-time signals.The above results can be used to provide a reference of the optimal parameter configuration for different application environments.

    The rest of the paper is organized as follows.The following section gives the direct positioning model.We derive Maximum Likelihood(ML)estimators based on particlefilter for our DPD algorithm in Section 3 and develop the source position CRLB in Section 4.Section 5 provides the simulation and the result analyses.Finally,Section 6 concludes the paper.

    2.Positioning modeling and problem formulation

    A stationary source located at o= [ox,oy]is considered.Lis the number of moving receivers which have been synchronized.The number of short-time signal segments isK,while the interception interval of two adjacent signal segments isT0.The receivers get the signal segment at timetk,k=1,2,...,Kwhen they are located at ul,kwith velocities˙ul,k,l=1,2,...,L.The DPD scenario is shown in Fig.1.

    We suppose that the source signal is

    wherefcis the carrier frequency ands(t)is the signal envelope.The signal received with thelth receiver in thekth period is

    Taking the signal of thefirst receiver as reference,we let

    Fig.1 DPD scenario.

    and then represent Eq.(2)as

    where Δτl1,kand Δvl1,kare TDOA and FDOA respectively as shown in Eqs.(5)and(6),andwl,k(t)is the statistically independent complex Gaussian noises whose probability density function isC(0,σl,k).

    The received source signal would be sampled as

    wherec=3×108m/s is the speed of light.Tsis the sampling interval,Nkis the number of samples taken in each signal segment,ntk=tk/Tsis the starting time of thekth segment,Δnl1,k= Δτl1,k/Tsis the discrete representation of TDOA,ejΔvl1,k(ntk+nk)Tsis the coherency item among the signal segments received in the same receiver andcis the light speed.In the PFC-TF DPD algorithm discussed in the following parts,we will use the position information inherent in ejΔvl1,kntkTsto improve location accuracy.

    The signals received from all receivers are combined to be fully utilized.Let

    and then gk[nk- Δnl1,k]can be expressed as

    where 1Nkis aNk×1 vector with all the elements equal to 1.With combined Eqs.(8)–(10),the received signal can be expressed as

    With the above notations,the combination of all received signals is

    whereE[wwH]= Γ =diag{Γ1,Γ2,...,Γk,...,ΓK} and Γk=E[wkwHk].Next we will analyze the PFC-TF DPD algorithm in detail based on this signal model.

    3.PFC-TF DPD algorithm

    Under the positioning model given in Section 2,the PFC-TF DPD algorithm is derived step by step in the following to prove its feasibility.From Eq.(15),the received signal r is a complex Gaussian random vector with mean Hg and covariance Γ.So the Probability Density Function(PDF)can be given by

    The Maximum Likelihood Estimator(MLE)of the target can be obtained by Ref.18

    It is difficult to obtain the MLE of the target position because of the strong non-linearity in Eq.(17).So the ergodic search method is commonly used in many DPD algorithms,which are poor practical with huge computation load.The particlefilter algorithm has better performance when it is used to solve the strong non-linear estimation.The result can be obtained quickly through iteration procedure,which has been proved in a large number of applications.

    The MLE of gkis given by

    Therefore,in terms of the Bayesianfiltering problem,drawing the particles according to Eq.(21)moves the weights from timej-1 toj,i.e.,performs the prediction stage and Eq.(28)performs the update stage.

    In order to update the particle more stably,we set a strategy that retains the largest weight particle of the previous generation to the next generation.That is

    According to the above analysis,the computation load is mainly concentrated in Eq.(27),whose total computation cost is

    The DPD algorithm based on ergodic search dividesNgrids in the target region,so the total computation cost is approximate toNDC.

    The convergence accuracy of the proposed algorithm is related to the signal length,SNR,and the number of receivers.The convergence rate is related to the initial value and the number of particles.Thus,it is difficult to give a theoretical suggestion on the number of iterations when so many parameters are dealt with.In this paper,in order to simplify the calculation,afixed iteration number and particle number are set without affecting thefinal location results according to many experiments,so the total computation cost of the PFC-TF DPD algorithm is approximate toMJDC.Thus,the ratio of computation load is

    The simulation part will prove thatMJwill be far less thanN,but the location accuracy is almost not decreased.In order to show the algorithm architecture more clearly based on the principle derived in this section,a possible implementation of the PFC-TF DPD algorithm is in Table 1.

    4.Cramer-Rao lower bound

    In this section,we are interested in the CRLB for estimation of the source position to further analyze the positioning performance of the PFC-TF DPD algorithm proposed in this paper.We define that the vector η is composed of the real-part of g,the imaginary-part of g,and the target parameters o.That is

    Table 1 Implementation of PFC-TF DPD algorithm.

    The receive signal is

    According to Ref.18,the Fisher Information Matrix(FIM)of η is given by

    Combining Eqs.(35)–(43),we can express Jηas

    According to the partitioned matrix inversion formula,the FIM of o can be expressed as

    CRLB can be obtained by the inverse of the Fisher Information Matrix matrix,so CRLBois

    5.Simulations

    In order to test the performance of the PFC-TF DPD algorithm,computer simulations are conducted in this section.Compared with the DPD algorithm based on Doppler shift(labeled with NC-F DPD)and the DPD algorithm with combined TDOA and FDOA based on non-coherent summation of short-time signal segments(labeled with NC-TF DPD),the positioning accuracy and CRLB will be analyzed.It is assumed that the target is located at o= [0,0]in a 2-D plane.The number of receivers isL=4.The number of short-time signal segments isK=10.All parameters of the receivers are shown in Table 2.

    We adopt the Gaussian random signal with zero mean and unit variance as the source signal.The simulated nominal signal carrier frequency isfc=300 MHz.The sampling interval isTs=2×10-5s.The interception interval of two adjacent signal segments isT0=0.01 s.The duration of every shorttime signal isT=1 ms.The number of samples isNk=50.The interesting region is [-1000,1000]m.

    To compare the location performance of different algorithms,in thefirst experiment,the cost functions of the candidate source positions with 1 m interval are evaluated at SNR=20 dB.The results are shown in Fig.2.In order to show the result clearly,the 3D plots and their top views are given,in whichxaxis andyaxis are the position coordinates,and z axis is the cost function value normalized by the maximum.It can be seen from Fig.2(a)and(b)that,although the SNR is very high,the NC-F DPD algorithm exhibits a curvature of large radius around the real source location.It is difficult to obtain accuracy estimation.Once the SNR is decreased,the location performance will decline rapidly.Fig.2(c)and(d)show that there is a curvature of smallradius around the true source position,which improves the estimation accuracy compared with NC-F DPD algorithm.Fig.2(e)and(f)demonstrate the effectiveness of the PFC-TF DPD algorithm with the sharper peak around the true source position,which will bring higherlocation accuracy.The simulation results are consistent with the theoretical derivation,showing that the use of the location information contained in the coherency among the signal segments is significative,which is expected.

    Table 2 Parameters of receivers.

    Fig.2 Evaluation of cost functions of source location estimators for each algorithm.

    Fig.3 Convergence of particles.

    In order to verify the computational performance of the PFC-TF algorithm,in the second experiment,with the iteration increasing,the convergence of particles and thefiltering error are shown in Figs.3 and 4 respectively under the conditions of SNR=20 dB andT0=0.01 s.The number of particles isM=50 and the number of iteration isJ=50.As can be seen from Fig.3,with the iteration increasing,the particlesflow toward the target position and eventually converge to the real position.Fig.4 shows that thefiltering error is shaking more seriously at the beginning,but after a short adjustment,the error is tiny and tends to be stable,which proves the good performance in the convergent speed.According to the simulation conditions,the ratio in Eq.(32)is λ =2.5×10-3,that is,the computation load of PFC-TF algorithm decreases by nearly 3 orders of magnitude compared with that of the DPD algorithms based on ergodic search,indicating a signifi-cant increase in computing efficiency.

    In order to further illustrate the performance of PFC-TF DPD algorithm,in the third experiment,we shall contrast the localization performance of each algorithm with their CRLBs.The CRLB and RMSE of each algorithm,as a function of SNR,are achieved across 50 Monte-Carlo simulation experiments,and shown in Fig.5.It can be seen that,with the increase of SNR,the performance of each algorithm is improved,but the PFC-TF DPD algorithm is significantly better than the NC-TF DPD algorithm and NC-F DPD algorithm,which proves that the location information contained in the coherency can effectively improve positioning accuracy.The performance of PFC-TF DPD algorithm remains close to the CRLB,especially at high SNRs it coincides with the CRLB.Combined with the results of Fig.6,we can get that our algorithm is more computationally efficient and more precise for weak signals than the conventional approach,which demonstrates the utility and practicability of the method.

    The performance development of each algorithm with the increase ofK,the number of short-time signals,is given in Fig.7 under the conditions of SNR=10 dB andT0=0.01 s.It can be seen that all algorithms have a performance improvement with the increase ofK.But compared with the NC-TF DPD algorithm and NC-F DPD algorithm,the performance of PFC-TF DPD algorithm is improved significantly.In addition,the PFC-TF DPD algorithm has better performance whenKis small,which means that the positioning efficiency is improved.

    In the last experiment,we examine the performance of each algorithm versusT0,the interception interval of two adjacent signal segments,under the conditions of SNR=10 dB andK=10.The results are shown in Fig.6.It can be seen that the performance of NC-F DPD algorithm and NC-TF DPD algorithm are not changed for better because of their independence of the variableT0,while the performance of PFC-TF DPD algorithm is improved asT0increases.In addition,the localization accuracy of the PFC-TF DPD algorithm is always close to its CRLB,resulting in excellent performance.But whenT0<0.001 s,due to the fact that the time interval is too short,there is no extra location information contained in the coherency,so the PFC-TF algorithm has the same performance as NC-TF algorithm.

    Fig.4 Filtering error with iteration increasing.

    Fig.5 Estimation accuracy of each algorithm as a function of SNR.

    Fig.6 Estimation accuracy of each algorithm as a function of T0.

    Fig.7 Estimation accuracy of each algorithm as a function of K.

    As can be seen from the above simulation results,the PFCTF DPD algorithm proposed in this paper has excellent performance.Compared with the NC-TF DPD algorithm,it uses the correlation information among the signal segments,which solves the problem of huge computation load.Under the same conditions,the proposed algorithm obtains better estimations with less number of short-time signals,which makes the algorithm more practical.

    6.Conclusions

    (1)We conducted a comprehensive study on the DPD algorithm.The PFC-TF DPD algorithm is proposed,which acquires extra target position information through the correlation information among the signal segments to get better positioning performance.The CRLB of the source position is derived,which shows that the positioning accuracy is better compared with the existing algorithms.

    (2)One iterative maximum likelihood estimation method based on particlefilter is designed to solve the problem of high computation load.Simulation results show that the proposed method can get better location performance than other DPD algorithms under low SNR,making it full of practical value.

    (3)The algorithm can be used in many multi-sensor cooperative location scenarios,such as double-star position system,Unmanned Aerial Vehicle(UAV)-based formation system and ship-based formation system,tofinish the job of target reconnaissance,search,rescue,and so on.

    Acknowledgement

    This study was supported by the National Natural Science Foundation of China(No.61401513).

    1.Oh D,Kim S,Yoon SH.Two-dimensional ESPRIT-like shiftinvariant TOA estimation algorithm using multi-band chirp signals robust to carrier frequency offset.IEEE Trans Wireless Commun2013;12(7):3130–9.

    2.Yan F,Jin M,Qiao X.Low-complexity DOA estimation based on compressed MUSIC and its performance analysis.IEEE Trans Signal Process2013;61(8):1915–30.

    3.Ba B,Liu GC,Li T,Lin YC,Wang Y.Joint for time of arrival and direction of arrival estimation algorithm based on the subspace of extended hadamard product.Acta Phys Sin2015;64(7):384–92[Chinese].

    4.Lu ZY,Wang DM,Wang JH,Wang Y.A tracking algorithm based on orthogonal cubature Kalmanfilter with TDOA and FDOA.Acta Phys Sin2015;64(15):25–32[Chinese].

    5.Wang G,Li YM,Ansari N.A semidefinite relaxation method for source localization using TDOA and FDOA measurements.IEEE Trans Veh Technol2013;62(2):853–5.

    6.Ho KC,Chan YT.Geolocation of a known altitude object from TDOA and FDOA measurements.IEEE Trans Aerosp Electron Syst1997;33(3):770–83.

    7.Chan YT,Ho KC.Joint time-scale and TDOA estimation:analysis and fast approximation.IEEE Trans Signal Process2005;53(8):2625–34.

    8.Bosse J,Ferre′ol A,Larzabal P.Performance analysis of passive localization strategies:direct one step approach versus 2 steps approach.IEEE Statistical signal processing(SSP)workshop;2011.p.701–4.

    9.Weiss AJ.Direct position determination of narrowband radio frequency transmitters.IEEESignalProcessLett2004;11(5):513–7.

    10.Weiss AJ,Amar A.Direct position determination of multiple radio signals.EURASIP J Adv Signal Process2005;1:37–49.

    11.Amar A,Weiss AJ.Direct position determination in the presence of model errors-known waveforms.Digital Signal Process2006;16(1):52–83.

    12.Shalom OB,Weiss AJ.Direct positioning of stationary targets using MIMO radar.Signal Process2011;91(10):2345–58.

    13.Reuven AM,Weiss AJ.Direct position determination of cyclostationary signals.Signal Process2009;89(12):2448–64.

    14.Naresh V,Steven K,Quan D.TDOA based direct positioning maximum likelihood estimator and the Cramer-Rao Bound.IEEE Trans Aerosp Electron Syst2014;50(3):1616–46.

    15.Tom T,Weiss AJ.High resolution direct position determination of radio frequency sources.IEEE Signal Process Lett2016;23(2):192–7.

    16.Amar A,Weiss AJ.Localization of narrowband radio emitters based on Doppler frequency shifts.IEEE Trans Signal Process2008;56(11):5500–8.

    17.Weiss AJ.Direct geolocation of wideband emitters based on delay and Doppler.IEEE Trans Signal Process2011;59(6):2513–21.

    18.Li JZ,Yang L,Guo FC.Coherent summation of multiple shorttime signals for direct positioning of a wideband source based on delay and Doppler.Digital Signal Process2015;48:58–70.

    19.Zhong S,Xia W,He Z.Adaptive direct position determination of emitters based on time differences of arrival.IEEE China summit&international conference on signal and information processing;2013 July 6–10;Beijing,China.Piscataway:IEEE Press;2013.p.230–4.

    20.Pourhomayoun M,Fowler M.Distributed computation for direct position determination emitter location.IEEE Trans Aerosp Electron Syst2014;50(4):2878–89.

    21.Xue Y,Jiang J,Zhao B,Ma T.A self-adaptive artificial bee colony algorithm based on global best for global optimization.Soft Comput2017;8:1–18.

    22.Shen J,Shen J,Chen XF,Huang XY,Susilo W.An efficient public auditing protocol with novel dynamic structure for cloud data.IEEE Trans Inf Foren Secur2016;12(10):2402–15.

    23.Fu ZJ,Ren K,Shu J,Sun XM,Huang FX.Enabling personalized search over encrypted outsourced data with efficiency improvement.IEEE Trans Parallel Distrib Syst2016;27(9):2546–59.

    24.Sun YJ,Gu FH.Compressive sensing of piezoelectric sensor response signal for phased array structural health monitoring.Int J Sensor Networks2017;23(4):258–64.

    25.Qu ZG,Keeney J,Robitzsch S,Zaman F,Wang XJ.Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks.China Commun2016;13(7):108–16.

    26.Luo L,Tian ZS,Chen JY.Algorithm of EKF positioning and tracking.J Chongqing Univ Posts Telecommun(Nat Sci Ed)2009;21(1):50–5[Chinese].

    27.Liu Y,Wang H,Hou CH.UKF based nonlinearfiltering using minimum entropy criterion.IEEE Trans Signal Process2013;61(20):4988–99.

    28.Gustafsson F.Particlefilter theory and practice with positioning applications.IEEE Aerosp Electron Syst Mag2010;25(7):53–82.

    亚洲熟女毛片儿| 精品乱码久久久久久99久播| 男人爽女人下面视频在线观看| 纵有疾风起免费观看全集完整版| 精品人妻熟女毛片av久久网站| 欧美激情极品国产一区二区三区| 亚洲精品自拍成人| 欧美日韩福利视频一区二区| 高清av免费在线| 精品第一国产精品| 王馨瑶露胸无遮挡在线观看| 久久国产精品影院| 在线观看一区二区三区激情| 五月开心婷婷网| 久久久久国内视频| 国产极品粉嫩免费观看在线| 色婷婷av一区二区三区视频| 黑人欧美特级aaaaaa片| 午夜福利影视在线免费观看| 飞空精品影院首页| 80岁老熟妇乱子伦牲交| 日韩三级视频一区二区三区| 叶爱在线成人免费视频播放| 日本av免费视频播放| 国产97色在线日韩免费| 伦理电影免费视频| 精品第一国产精品| 亚洲欧美清纯卡通| 国产精品1区2区在线观看. | 狂野欧美激情性bbbbbb| 嫩草影视91久久| 国产精品久久久av美女十八| 亚洲精品粉嫩美女一区| 久久久久国内视频| 亚洲国产av新网站| 夜夜夜夜夜久久久久| 亚洲第一欧美日韩一区二区三区 | 国产精品成人在线| 免费在线观看黄色视频的| 极品人妻少妇av视频| 性少妇av在线| 夜夜夜夜夜久久久久| 成年女人毛片免费观看观看9 | 少妇的丰满在线观看| 少妇人妻久久综合中文| 香蕉国产在线看| 国产成人av教育| 欧美另类亚洲清纯唯美| 黑人欧美特级aaaaaa片| 中文字幕精品免费在线观看视频| 午夜两性在线视频| 亚洲av成人不卡在线观看播放网 | 午夜激情久久久久久久| 两个人看的免费小视频| 咕卡用的链子| 国产无遮挡羞羞视频在线观看| 99久久人妻综合| 国产伦理片在线播放av一区| 51午夜福利影视在线观看| 成人黄色视频免费在线看| 免费观看a级毛片全部| 日本vs欧美在线观看视频| 亚洲精品国产色婷婷电影| 欧美性长视频在线观看| 亚洲 国产 在线| 欧美97在线视频| 国产免费av片在线观看野外av| 啦啦啦 在线观看视频| 久久人妻熟女aⅴ| 亚洲美女黄色视频免费看| 国产成人免费观看mmmm| 91麻豆av在线| 两个人看的免费小视频| 我要看黄色一级片免费的| 建设人人有责人人尽责人人享有的| 丁香六月天网| 日本精品一区二区三区蜜桃| 一级,二级,三级黄色视频| 欧美日韩一级在线毛片| 91九色精品人成在线观看| 新久久久久国产一级毛片| 丝袜美腿诱惑在线| 成人三级做爰电影| 国产精品国产三级国产专区5o| 1024香蕉在线观看| 国产欧美日韩一区二区精品| 99久久综合免费| 99国产极品粉嫩在线观看| 黑丝袜美女国产一区| 两人在一起打扑克的视频| 无限看片的www在线观看| 搡老岳熟女国产| 永久免费av网站大全| 午夜久久久在线观看| 水蜜桃什么品种好| 国产精品久久久人人做人人爽| 18在线观看网站| 亚洲av电影在线观看一区二区三区| 建设人人有责人人尽责人人享有的| 亚洲成av片中文字幕在线观看| 久久久国产成人免费| 男男h啪啪无遮挡| 99国产极品粉嫩在线观看| 美女脱内裤让男人舔精品视频| 久久久久久亚洲精品国产蜜桃av| 日韩 亚洲 欧美在线| a级片在线免费高清观看视频| 国产黄频视频在线观看| 在线观看免费高清a一片| 丁香六月天网| 亚洲精品久久久久久婷婷小说| 亚洲av电影在线观看一区二区三区| 国产一级毛片在线| 大陆偷拍与自拍| 狂野欧美激情性xxxx| 男人爽女人下面视频在线观看| 少妇被粗大的猛进出69影院| 亚洲色图 男人天堂 中文字幕| 亚洲色图综合在线观看| 久久精品国产综合久久久| 亚洲专区国产一区二区| 女人久久www免费人成看片| 亚洲伊人久久精品综合| 下体分泌物呈黄色| 久久久水蜜桃国产精品网| 99久久国产精品久久久| 国产老妇伦熟女老妇高清| 日韩欧美一区二区三区在线观看 | 久久av网站| 国产一区二区三区av在线| 国精品久久久久久国模美| 人人妻,人人澡人人爽秒播| 亚洲欧美精品自产自拍| 久久久久精品国产欧美久久久 | 久久天躁狠狠躁夜夜2o2o| 两个人看的免费小视频| 免费黄频网站在线观看国产| 这个男人来自地球电影免费观看| 国产1区2区3区精品| 日韩制服丝袜自拍偷拍| 久久久久久久久久久久大奶| 男男h啪啪无遮挡| 国产成人系列免费观看| a级毛片在线看网站| 久久久久久久精品精品| av在线app专区| 人成视频在线观看免费观看| 亚洲色图综合在线观看| 精品视频人人做人人爽| 99热国产这里只有精品6| 亚洲精品国产av成人精品| avwww免费| 久久九九热精品免费| 真人做人爱边吃奶动态| 美女午夜性视频免费| 视频在线观看一区二区三区| 丰满少妇做爰视频| 亚洲第一青青草原| 首页视频小说图片口味搜索| 亚洲三区欧美一区| 国产精品av久久久久免费| 黑人猛操日本美女一级片| 黄色 视频免费看| 叶爱在线成人免费视频播放| 丰满迷人的少妇在线观看| 精品少妇一区二区三区视频日本电影| 亚洲av电影在线进入| 国产亚洲欧美精品永久| 老熟妇仑乱视频hdxx| 叶爱在线成人免费视频播放| 国产成人av激情在线播放| 精品人妻1区二区| 亚洲av欧美aⅴ国产| 人人澡人人妻人| 嫩草影视91久久| 欧美精品一区二区大全| 91精品国产国语对白视频| 国产一区有黄有色的免费视频| 亚洲精华国产精华精| 日本av手机在线免费观看| av在线app专区| 免费看十八禁软件| 国产成人免费无遮挡视频| 国产在线观看jvid| 国产熟女午夜一区二区三区| 欧美激情久久久久久爽电影 | 国产欧美日韩一区二区精品| 中文字幕精品免费在线观看视频| 成年人免费黄色播放视频| 桃花免费在线播放| 老汉色∧v一级毛片| 精品国产乱码久久久久久男人| 搡老乐熟女国产| 狠狠精品人妻久久久久久综合| 香蕉丝袜av| 久久ye,这里只有精品| 嫩草影视91久久| a级毛片在线看网站| 国产1区2区3区精品| 久久亚洲精品不卡| 老司机午夜十八禁免费视频| 亚洲熟女毛片儿| 美女脱内裤让男人舔精品视频| 亚洲欧洲精品一区二区精品久久久| 亚洲 国产 在线| 电影成人av| 啦啦啦视频在线资源免费观看| 国产淫语在线视频| 国产一区二区在线观看av| 国产精品一区二区精品视频观看| 叶爱在线成人免费视频播放| 亚洲精品av麻豆狂野| 美女中出高潮动态图| 两性夫妻黄色片| 一本综合久久免费| www.999成人在线观看| 一本—道久久a久久精品蜜桃钙片| 国产精品一二三区在线看| 久久中文字幕一级| 久久综合国产亚洲精品| 美女午夜性视频免费| 最黄视频免费看| 国产成人精品久久二区二区免费| 午夜精品国产一区二区电影| 女人久久www免费人成看片| 99香蕉大伊视频| 黄色a级毛片大全视频| 亚洲国产欧美日韩在线播放| 男女边摸边吃奶| 99久久99久久久精品蜜桃| 亚洲视频免费观看视频| 老司机福利观看| 免费在线观看影片大全网站| 99国产精品一区二区蜜桃av | 久久午夜综合久久蜜桃| 精品一品国产午夜福利视频| 成人国语在线视频| 99久久人妻综合| 嫁个100分男人电影在线观看| 午夜福利影视在线免费观看| 高清视频免费观看一区二区| 午夜激情久久久久久久| 无遮挡黄片免费观看| 亚洲美女黄色视频免费看| 五月天丁香电影| 日韩熟女老妇一区二区性免费视频| 一级毛片电影观看| 亚洲精品一区蜜桃| 一区二区三区精品91| 欧美人与性动交α欧美软件| 90打野战视频偷拍视频| 人人澡人人妻人| 青春草视频在线免费观看| 日韩有码中文字幕| 99热全是精品| 人成视频在线观看免费观看| 不卡av一区二区三区| 美女高潮到喷水免费观看| 一级毛片电影观看| 巨乳人妻的诱惑在线观看| 别揉我奶头~嗯~啊~动态视频 | 99香蕉大伊视频| 少妇 在线观看| 久久人妻福利社区极品人妻图片| 啦啦啦中文免费视频观看日本| 80岁老熟妇乱子伦牲交| av网站在线播放免费| 18禁观看日本| 丝袜人妻中文字幕| 一二三四在线观看免费中文在| 99精国产麻豆久久婷婷| 国产成人免费无遮挡视频| 18禁国产床啪视频网站| www.精华液| 91成人精品电影| 精品国产乱码久久久久久小说| 国产视频一区二区在线看| 日本a在线网址| 亚洲精品av麻豆狂野| 国产91精品成人一区二区三区 | 国产精品久久久久成人av| av有码第一页| 制服人妻中文乱码| 久久久精品免费免费高清| 国产成人免费观看mmmm| 99国产极品粉嫩在线观看| 国产欧美日韩一区二区精品| 另类精品久久| 成人手机av| 亚洲一区中文字幕在线| 狠狠狠狠99中文字幕| 国产免费一区二区三区四区乱码| 日韩,欧美,国产一区二区三区| √禁漫天堂资源中文www| 少妇精品久久久久久久| 少妇人妻久久综合中文| 亚洲精品一区蜜桃| 亚洲伊人久久精品综合| 久久人人97超碰香蕉20202| 成年人黄色毛片网站| 一级a爱视频在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av成人一区二区三| 人人妻人人澡人人爽人人夜夜| 人人妻人人添人人爽欧美一区卜| 亚洲,欧美精品.| 美女扒开内裤让男人捅视频| 巨乳人妻的诱惑在线观看| 亚洲av男天堂| 91成人精品电影| 精品国产一区二区久久| 乱人伦中国视频| 精品熟女少妇八av免费久了| 在线亚洲精品国产二区图片欧美| 91国产中文字幕| 97精品久久久久久久久久精品| 国产成人精品无人区| 夜夜骑夜夜射夜夜干| 午夜福利在线免费观看网站| 国产成人精品久久二区二区免费| 女性生殖器流出的白浆| 美女福利国产在线| 国产成人精品在线电影| 亚洲国产欧美网| 大香蕉久久网| 真人做人爱边吃奶动态| 欧美日本中文国产一区发布| 久久久久久久精品精品| 在线天堂中文资源库| 青春草亚洲视频在线观看| 一级黄色大片毛片| 国产黄色免费在线视频| 麻豆乱淫一区二区| 久久性视频一级片| 久久久精品区二区三区| 在线观看免费日韩欧美大片| 韩国高清视频一区二区三区| 成年人黄色毛片网站| 亚洲熟女毛片儿| 亚洲精品日韩在线中文字幕| 99热全是精品| 久久精品成人免费网站| 亚洲中文字幕日韩| 日本av免费视频播放| 国产亚洲一区二区精品| 亚洲美女黄色视频免费看| 日韩中文字幕欧美一区二区| 亚洲五月婷婷丁香| 欧美日韩黄片免| 国产成人影院久久av| 国产精品熟女久久久久浪| 免费观看av网站的网址| 在线 av 中文字幕| 99国产精品一区二区蜜桃av | 丰满少妇做爰视频| 欧美激情高清一区二区三区| 国产在视频线精品| 国产有黄有色有爽视频| 色婷婷久久久亚洲欧美| 母亲3免费完整高清在线观看| 成年人午夜在线观看视频| 亚洲国产精品一区二区三区在线| a级毛片黄视频| 69av精品久久久久久 | 亚洲精品久久成人aⅴ小说| 大片电影免费在线观看免费| 国产精品香港三级国产av潘金莲| 国产男女内射视频| 亚洲视频免费观看视频| 天堂8中文在线网| 亚洲久久久国产精品| 人人妻人人添人人爽欧美一区卜| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 美女脱内裤让男人舔精品视频| 丰满少妇做爰视频| 亚洲欧美一区二区三区黑人| 国产老妇伦熟女老妇高清| 永久免费av网站大全| 欧美激情久久久久久爽电影 | 男女高潮啪啪啪动态图| 久久天堂一区二区三区四区| 天堂8中文在线网| 亚洲精品美女久久久久99蜜臀| 久久人人爽av亚洲精品天堂| 亚洲精品国产精品久久久不卡| 中文字幕av电影在线播放| 国产亚洲欧美在线一区二区| 在线观看舔阴道视频| 美女脱内裤让男人舔精品视频| 日韩免费高清中文字幕av| 黄频高清免费视频| a级毛片黄视频| 亚洲国产欧美一区二区综合| 欧美成人午夜精品| 久久久国产成人免费| 999久久久国产精品视频| 一区二区av电影网| 国产一区有黄有色的免费视频| 精品欧美一区二区三区在线| 欧美变态另类bdsm刘玥| av天堂久久9| 亚洲第一青青草原| 窝窝影院91人妻| 五月开心婷婷网| 王馨瑶露胸无遮挡在线观看| 日本a在线网址| 下体分泌物呈黄色| 国产黄频视频在线观看| 久久久久久久国产电影| 成人国产av品久久久| 亚洲成av片中文字幕在线观看| 久久久久久久精品精品| 亚洲人成77777在线视频| 夜夜骑夜夜射夜夜干| 国产成人精品无人区| 一二三四在线观看免费中文在| a在线观看视频网站| 丰满饥渴人妻一区二区三| 国产欧美日韩一区二区精品| 欧美成人午夜精品| 精品福利永久在线观看| 黑人操中国人逼视频| 老汉色av国产亚洲站长工具| 免费久久久久久久精品成人欧美视频| av在线老鸭窝| 汤姆久久久久久久影院中文字幕| 五月天丁香电影| 老司机影院毛片| 国产1区2区3区精品| 99精品欧美一区二区三区四区| 午夜激情久久久久久久| 久久精品国产a三级三级三级| 黄片大片在线免费观看| 亚洲一区中文字幕在线| 满18在线观看网站| 夜夜骑夜夜射夜夜干| 最近中文字幕2019免费版| 午夜日韩欧美国产| 美女高潮到喷水免费观看| 欧美久久黑人一区二区| 日韩视频在线欧美| 久久久国产成人免费| 国产视频一区二区在线看| 美女大奶头黄色视频| 国产在视频线精品| 在线精品无人区一区二区三| 男女国产视频网站| tube8黄色片| 两人在一起打扑克的视频| 日韩中文字幕欧美一区二区| 久久香蕉激情| 国产一区有黄有色的免费视频| 亚洲欧洲日产国产| 久久久久精品人妻al黑| 午夜福利影视在线免费观看| 麻豆av在线久日| 999精品在线视频| 精品久久久久久电影网| videos熟女内射| 夜夜夜夜夜久久久久| av欧美777| 人人澡人人妻人| 久久女婷五月综合色啪小说| 国产精品久久久久久精品电影小说| 超色免费av| 91字幕亚洲| 亚洲精品乱久久久久久| 考比视频在线观看| 久久青草综合色| 国产有黄有色有爽视频| 亚洲五月色婷婷综合| 波多野结衣一区麻豆| 女人高潮潮喷娇喘18禁视频| 欧美少妇被猛烈插入视频| 老汉色av国产亚洲站长工具| 又黄又粗又硬又大视频| 欧美日韩成人在线一区二区| 人人妻,人人澡人人爽秒播| 熟女少妇亚洲综合色aaa.| 人人妻人人爽人人添夜夜欢视频| 99九九在线精品视频| 国产福利在线免费观看视频| 啦啦啦啦在线视频资源| 亚洲免费av在线视频| 欧美变态另类bdsm刘玥| 啦啦啦在线免费观看视频4| 久久人妻福利社区极品人妻图片| 秋霞在线观看毛片| 亚洲国产av新网站| 人妻 亚洲 视频| 亚洲欧美日韩高清在线视频 | av网站免费在线观看视频| 婷婷成人精品国产| 欧美黄色淫秽网站| 国产一卡二卡三卡精品| 色播在线永久视频| av网站免费在线观看视频| 欧美亚洲日本最大视频资源| 最新在线观看一区二区三区| 欧美老熟妇乱子伦牲交| 欧美日韩国产mv在线观看视频| 亚洲精华国产精华精| 18禁观看日本| 法律面前人人平等表现在哪些方面 | 免费女性裸体啪啪无遮挡网站| 国产精品1区2区在线观看. | 久久女婷五月综合色啪小说| 国产精品一区二区精品视频观看| 免费在线观看黄色视频的| 搡老岳熟女国产| 人人澡人人妻人| 国产有黄有色有爽视频| 丰满饥渴人妻一区二区三| e午夜精品久久久久久久| 久久久欧美国产精品| 真人做人爱边吃奶动态| av超薄肉色丝袜交足视频| 狂野欧美激情性xxxx| 亚洲国产精品999| 午夜日韩欧美国产| 亚洲激情五月婷婷啪啪| 国产精品影院久久| 亚洲精品国产色婷婷电影| 91成年电影在线观看| 国产精品免费视频内射| 国产一区二区在线观看av| av视频免费观看在线观看| 精品高清国产在线一区| 午夜福利在线观看吧| 超碰97精品在线观看| 久久久久视频综合| 在线精品无人区一区二区三| 久久精品亚洲熟妇少妇任你| 麻豆国产av国片精品| 啦啦啦免费观看视频1| 久久99热这里只频精品6学生| 精品国产乱码久久久久久男人| 亚洲成人免费电影在线观看| 首页视频小说图片口味搜索| 在线精品无人区一区二区三| 国产精品熟女久久久久浪| 成人黄色视频免费在线看| 国产一区有黄有色的免费视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品中文字幕一二三四区 | 精品人妻熟女毛片av久久网站| 热99国产精品久久久久久7| 波多野结衣一区麻豆| 男人添女人高潮全过程视频| 久久青草综合色| cao死你这个sao货| 午夜精品国产一区二区电影| 夫妻午夜视频| 天天添夜夜摸| 久久久精品区二区三区| 欧美一级毛片孕妇| 岛国毛片在线播放| 国产精品免费视频内射| 99热网站在线观看| 高清视频免费观看一区二区| 五月天丁香电影| 女警被强在线播放| 国产欧美日韩一区二区三 | 亚洲精品国产精品久久久不卡| 下体分泌物呈黄色| 极品人妻少妇av视频| 亚洲,欧美精品.| 热99国产精品久久久久久7| 久久久国产成人免费| 国产主播在线观看一区二区| 精品国产国语对白av| 国产成人影院久久av| 波多野结衣av一区二区av| xxxhd国产人妻xxx| 啪啪无遮挡十八禁网站| 伊人久久大香线蕉亚洲五| 国产高清国产精品国产三级| 免费观看av网站的网址| 亚洲国产成人一精品久久久| 男女高潮啪啪啪动态图| 日韩欧美免费精品| 国产高清视频在线播放一区 | 日韩熟女老妇一区二区性免费视频| 亚洲精品第二区| 桃花免费在线播放| 十八禁网站网址无遮挡| 国产精品99久久99久久久不卡| 99热网站在线观看| 十八禁网站免费在线| 色老头精品视频在线观看| 久久这里只有精品19| 久久av网站| 曰老女人黄片| 久久久精品国产亚洲av高清涩受| kizo精华| 女性被躁到高潮视频| 久久这里只有精品19| 人人妻人人爽人人添夜夜欢视频| 亚洲国产精品成人久久小说| 午夜老司机福利片| 亚洲,欧美精品.| 亚洲午夜精品一区,二区,三区| 精品久久久久久电影网| 91精品三级在线观看| 97人妻天天添夜夜摸| 日韩一卡2卡3卡4卡2021年| www.999成人在线观看| av免费在线观看网站| 亚洲成国产人片在线观看| 国产一区二区三区综合在线观看| 久热爱精品视频在线9| 成年女人毛片免费观看观看9 | 精品亚洲成a人片在线观看| 看免费av毛片|