• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A direct position determination method with combined TDOA and FDOA based on particlefilter

    2018-02-02 08:10:21ZhiyuLUBinBAJinhuiWANGWenchoLIDmingWANG
    CHINESE JOURNAL OF AERONAUTICS 2018年1期

    Zhiyu LU,Bin BA,Jinhui WANG,Wencho LI,Dming WANG

    aChina National Digital Switching System Engineering&Technological R&D Cente,Zhengzhou 450000,China

    bJiuquan Satellite Launch Center,Jiuquan 735000,China

    1.Introduction

    Target localization is widely used in civil and militaryfields.Localization algorithms have been developed rapidly,among which the traditional two-step algorithm is the most signifi-cant.Under the two-step framework,the signal measurements,such as the Time of Arrival(TOA),1Angle of Arrival(AOA),2,3Time Difference of Arrival(TDOA),4and Frequency Difference of Arrival(FDOA),5should be extractedfirst from the received source signal.Then the target position is estimated by calculating the location equation.Vast literatures have shown that the two-step method has better performance at high Signal-to Noise Ratio(SNR).6,7However,it ignores the intrinsic link between the positioning parameters of the receivers.The signal parameters acquired in thefirst step are not in accordance with the source position found in the second step,leading to the loss of the location information.Furthermore,it is inevitable to involve processing errors in the step by step calculation.Therefore,the two-step method is suboptimal,failing to get the best positioning performance.8Compared with the traditional two-step approach,the DPD algorithm proposed in recent years does not need to estimate the signal parameters or calculate the position step by step,but acquires the source position from the received signals directly based on the maximum likelihood criterion.Because of its better performance,it has become a hot research topic.9–15

    Ref.9gives a systematic analysis of the DPD algorithm,and proposes a target approach for single narrowband signal emitter,which proves that the DPD algorithm outperforms the two-step method especially at low SNR.In order to further explore the advantages of DPD algorithm,Refs.10–15give a variety of improved algorithms with the integration of TOA,AOA,etc.,but these algorithms are mainly based onfixed receivers to estimate a narrowband signal emitter.With the increase of signal bandwidth and the wide use of moving receivers,such as aircraft-based,ship-based and vehicle-based platforms,it is urgent to research the DPD algorithms for wideband signal emitters in the moving receiver system.

    In this paper,we focus on the location of wideband signal emitters based on moving observation platforms.To this end,the common method partitions the received signal into multiple short-time signal segments,in which the narrowband localization algorithm can still play a role to obtain the position by the joint use of all the signal segments.A DPD algorithm based on Doppler shift received by moving platforms is proposed for narrowband emitters in Ref.16,which is more precise compared with the two-step algorithms.On the basis of Refs.16,17gives a DPD algorithm which is combined with TOA and Doppler shift based on non-coherent summation of short-time signal segments.To further improve the positioning performance,Ref.18proposes an improved DPD algorithm exploiting the coherent summation of multiple short-time signal segments,while solves the problem of phase synchronization error between the receivers and the target to make the algorithm more practical.

    In the passive location system,the synchronization is not accurate between the receivers and the target,so the DPD algorithm using delay and Doppler is difficult to get better performance.To solve this problem,Ref.19presents an adaptive DPD algorithm based on TDOA with least mean square(LMS)filtering,achieving good positioning accuracy.Combined with the Doppler information obtained by the moving receiver,a distributed DPD algorithm based on TDOA and FDOA is proposed in Ref.20.But the correlation between the short-time signal segments is not taken into account,so there is still room for the positioning accuracy improvement.Besides,it is very difficult to obtain the analytical solution because of the high nonlinearity of the above DPD algorithms.So in order to obtain the maximum likelihood estimation,the ergodic search method is used,which makes the positioning accuracy reach the CRLB with huge computation load and communication bandwidth.To overcome these problems,novel information technology can be used.For example,the intelligent algorithm21and the cloud computing and storage technology22,23can be used to reduce the computation loads,and the compressive sensing technology24and automatic network management technology25are helpful for reducing the communication bandwidth.Filteriterative algorithm is another method for parameter estimation,such as Extended Kalman Filter(EKF),26Unscented Kalman Filter(UKF)27and Particle Filter(PF),28which has good performance.Especially,the PF algorithm can solve the strong non-linear and non-Gaussian estimation problem,which has been proven in a variety of applications.

    In summary,there are still some deficiencies in the existing DPD algorithms when the positioning of wideband signal emitters is executed based on TDOA and FDOA.How to make use of more location information contained in the signal segments to improve positioning accuracy,while avoiding the problem of large computation cost,has tremendous challenge and research merit.To accomplish this target,this paper proposes a DPD algorithm with combined TDOA and FDOA based on particlefilter,using coherent summation of the short-time signal segments to improve positioning accuracy(labeled as PFC-TF DPD).Compared with the existing literatures,the contributions of this paper lie in:

    (1)The algorithm proposed in this paper makes full use of the location information contained in the coherency among the signal segments to improve positioning accuracy.The CRLB of the source position is derived,which shows that the positioning accuracy is better compared with the existing algorithms.

    (2)One iterative maximum likelihood estimation method based on particlefilter is designed to solve the problem of high computation load,which improves the estimated efficiency.

    (3)The influence of different parameters on the positioning performance is analyzed in the simulation part.It is shown that the positioning accuracy of the proposed DPD algorithm is proportional to interception interval of two adjacent signal segments and the number of short-time signals.The above results can be used to provide a reference of the optimal parameter configuration for different application environments.

    The rest of the paper is organized as follows.The following section gives the direct positioning model.We derive Maximum Likelihood(ML)estimators based on particlefilter for our DPD algorithm in Section 3 and develop the source position CRLB in Section 4.Section 5 provides the simulation and the result analyses.Finally,Section 6 concludes the paper.

    2.Positioning modeling and problem formulation

    A stationary source located at o= [ox,oy]is considered.Lis the number of moving receivers which have been synchronized.The number of short-time signal segments isK,while the interception interval of two adjacent signal segments isT0.The receivers get the signal segment at timetk,k=1,2,...,Kwhen they are located at ul,kwith velocities˙ul,k,l=1,2,...,L.The DPD scenario is shown in Fig.1.

    We suppose that the source signal is

    wherefcis the carrier frequency ands(t)is the signal envelope.The signal received with thelth receiver in thekth period is

    Taking the signal of thefirst receiver as reference,we let

    Fig.1 DPD scenario.

    and then represent Eq.(2)as

    where Δτl1,kand Δvl1,kare TDOA and FDOA respectively as shown in Eqs.(5)and(6),andwl,k(t)is the statistically independent complex Gaussian noises whose probability density function isC(0,σl,k).

    The received source signal would be sampled as

    wherec=3×108m/s is the speed of light.Tsis the sampling interval,Nkis the number of samples taken in each signal segment,ntk=tk/Tsis the starting time of thekth segment,Δnl1,k= Δτl1,k/Tsis the discrete representation of TDOA,ejΔvl1,k(ntk+nk)Tsis the coherency item among the signal segments received in the same receiver andcis the light speed.In the PFC-TF DPD algorithm discussed in the following parts,we will use the position information inherent in ejΔvl1,kntkTsto improve location accuracy.

    The signals received from all receivers are combined to be fully utilized.Let

    and then gk[nk- Δnl1,k]can be expressed as

    where 1Nkis aNk×1 vector with all the elements equal to 1.With combined Eqs.(8)–(10),the received signal can be expressed as

    With the above notations,the combination of all received signals is

    whereE[wwH]= Γ =diag{Γ1,Γ2,...,Γk,...,ΓK} and Γk=E[wkwHk].Next we will analyze the PFC-TF DPD algorithm in detail based on this signal model.

    3.PFC-TF DPD algorithm

    Under the positioning model given in Section 2,the PFC-TF DPD algorithm is derived step by step in the following to prove its feasibility.From Eq.(15),the received signal r is a complex Gaussian random vector with mean Hg and covariance Γ.So the Probability Density Function(PDF)can be given by

    The Maximum Likelihood Estimator(MLE)of the target can be obtained by Ref.18

    It is difficult to obtain the MLE of the target position because of the strong non-linearity in Eq.(17).So the ergodic search method is commonly used in many DPD algorithms,which are poor practical with huge computation load.The particlefilter algorithm has better performance when it is used to solve the strong non-linear estimation.The result can be obtained quickly through iteration procedure,which has been proved in a large number of applications.

    The MLE of gkis given by

    Therefore,in terms of the Bayesianfiltering problem,drawing the particles according to Eq.(21)moves the weights from timej-1 toj,i.e.,performs the prediction stage and Eq.(28)performs the update stage.

    In order to update the particle more stably,we set a strategy that retains the largest weight particle of the previous generation to the next generation.That is

    According to the above analysis,the computation load is mainly concentrated in Eq.(27),whose total computation cost is

    The DPD algorithm based on ergodic search dividesNgrids in the target region,so the total computation cost is approximate toNDC.

    The convergence accuracy of the proposed algorithm is related to the signal length,SNR,and the number of receivers.The convergence rate is related to the initial value and the number of particles.Thus,it is difficult to give a theoretical suggestion on the number of iterations when so many parameters are dealt with.In this paper,in order to simplify the calculation,afixed iteration number and particle number are set without affecting thefinal location results according to many experiments,so the total computation cost of the PFC-TF DPD algorithm is approximate toMJDC.Thus,the ratio of computation load is

    The simulation part will prove thatMJwill be far less thanN,but the location accuracy is almost not decreased.In order to show the algorithm architecture more clearly based on the principle derived in this section,a possible implementation of the PFC-TF DPD algorithm is in Table 1.

    4.Cramer-Rao lower bound

    In this section,we are interested in the CRLB for estimation of the source position to further analyze the positioning performance of the PFC-TF DPD algorithm proposed in this paper.We define that the vector η is composed of the real-part of g,the imaginary-part of g,and the target parameters o.That is

    Table 1 Implementation of PFC-TF DPD algorithm.

    The receive signal is

    According to Ref.18,the Fisher Information Matrix(FIM)of η is given by

    Combining Eqs.(35)–(43),we can express Jηas

    According to the partitioned matrix inversion formula,the FIM of o can be expressed as

    CRLB can be obtained by the inverse of the Fisher Information Matrix matrix,so CRLBois

    5.Simulations

    In order to test the performance of the PFC-TF DPD algorithm,computer simulations are conducted in this section.Compared with the DPD algorithm based on Doppler shift(labeled with NC-F DPD)and the DPD algorithm with combined TDOA and FDOA based on non-coherent summation of short-time signal segments(labeled with NC-TF DPD),the positioning accuracy and CRLB will be analyzed.It is assumed that the target is located at o= [0,0]in a 2-D plane.The number of receivers isL=4.The number of short-time signal segments isK=10.All parameters of the receivers are shown in Table 2.

    We adopt the Gaussian random signal with zero mean and unit variance as the source signal.The simulated nominal signal carrier frequency isfc=300 MHz.The sampling interval isTs=2×10-5s.The interception interval of two adjacent signal segments isT0=0.01 s.The duration of every shorttime signal isT=1 ms.The number of samples isNk=50.The interesting region is [-1000,1000]m.

    To compare the location performance of different algorithms,in thefirst experiment,the cost functions of the candidate source positions with 1 m interval are evaluated at SNR=20 dB.The results are shown in Fig.2.In order to show the result clearly,the 3D plots and their top views are given,in whichxaxis andyaxis are the position coordinates,and z axis is the cost function value normalized by the maximum.It can be seen from Fig.2(a)and(b)that,although the SNR is very high,the NC-F DPD algorithm exhibits a curvature of large radius around the real source location.It is difficult to obtain accuracy estimation.Once the SNR is decreased,the location performance will decline rapidly.Fig.2(c)and(d)show that there is a curvature of smallradius around the true source position,which improves the estimation accuracy compared with NC-F DPD algorithm.Fig.2(e)and(f)demonstrate the effectiveness of the PFC-TF DPD algorithm with the sharper peak around the true source position,which will bring higherlocation accuracy.The simulation results are consistent with the theoretical derivation,showing that the use of the location information contained in the coherency among the signal segments is significative,which is expected.

    Table 2 Parameters of receivers.

    Fig.2 Evaluation of cost functions of source location estimators for each algorithm.

    Fig.3 Convergence of particles.

    In order to verify the computational performance of the PFC-TF algorithm,in the second experiment,with the iteration increasing,the convergence of particles and thefiltering error are shown in Figs.3 and 4 respectively under the conditions of SNR=20 dB andT0=0.01 s.The number of particles isM=50 and the number of iteration isJ=50.As can be seen from Fig.3,with the iteration increasing,the particlesflow toward the target position and eventually converge to the real position.Fig.4 shows that thefiltering error is shaking more seriously at the beginning,but after a short adjustment,the error is tiny and tends to be stable,which proves the good performance in the convergent speed.According to the simulation conditions,the ratio in Eq.(32)is λ =2.5×10-3,that is,the computation load of PFC-TF algorithm decreases by nearly 3 orders of magnitude compared with that of the DPD algorithms based on ergodic search,indicating a signifi-cant increase in computing efficiency.

    In order to further illustrate the performance of PFC-TF DPD algorithm,in the third experiment,we shall contrast the localization performance of each algorithm with their CRLBs.The CRLB and RMSE of each algorithm,as a function of SNR,are achieved across 50 Monte-Carlo simulation experiments,and shown in Fig.5.It can be seen that,with the increase of SNR,the performance of each algorithm is improved,but the PFC-TF DPD algorithm is significantly better than the NC-TF DPD algorithm and NC-F DPD algorithm,which proves that the location information contained in the coherency can effectively improve positioning accuracy.The performance of PFC-TF DPD algorithm remains close to the CRLB,especially at high SNRs it coincides with the CRLB.Combined with the results of Fig.6,we can get that our algorithm is more computationally efficient and more precise for weak signals than the conventional approach,which demonstrates the utility and practicability of the method.

    The performance development of each algorithm with the increase ofK,the number of short-time signals,is given in Fig.7 under the conditions of SNR=10 dB andT0=0.01 s.It can be seen that all algorithms have a performance improvement with the increase ofK.But compared with the NC-TF DPD algorithm and NC-F DPD algorithm,the performance of PFC-TF DPD algorithm is improved significantly.In addition,the PFC-TF DPD algorithm has better performance whenKis small,which means that the positioning efficiency is improved.

    In the last experiment,we examine the performance of each algorithm versusT0,the interception interval of two adjacent signal segments,under the conditions of SNR=10 dB andK=10.The results are shown in Fig.6.It can be seen that the performance of NC-F DPD algorithm and NC-TF DPD algorithm are not changed for better because of their independence of the variableT0,while the performance of PFC-TF DPD algorithm is improved asT0increases.In addition,the localization accuracy of the PFC-TF DPD algorithm is always close to its CRLB,resulting in excellent performance.But whenT0<0.001 s,due to the fact that the time interval is too short,there is no extra location information contained in the coherency,so the PFC-TF algorithm has the same performance as NC-TF algorithm.

    Fig.4 Filtering error with iteration increasing.

    Fig.5 Estimation accuracy of each algorithm as a function of SNR.

    Fig.6 Estimation accuracy of each algorithm as a function of T0.

    Fig.7 Estimation accuracy of each algorithm as a function of K.

    As can be seen from the above simulation results,the PFCTF DPD algorithm proposed in this paper has excellent performance.Compared with the NC-TF DPD algorithm,it uses the correlation information among the signal segments,which solves the problem of huge computation load.Under the same conditions,the proposed algorithm obtains better estimations with less number of short-time signals,which makes the algorithm more practical.

    6.Conclusions

    (1)We conducted a comprehensive study on the DPD algorithm.The PFC-TF DPD algorithm is proposed,which acquires extra target position information through the correlation information among the signal segments to get better positioning performance.The CRLB of the source position is derived,which shows that the positioning accuracy is better compared with the existing algorithms.

    (2)One iterative maximum likelihood estimation method based on particlefilter is designed to solve the problem of high computation load.Simulation results show that the proposed method can get better location performance than other DPD algorithms under low SNR,making it full of practical value.

    (3)The algorithm can be used in many multi-sensor cooperative location scenarios,such as double-star position system,Unmanned Aerial Vehicle(UAV)-based formation system and ship-based formation system,tofinish the job of target reconnaissance,search,rescue,and so on.

    Acknowledgement

    This study was supported by the National Natural Science Foundation of China(No.61401513).

    1.Oh D,Kim S,Yoon SH.Two-dimensional ESPRIT-like shiftinvariant TOA estimation algorithm using multi-band chirp signals robust to carrier frequency offset.IEEE Trans Wireless Commun2013;12(7):3130–9.

    2.Yan F,Jin M,Qiao X.Low-complexity DOA estimation based on compressed MUSIC and its performance analysis.IEEE Trans Signal Process2013;61(8):1915–30.

    3.Ba B,Liu GC,Li T,Lin YC,Wang Y.Joint for time of arrival and direction of arrival estimation algorithm based on the subspace of extended hadamard product.Acta Phys Sin2015;64(7):384–92[Chinese].

    4.Lu ZY,Wang DM,Wang JH,Wang Y.A tracking algorithm based on orthogonal cubature Kalmanfilter with TDOA and FDOA.Acta Phys Sin2015;64(15):25–32[Chinese].

    5.Wang G,Li YM,Ansari N.A semidefinite relaxation method for source localization using TDOA and FDOA measurements.IEEE Trans Veh Technol2013;62(2):853–5.

    6.Ho KC,Chan YT.Geolocation of a known altitude object from TDOA and FDOA measurements.IEEE Trans Aerosp Electron Syst1997;33(3):770–83.

    7.Chan YT,Ho KC.Joint time-scale and TDOA estimation:analysis and fast approximation.IEEE Trans Signal Process2005;53(8):2625–34.

    8.Bosse J,Ferre′ol A,Larzabal P.Performance analysis of passive localization strategies:direct one step approach versus 2 steps approach.IEEE Statistical signal processing(SSP)workshop;2011.p.701–4.

    9.Weiss AJ.Direct position determination of narrowband radio frequency transmitters.IEEESignalProcessLett2004;11(5):513–7.

    10.Weiss AJ,Amar A.Direct position determination of multiple radio signals.EURASIP J Adv Signal Process2005;1:37–49.

    11.Amar A,Weiss AJ.Direct position determination in the presence of model errors-known waveforms.Digital Signal Process2006;16(1):52–83.

    12.Shalom OB,Weiss AJ.Direct positioning of stationary targets using MIMO radar.Signal Process2011;91(10):2345–58.

    13.Reuven AM,Weiss AJ.Direct position determination of cyclostationary signals.Signal Process2009;89(12):2448–64.

    14.Naresh V,Steven K,Quan D.TDOA based direct positioning maximum likelihood estimator and the Cramer-Rao Bound.IEEE Trans Aerosp Electron Syst2014;50(3):1616–46.

    15.Tom T,Weiss AJ.High resolution direct position determination of radio frequency sources.IEEE Signal Process Lett2016;23(2):192–7.

    16.Amar A,Weiss AJ.Localization of narrowband radio emitters based on Doppler frequency shifts.IEEE Trans Signal Process2008;56(11):5500–8.

    17.Weiss AJ.Direct geolocation of wideband emitters based on delay and Doppler.IEEE Trans Signal Process2011;59(6):2513–21.

    18.Li JZ,Yang L,Guo FC.Coherent summation of multiple shorttime signals for direct positioning of a wideband source based on delay and Doppler.Digital Signal Process2015;48:58–70.

    19.Zhong S,Xia W,He Z.Adaptive direct position determination of emitters based on time differences of arrival.IEEE China summit&international conference on signal and information processing;2013 July 6–10;Beijing,China.Piscataway:IEEE Press;2013.p.230–4.

    20.Pourhomayoun M,Fowler M.Distributed computation for direct position determination emitter location.IEEE Trans Aerosp Electron Syst2014;50(4):2878–89.

    21.Xue Y,Jiang J,Zhao B,Ma T.A self-adaptive artificial bee colony algorithm based on global best for global optimization.Soft Comput2017;8:1–18.

    22.Shen J,Shen J,Chen XF,Huang XY,Susilo W.An efficient public auditing protocol with novel dynamic structure for cloud data.IEEE Trans Inf Foren Secur2016;12(10):2402–15.

    23.Fu ZJ,Ren K,Shu J,Sun XM,Huang FX.Enabling personalized search over encrypted outsourced data with efficiency improvement.IEEE Trans Parallel Distrib Syst2016;27(9):2546–59.

    24.Sun YJ,Gu FH.Compressive sensing of piezoelectric sensor response signal for phased array structural health monitoring.Int J Sensor Networks2017;23(4):258–64.

    25.Qu ZG,Keeney J,Robitzsch S,Zaman F,Wang XJ.Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks.China Commun2016;13(7):108–16.

    26.Luo L,Tian ZS,Chen JY.Algorithm of EKF positioning and tracking.J Chongqing Univ Posts Telecommun(Nat Sci Ed)2009;21(1):50–5[Chinese].

    27.Liu Y,Wang H,Hou CH.UKF based nonlinearfiltering using minimum entropy criterion.IEEE Trans Signal Process2013;61(20):4988–99.

    28.Gustafsson F.Particlefilter theory and practice with positioning applications.IEEE Aerosp Electron Syst Mag2010;25(7):53–82.

    成人午夜高清在线视频| 日日干狠狠操夜夜爽| 亚洲激情五月婷婷啪啪| av天堂中文字幕网| 久久6这里有精品| 精品人妻视频免费看| 久久久久久久久久久免费av| 亚洲国产精品国产精品| 最近的中文字幕免费完整| 日本免费a在线| 精品一区二区免费观看| 久久久久久九九精品二区国产| 亚洲无线观看免费| 精品久久久噜噜| 又爽又黄无遮挡网站| 99久国产av精品国产电影| 日本av手机在线免费观看| 日韩三级伦理在线观看| 久久精品国产自在天天线| 蜜臀久久99精品久久宅男| 国产白丝娇喘喷水9色精品| 十八禁国产超污无遮挡网站| 国产乱来视频区| 亚洲综合精品二区| 久久久久久久午夜电影| 亚洲精品日韩av片在线观看| 日韩国内少妇激情av| 夜夜爽夜夜爽视频| 天堂俺去俺来也www色官网 | 天堂网av新在线| 极品教师在线视频| 亚洲熟女精品中文字幕| 亚洲最大成人中文| 一级爰片在线观看| 成年免费大片在线观看| 嫩草影院新地址| 亚洲一级一片aⅴ在线观看| 欧美三级亚洲精品| 欧美97在线视频| 韩国高清视频一区二区三区| 午夜福利在线观看吧| 国产精品日韩av在线免费观看| 亚洲自拍偷在线| 1000部很黄的大片| 成年版毛片免费区| 国产伦精品一区二区三区四那| 亚洲精品一区蜜桃| 国产精品一二三区在线看| 免费大片18禁| 最近最新中文字幕免费大全7| 亚洲成人精品中文字幕电影| 寂寞人妻少妇视频99o| 99re6热这里在线精品视频| 联通29元200g的流量卡| 久久草成人影院| 久久人人爽人人爽人人片va| 哪个播放器可以免费观看大片| 寂寞人妻少妇视频99o| 成人美女网站在线观看视频| 午夜福利在线观看吧| 一本一本综合久久| 免费大片18禁| 色综合站精品国产| 亚洲欧美成人综合另类久久久| 亚洲真实伦在线观看| 国产老妇女一区| 日韩成人伦理影院| 午夜精品一区二区三区免费看| 色播亚洲综合网| 色吧在线观看| 久久这里只有精品中国| 日本黄大片高清| 国内精品一区二区在线观看| 久久久欧美国产精品| 中文字幕人妻熟人妻熟丝袜美| 欧美3d第一页| 亚洲欧美中文字幕日韩二区| av卡一久久| 国产黄色小视频在线观看| 久久久久久国产a免费观看| 五月玫瑰六月丁香| 亚洲精品久久久久久婷婷小说| 三级国产精品欧美在线观看| h日本视频在线播放| 亚洲无线观看免费| 高清毛片免费看| 免费看日本二区| 国产在视频线精品| 偷拍熟女少妇极品色| 又粗又硬又长又爽又黄的视频| 亚洲欧美精品专区久久| 精品国内亚洲2022精品成人| 内地一区二区视频在线| 成人av在线播放网站| 能在线免费看毛片的网站| 最近视频中文字幕2019在线8| 国产精品国产三级国产av玫瑰| 亚洲国产精品sss在线观看| 日韩av不卡免费在线播放| 国产熟女欧美一区二区| 免费无遮挡裸体视频| 日韩国内少妇激情av| 国产在线男女| 欧美潮喷喷水| 别揉我奶头 嗯啊视频| 中文字幕免费在线视频6| 麻豆精品久久久久久蜜桃| 简卡轻食公司| 六月丁香七月| 国产免费视频播放在线视频 | av卡一久久| 欧美性猛交╳xxx乱大交人| 久久久精品94久久精品| 国产精品三级大全| 国产精品久久久久久精品电影| 自拍偷自拍亚洲精品老妇| 最近中文字幕2019免费版| 一个人看视频在线观看www免费| av专区在线播放| 亚洲三级黄色毛片| 精品久久久久久久人妻蜜臀av| 亚洲av成人精品一区久久| 蜜桃亚洲精品一区二区三区| 老司机影院成人| 18禁裸乳无遮挡免费网站照片| 国产精品久久视频播放| 成人漫画全彩无遮挡| 淫秽高清视频在线观看| 2018国产大陆天天弄谢| 精品国产三级普通话版| 亚洲欧美日韩无卡精品| 久久99蜜桃精品久久| 男女啪啪激烈高潮av片| 亚洲欧美成人精品一区二区| 亚洲av成人精品一区久久| 国产在线一区二区三区精| 蜜桃亚洲精品一区二区三区| 国产老妇伦熟女老妇高清| 亚洲熟妇中文字幕五十中出| 亚洲精品成人久久久久久| 亚洲欧美精品自产自拍| 亚洲在久久综合| 精品国内亚洲2022精品成人| 中文字幕久久专区| 免费黄网站久久成人精品| 成人性生交大片免费视频hd| 美女cb高潮喷水在线观看| 国精品久久久久久国模美| 亚洲av成人av| 美女国产视频在线观看| 日韩一区二区视频免费看| 内地一区二区视频在线| 久久精品国产亚洲网站| av国产久精品久网站免费入址| 床上黄色一级片| 亚州av有码| 国产不卡一卡二| 黄片wwwwww| 久久国产乱子免费精品| 日韩精品青青久久久久久| 欧美区成人在线视频| www.av在线官网国产| 日韩一区二区视频免费看| 五月天丁香电影| 亚洲国产精品成人久久小说| 中文乱码字字幕精品一区二区三区 | 人妻一区二区av| 亚洲精品一二三| 久久亚洲国产成人精品v| 日日摸夜夜添夜夜添av毛片| 色5月婷婷丁香| 免费看不卡的av| 欧美变态另类bdsm刘玥| 国产淫语在线视频| 精品久久久久久久久久久久久| 天堂影院成人在线观看| 亚洲av在线观看美女高潮| 内地一区二区视频在线| 欧美成人午夜免费资源| 女的被弄到高潮叫床怎么办| 卡戴珊不雅视频在线播放| 日日干狠狠操夜夜爽| 天美传媒精品一区二区| 国产精品精品国产色婷婷| 亚洲自偷自拍三级| 亚洲av.av天堂| 中文精品一卡2卡3卡4更新| 亚洲一级一片aⅴ在线观看| 最近最新中文字幕免费大全7| 97超视频在线观看视频| 我的女老师完整版在线观看| 日韩制服骚丝袜av| 日韩不卡一区二区三区视频在线| 搡女人真爽免费视频火全软件| 亚洲一级一片aⅴ在线观看| 最近最新中文字幕免费大全7| 国产精品国产三级国产av玫瑰| 热99在线观看视频| 亚洲美女视频黄频| 免费av毛片视频| 黑人高潮一二区| 在线免费观看的www视频| 国产精品人妻久久久影院| 有码 亚洲区| 男女国产视频网站| 欧美性感艳星| 最新中文字幕久久久久| 日韩中字成人| 精品一区二区免费观看| 五月玫瑰六月丁香| 久久久精品欧美日韩精品| 91久久精品国产一区二区三区| 国产精品爽爽va在线观看网站| 欧美性猛交╳xxx乱大交人| av在线播放精品| 精品一区在线观看国产| 久久久久久伊人网av| 五月玫瑰六月丁香| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产爱豆传媒在线观看| 天堂中文最新版在线下载 | 亚洲无线观看免费| 中文字幕亚洲精品专区| 国产久久久一区二区三区| 乱码一卡2卡4卡精品| 国产色爽女视频免费观看| 老师上课跳d突然被开到最大视频| 欧美成人精品欧美一级黄| 国产69精品久久久久777片| 超碰97精品在线观看| 久久久久久久大尺度免费视频| 日本黄色片子视频| 成人鲁丝片一二三区免费| 亚洲精品成人av观看孕妇| 在线 av 中文字幕| 久久久久九九精品影院| 中文乱码字字幕精品一区二区三区 | 日本午夜av视频| 2022亚洲国产成人精品| 纵有疾风起免费观看全集完整版 | 亚洲精品色激情综合| 午夜福利在线在线| 亚洲精品乱码久久久久久按摩| 亚洲精品自拍成人| 久久久午夜欧美精品| 蜜臀久久99精品久久宅男| 亚洲精品成人久久久久久| 久久久久久国产a免费观看| 丰满少妇做爰视频| 欧美成人午夜免费资源| 不卡视频在线观看欧美| 亚洲精品乱码久久久久久按摩| 午夜激情久久久久久久| 性插视频无遮挡在线免费观看| 最近手机中文字幕大全| 在现免费观看毛片| 亚洲精品中文字幕在线视频 | 超碰av人人做人人爽久久| 高清av免费在线| 一夜夜www| 午夜精品在线福利| 亚洲四区av| 欧美丝袜亚洲另类| 亚洲国产成人一精品久久久| 欧美成人精品欧美一级黄| 中文字幕免费在线视频6| 免费人成在线观看视频色| 中文字幕久久专区| 午夜免费观看性视频| 国产午夜精品论理片| 人人妻人人澡人人爽人人夜夜 | 男人和女人高潮做爰伦理| 国产精品一区www在线观看| 干丝袜人妻中文字幕| 极品教师在线视频| 国产精品国产三级国产专区5o| 亚洲人与动物交配视频| 成人二区视频| 免费观看精品视频网站| 九草在线视频观看| 日韩av不卡免费在线播放| 中文字幕av成人在线电影| 国产成人91sexporn| 乱人视频在线观看| 18禁在线无遮挡免费观看视频| 51国产日韩欧美| 亚洲av在线观看美女高潮| 国产伦一二天堂av在线观看| 亚洲欧美精品自产自拍| 只有这里有精品99| www.色视频.com| 午夜激情久久久久久久| 天天躁日日操中文字幕| 久久精品夜色国产| 高清在线视频一区二区三区| 欧美日本视频| 亚洲,欧美,日韩| 精品国产露脸久久av麻豆 | 少妇人妻精品综合一区二区| 成年免费大片在线观看| 久久精品国产亚洲av天美| 丝袜喷水一区| a级一级毛片免费在线观看| 精品久久久久久久人妻蜜臀av| 国产一区二区三区综合在线观看 | 一区二区三区四区激情视频| 国产精品三级大全| 国产精品日韩av在线免费观看| 成人漫画全彩无遮挡| 69av精品久久久久久| 午夜福利在线观看吧| 亚洲高清免费不卡视频| 国产av国产精品国产| 免费观看的影片在线观看| 熟女人妻精品中文字幕| 国产精品嫩草影院av在线观看| 97精品久久久久久久久久精品| 亚洲精品一区蜜桃| 日韩欧美国产在线观看| 精品久久久久久久人妻蜜臀av| 日本-黄色视频高清免费观看| 黄片wwwwww| 成人特级av手机在线观看| 婷婷色综合www| 午夜福利成人在线免费观看| 大又大粗又爽又黄少妇毛片口| 欧美不卡视频在线免费观看| 亚洲第一区二区三区不卡| 亚洲欧美日韩无卡精品| 搡女人真爽免费视频火全软件| 国产精品福利在线免费观看| 搡女人真爽免费视频火全软件| 国产国拍精品亚洲av在线观看| 亚洲av免费在线观看| 搡老妇女老女人老熟妇| 国产视频内射| 中文在线观看免费www的网站| 色综合站精品国产| 亚洲综合精品二区| 午夜福利成人在线免费观看| 成人午夜精彩视频在线观看| 国产男女超爽视频在线观看| 少妇熟女aⅴ在线视频| 亚洲精品乱码久久久久久按摩| 国产男人的电影天堂91| 成人无遮挡网站| 亚洲人成网站在线播| 国产又色又爽无遮挡免| 全区人妻精品视频| 亚洲国产精品专区欧美| 听说在线观看完整版免费高清| 久久久久网色| 午夜福利成人在线免费观看| 亚洲性久久影院| 国产精品.久久久| 我的老师免费观看完整版| 菩萨蛮人人尽说江南好唐韦庄| 国产黄色小视频在线观看| 精品人妻熟女av久视频| 高清毛片免费看| 免费看光身美女| 国产高潮美女av| 高清av免费在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 看黄色毛片网站| 精品国产三级普通话版| 国产综合精华液| 亚洲av成人精品一区久久| 免费观看a级毛片全部| 国产精品美女特级片免费视频播放器| 一级毛片黄色毛片免费观看视频| 亚洲精品国产av成人精品| 国产一区二区三区综合在线观看 | 国产国拍精品亚洲av在线观看| 男女那种视频在线观看| 国产精品一区二区三区四区久久| 国产精品麻豆人妻色哟哟久久 | 人人妻人人看人人澡| 亚洲内射少妇av| 国产成人a区在线观看| 亚洲综合色惰| 天堂影院成人在线观看| 在线免费观看的www视频| 观看免费一级毛片| 亚洲av福利一区| 最近最新中文字幕大全电影3| 亚洲av成人精品一二三区| 国产91av在线免费观看| 久久久成人免费电影| 高清毛片免费看| 日本与韩国留学比较| a级毛色黄片| 亚洲精品日韩在线中文字幕| 国产麻豆成人av免费视频| 精品人妻偷拍中文字幕| 最近的中文字幕免费完整| 久久热精品热| 国产精品一二三区在线看| 亚洲真实伦在线观看| 麻豆精品久久久久久蜜桃| 国产精品国产三级专区第一集| 亚洲精品成人av观看孕妇| 神马国产精品三级电影在线观看| 国产精品一二三区在线看| 亚洲欧美精品专区久久| 99久国产av精品| 精华霜和精华液先用哪个| 国产精品久久久久久久久免| 又大又黄又爽视频免费| 丝瓜视频免费看黄片| 国产高潮美女av| 一级毛片电影观看| 国产一级毛片在线| 亚洲三级黄色毛片| 亚洲第一区二区三区不卡| 久久久久久久久久黄片| 日韩欧美精品免费久久| 日韩,欧美,国产一区二区三区| 国产成人福利小说| 精品久久久久久久久久久久久| 国产精品无大码| 精品人妻熟女av久视频| 高清午夜精品一区二区三区| 午夜福利在线在线| 午夜亚洲福利在线播放| 亚洲av不卡在线观看| 国产黄片美女视频| 久久人人爽人人爽人人片va| 一级黄片播放器| 国产伦理片在线播放av一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 美女黄网站色视频| 久热久热在线精品观看| 欧美xxⅹ黑人| 成人漫画全彩无遮挡| 精品国内亚洲2022精品成人| 在线免费观看的www视频| 国产精品久久久久久精品电影小说 | 精品99又大又爽又粗少妇毛片| 精品国产一区二区三区久久久樱花 | 天堂av国产一区二区熟女人妻| 日韩 亚洲 欧美在线| 成人二区视频| 久久久精品免费免费高清| 大陆偷拍与自拍| 国产精品一区二区三区四区久久| 男人爽女人下面视频在线观看| 成人欧美大片| 亚洲精品久久久久久婷婷小说| 日本爱情动作片www.在线观看| 亚洲精品乱码久久久v下载方式| 看免费成人av毛片| 国产一区二区三区av在线| 亚洲aⅴ乱码一区二区在线播放| 中文在线观看免费www的网站| 国产免费福利视频在线观看| 男女边吃奶边做爰视频| 国产v大片淫在线免费观看| 亚洲成人av在线免费| 国产av不卡久久| 啦啦啦啦在线视频资源| 色综合色国产| 五月玫瑰六月丁香| 成人二区视频| 精品国产一区二区三区久久久樱花 | 大又大粗又爽又黄少妇毛片口| 久久久午夜欧美精品| 国产免费视频播放在线视频 | 国产一区二区在线观看日韩| 精品久久久久久久末码| 天堂网av新在线| 久久99精品国语久久久| 亚洲国产精品成人综合色| 联通29元200g的流量卡| 国产午夜精品久久久久久一区二区三区| 久久99热这里只频精品6学生| 又黄又爽又刺激的免费视频.| 男的添女的下面高潮视频| 天美传媒精品一区二区| 国产大屁股一区二区在线视频| 国内少妇人妻偷人精品xxx网站| 嫩草影院新地址| 久久精品国产鲁丝片午夜精品| 男人舔奶头视频| 嫩草影院新地址| 中文在线观看免费www的网站| 亚洲精品视频女| 欧美zozozo另类| 超碰97精品在线观看| 一个人看的www免费观看视频| 日韩精品青青久久久久久| 国产伦精品一区二区三区视频9| 我的女老师完整版在线观看| 久久精品久久精品一区二区三区| 国产高清三级在线| 蜜臀久久99精品久久宅男| 一区二区三区乱码不卡18| 赤兔流量卡办理| 看非洲黑人一级黄片| 简卡轻食公司| 看免费成人av毛片| 久久久久久久午夜电影| 国产91av在线免费观看| 成人毛片a级毛片在线播放| 女人十人毛片免费观看3o分钟| 欧美一级a爱片免费观看看| 97人妻精品一区二区三区麻豆| 亚洲最大成人手机在线| 特级一级黄色大片| 国产一区亚洲一区在线观看| 久久精品久久久久久久性| 欧美日韩一区二区视频在线观看视频在线 | 97精品久久久久久久久久精品| 国产白丝娇喘喷水9色精品| 久久久久久久久久黄片| 亚洲成人一二三区av| 亚洲国产高清在线一区二区三| av一本久久久久| 中文在线观看免费www的网站| 国产永久视频网站| av国产久精品久网站免费入址| 国产在线男女| 色吧在线观看| 国产日韩欧美在线精品| 国产午夜精品久久久久久一区二区三区| av国产久精品久网站免费入址| 日韩成人伦理影院| 国产成人91sexporn| 三级国产精品片| 亚洲电影在线观看av| 久久97久久精品| 赤兔流量卡办理| 免费电影在线观看免费观看| 亚洲精品456在线播放app| av网站免费在线观看视频 | 国产精品一二三区在线看| av.在线天堂| 天天躁日日操中文字幕| 少妇的逼水好多| 最近最新中文字幕免费大全7| 免费看日本二区| 男女啪啪激烈高潮av片| 亚洲国产最新在线播放| 中文资源天堂在线| 国产亚洲午夜精品一区二区久久 | 精品99又大又爽又粗少妇毛片| 男人舔奶头视频| 男插女下体视频免费在线播放| 一个人看视频在线观看www免费| 日本猛色少妇xxxxx猛交久久| 亚洲av成人精品一区久久| 色哟哟·www| 国产精品人妻久久久久久| 乱人视频在线观看| 国产一区二区三区综合在线观看 | 免费大片黄手机在线观看| 亚洲国产精品成人综合色| 人人妻人人澡人人爽人人夜夜 | 日韩欧美一区视频在线观看 | 国产精品久久久久久久久免| 少妇人妻一区二区三区视频| 欧美高清性xxxxhd video| 草草在线视频免费看| 国产大屁股一区二区在线视频| 五月玫瑰六月丁香| 赤兔流量卡办理| 搡老妇女老女人老熟妇| 大香蕉久久网| 国产在视频线精品| 国产免费一级a男人的天堂| 乱系列少妇在线播放| 国产精品国产三级专区第一集| 久热久热在线精品观看| 亚洲欧洲国产日韩| 久久久久久久亚洲中文字幕| 精品久久久久久久久av| 18+在线观看网站| 搡老乐熟女国产| 国产精品99久久久久久久久| 久久6这里有精品| 精品不卡国产一区二区三区| 国内精品宾馆在线| 亚洲av国产av综合av卡| 中文字幕亚洲精品专区| 免费av毛片视频| 啦啦啦韩国在线观看视频| 国产精品爽爽va在线观看网站| 人妻制服诱惑在线中文字幕| av国产久精品久网站免费入址| 亚洲欧美精品自产自拍| 狂野欧美白嫩少妇大欣赏| 久久国产乱子免费精品| 99久久人妻综合| 中文精品一卡2卡3卡4更新| 少妇的逼水好多| av在线播放精品| 九九在线视频观看精品| 好男人在线观看高清免费视频| 亚洲激情五月婷婷啪啪| 久久99热6这里只有精品| 亚洲美女视频黄频| 亚洲在线自拍视频| 成人特级av手机在线观看| 日韩国内少妇激情av| 18禁裸乳无遮挡免费网站照片| 中文天堂在线官网| 久热久热在线精品观看| 国产精品国产三级国产av玫瑰| 99久久精品一区二区三区| 搡老妇女老女人老熟妇| 在线a可以看的网站| 国产精品一区www在线观看| 亚洲自拍偷在线| 老女人水多毛片| 久久精品综合一区二区三区|