• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An aviation oxygen supply system based on a mechanical ventilation model

    2018-02-02 08:10:29YnSHIYixunWANGMolinCAIBolunZHANGJinZHU
    CHINESE JOURNAL OF AERONAUTICS 2018年1期

    Yn SHI,Yixun WANG,*,Molin CAI,Bolun ZHANG,Jin ZHU

    aSchool of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China

    bBeijing ChaoYang Hospital,Beijing 100043,China

    1.Introduction

    An AOSS has significant implications for pilot security by continuously providing oxygen according to the dynamic respiratory properties of pilots at high altitudes.1–7The airflow dynamic characteristics of an AOSS directly influence the safety,sustainability,and efficiency of the oxygen supply which aims to avoid low pressure and hypoxia in highaltitudeflight.Therefore,it is necessary to carry out research on the AOSS model.

    Studies on AOSSs have been performed previously.New technologies such as high-altitude oxygen supply,pressurized cabins,pressurized oxygen intake,and airborne molecular sieve oxygen systems have been previously explored,and they have had pivotal effects on the characteristics of aircraft.1In an oxygen supply system,the oxygen supply structure as the main part of the system has been designed and studied.Xiao1introduced a general supply system which can providefixedpressure andflow-controlled oxygen by presetting the initial parameters.In his book,the structures of oxygen supply devices are introduced in detail,including the oxygen feed and the oxygen exhauster,using a flow regulator with a flat valve.2,3Furthermore,the structures of the main types of oxygen supply masks are displayed and analyzed.According to literature,4–7the oxygen concentration of an aviation system can satisfy the physiological needs of pilots by controlling the pressure andflow of supplied oxygen.

    Alongside the mathematical model of a supplying system,Yu and Zhao8,9built models of the exhaust valve and pressure regulating devices by simplifying the airflow of the oxygen supply to throttling equations.Based on an active servo lung,Yi et al.10simplified a respiratory system to a first-order model with three basic elements(V,C,andR),which emphasized the conception of an air-resistor.While there still lacks comprehensive analysis for an entire oxygen-supplying respiratory system,11–13in the medical field,Shi et al.14–16modeled a pressure-controlled mechanical ventilation system by studying the breathing machine and patients’lungs.

    In principle,mechanical ventilation used on ICU patients(which has been verified in detail in the papers mentioned above)is similar to that of a simplified oxygen supply system.8,9,14–16In addition,the simplified parts of the oxygen supply system can meet oxygen performance requirements via a control algorithm.17Next,the accessories used in the oxygen supply system are demonstrated to be improved in the mechanical characteristics throughfinite element calculation and parameter setting.18,19The basic purpose of a pressurecontrolled mechanical ventilation system is for pilots at high altitudes to obtain sufficient oxygen intake of relatively high pressure.This is similar in principle to an AOSS,and as a result,serves as an approximate model of the AOSS.20–26

    In this paper,to lay the foundation for the safety and effi-ciency of an AOSS,the mathematical model of the system is proposed and demonstrated experimentally.Next,the airflow dynamic characteristic of the system,which includes the supplyingflow and pressure of oxygen in a simulative lung,is illustrated through simulation research.Furthermore,a parametric study clarifies the influences of key structural parameters on the dynamic characteristics and performance of the proposed AOSS model.

    2.Configuration of aviation oxygen supply system model

    An AOSS supplies oxygen continuously when an aircraftflies at an altitude of over 12000 m.According to the international standard,the pressure of the supplied oxygen is approximately 4 cmH2O.1As shown in Fig.1,the structure of the model of the AOSS can be simplified and considered as a mechanical ventilation system.In the system,the oxygen supply mask is directly connected to the respiratory tract of a pilot,which creates a sealed connection between the oxygen resource and the lungs.There are check valves to control the directions of inlet oxygen and outlet air between the oxygen resource and the lungs as well as between the lungs and the air outlet.

    The working process of the oxygen supply is as follows:

    (1)The oxygen supply resource starts to export oxygen uninterruptedly when the ambient pressure is below a certain value.Then,the chest muscles actively expand,which forms a vacuum in the lungs,and the airflow comes into the lungs.

    (2)During the expiration process,the chest muscles actively contract which increases the pressure in the lungs,after which the air pressure in the lungs is high enough for the pilot to exhale.

    According to the breathing properties of active lungs(which have been verified by Liu et al.3),the pressure provided by the respiratory muscles can be set in stages in the processes of both inspiration and expiration.Thus,the mathematical model of the aviation oxygen supply system is proposed as follows.

    2.1.Flow equation

    By using the ratio of downstream to upstream pressurePd/Pu,the air massflow equation through a restriction can be calculated.WhenPd/Puis below 0.528,the airflow is sonic.As the range of the pressure in the lungs is approximately between 2 cmH2O and 40 cmH2O according to our previous research,20the mathematical model of the respiratory system can be obtained as:

    whereCfis flow coefficient,and it is equal to 1 when air is taken into chamber,and it is equal to-1 when air exhausts from the chamber.Qis the air volumeflow(m3/s),qis the air mass flow(kg/s),ρais the atmospheric density(kg/m3),Pdis the downstream pressure(cmH2O),Puis the upstream pressure(cmH2O),Ais the effective area of throttle(mm2),bis the critical pressure ratio which is equal to 0.528,Ris the gas constant which is equal to 287(J/(kg·K)),andTis the temperature(K).

    2.2.Pressure equation

    As the temperature of a human body is relatively constant,the prototype ventilation system can be assumed to be an isothermal system.Additionally,the differential expression of the Clapeyron equation can be written as:

    wheremis the mass of air(kg),tmeans the time,pis the air pressure of the oxygen resource(Pa),Vis the volume of the lungs(m3),andCis the definition of respiratory compliance(m3/Pa).

    Fig.1 Model of aviation oxygen supply system.

    2.3.Volume equation

    According to the definition of respiratory compliance(C),the compliance of the lungs can be described as14–16:

    Then the volume of the lungs can be represented in a discrete state equation as follows:

    where ΔVis the volume of the lung change caused by a pressure change(m3),Vtis the change volume of the lungs(m3),Δpis the pressure change(Pa),Plis the pressure of the lungs(Pa),Reis the air resistance(cmH2O/(L·s)),andkis the cumulative number of sampling times which starts from integer one.

    2.4.Synthesis equation

    Therefore,based on the properties above,the equation about parameters such as the air resistanceRe,the compliance of the lungsC,the pressure of the lungsPl,and the change volume of the lungsVt,which describes the pneumatic model of mechanical ventilation,can be described as follows:

    3.Experimental and simulation

    To demonstrate the mathematical model proposed above,a simulative AOSS is built as shown in Fig.2.In the experimental station,the oxygen resource is simulated by a ventilator which is connected via air tubes.In order to simulate the breathing process of a real human body,a lung simulator is used which,with appropriate adjustments,has similar characteristics to those of real lungs.In the air pipeline,there are aflow sensor and a pressure sensor which are connected to a data acquisition card.The signal acquisition computer can gather and analyze signals from the sensors.Additionally,the lung simulator can transmit measurements of the volume change and pressure inside.

    Fig.2 Experimental station of simulative aviation oxygen supply system.

    For simulating real conditions of a pilot’s oxygen supply,the air ventilator pressure is set to 4 cmH2O when the lung simulator expands,and zero when the lung simulator contracts.By setting the breathing frequency to approximately 18 times per minute,the lung simulator expands and contracts to simulate a pilot’s natural breathing patterns.Then,experimental curves are obtained after several signal collections.Next,parameters for the mathematical model are set up according to the actual oxygen supply working condition,and then we obtain simulation results in a specific environment.Experimental and simulation results of theflow in the pipeline and the pressure in the lungs can be seen in Fig.3(a)and(b),respectively.

    Theflow curves from the simulation and experiment are shown in Fig.3(a).Simulation and experimental results are mainly consistent,which demonstrates the mathematical model proposed above.Flow curves begin at negative values,which represents that the lungs expand and produce a negative pressure to draw in air during the process of inspiration.In this process,the oxygen supply equipment works continuously in which the pressure is set to 4 cmH2O to simulate a real AOSS at a high altitude.Simultaneously,the active servo lungs provide an expansion force effect.After approximately two seconds,the active servo lungs actively start to contract to simulate the expiration process,providing the compression force effect.This causes theflow direction of the oxygen supply system to sharply reverse when the oxygen supply equipment stops working.Additionally,the expiration time is relatively shorter than the inspiration time.This is a result of general breathing being simulated by setting up the pressure of respiratory muscles during the inspiration process.

    Fig.3(b)shows the pressure curves from the simulation and experiment.As we can see from thisfigure,the trends of the experimental and simulation curves are basically consistent.The lung pressure curves are relatively low atfirst,which match well with theflow curves.After the inspiration process,the trends of the rising curves change for reasons that the oxygen supply simulation device stops working and the effects of the respiratory muscles are different during the processes of expiration and inspiration.

    Fig.3 Flow and pressure curves of respiratory system.

    4.Influences of system parameters on airflow dynamic characteristics of aviation oxygen supply system

    In order to optimize the dynamic performance of the AOSS,the working dynamic characteristics of the system are studied.The output dynamic characteristics of the oxygen supply system are mainly under the influences of the equivalent throttling area of the inspiration pipeline(Ain),the equivalent throttling area of the expiration pipeline(Aex),the supply air pressure(Pin),and the external environment pressure(Pen).To illustrate the influences of the parameters on the airflow dynamic characteristics,the parameters are analyzed,and each one is changed for comparison while the other parameters are kept constant.

    4.1.Influence of equivalent throttling area of inspiration pipeline

    The equivalent throttling area of the inspiration pipeline(Ain)determines theflow of the air between the oxygen supply device and the lungs under a certain pressure differential.In this simulation,the supply air pressure(Pin)is set to 4 cmH2O and the external environment pressure(Pen)is set to atmospheric pressure.The equivalent throttling area of the inspiration pipeline(Ain)is set to the following values:8,12,and 16 mm2,and the airflow working dynamic characteristics are studied.The results are shown as follows.

    Fig.4(a)shows theflow curves in the main pipeline of the AOSS.A comparison of the curves shows that the area of the inspiration pipeline(Ain)clearly influences the inputflow of the oxygen supply system.WhenAinincreases,the airwayflow increases,and the wave crests become sharper.Furthermore,the inspiration time will be shorter with the whole breathing cycle time invariant.Fig.4(b)shows that an increase ofAininfluences the pressure of the lungs by promoting the stability to a small extent.This is due to the supply oxygen pressure being much lower than the atmospheric pressure,and according to the principle of air-through-orificethrottling,a larger throttling area will increase theflow between the air resource and the lungs.

    Fig.5(a)shows that the averageflow and pressure will stay relatively stable as the value of the wholeflow is approximated for each breathing cycle.As shown in Fig.5(b),increasingAinwill promote the stability of the pressure in the lungs but vastly increase airwayflow instability.For the overall stability of the system and avoiding the invalidation of the orifice throttling principle,for this particular system,Ainis modestly set to between 8 and 10 mm2.

    4.2.Influence of equivalent throttling area of expiration pipeline

    The equivalent throttling area of the expiration pipeline(Aex)indirectly influences the pressure of the active servo lungs.In this simulation,the supply air pressure(Pin)is constantly set to 4 cmH2O and the external environment pressure(Pen)is set to atmospheric pressure.The equivalent throttling area of the inspiration pipeline(Aex)is set to the following values:8,10,12,and 14 mm2,and the airflow working dynamic characteristics are studied.The results are shown as follows.

    From Fig.6(a)and(b),the area of the expiration pipeline(Aex)evidently influences the outputflow of the oxygen supply system,which is similar to the effect ofAin.WhenAexincreases,theflow of the airway increases,and the wave crests will become sharper.An increase ofAexwill slightly promote lung pressure stability.

    As Fig.7(a)shows,increasingAexwill reduce the average pressure of the lungs and promote the averageflow of the oxygen supply system,of which the variation degree is moderate.Furthermore,as Fig.7(b)shows,the pressure variance will not change noticeably with an increase ofAex.However,an overly large expiration area will suddenly intensify the instability of the breathing system due to the invalidation of the orifice throttling principle.Comprehensively considered,the area of the expiration pipeline(Aex)is set within 10–12 mm2.

    Fig.4 Airflow and lung pressure influenced by Ain.

    Fig.5 Average and variance of pressure and flow influenced by Ain.

    Fig.6 Airflow and lung pressure influenced by Aex.

    4.3.Influence of supplied air pressure

    The supply air pressure(Pin)directly affects the process of inspiration.In this simulation,the equivalent throttling areas of the inspiration and expiration pipelines are constantly set to 10 and 12 mm2,respectively.The external environment pressure(Pen)is set to 4 cmH2O lower than the atmospheric pressure to simulate a low-pressure environment.The supply air pressure(Pin)is set to the following values:0,4,24,and 44 cmH2O.The working dynamic characteristics of the airflow are then studied.The results are shown as follows.

    According to the international standard,the pressure of the supplied oxygen is approximately 4 cmH2O.1Based on the standard,the influence of the input oxygen pressure(Pin)is studied for analyzing possible oxygen supply instability.As we can see from Fig.8(a),the input oxygen pressure(Pin)is also a key parameter for the whole AOSS.WhenPinis set to approximately 24 cmH2O,the dynamic tendency of theflow curve will not noticeably change.However,attenuation and instability will occur in the oxygen supply system whenPinis set to 44 cmH2O or greater.Therefore,although the standard pressure of supplied oxygen is much lower than what the human body has adapted to,the pressure of the input oxygen still has a substantial effect on the airflow dynamic characteristics.Similarly,from Fig.8(b),a moderatePinvalue will not cause a large disturbance of the dynamic characteristics of the oxygen supply system.

    As is shown in Fig.9(a),the average value of the pressure tends to be stable while the average flow is greatly influenced byPinwhere the value is set lower than 24 cmH2O.From Fig.9(b),an overly highPinwill cause instability to both the pressure andflow.

    Fig.7 Average and variance of pressure and flow influenced by Aex.

    Fig.8 Airflow and lung pressure influenced by Pin.

    4.4.Influence of external environment pressure

    The external environment pressure(Pen)mainly has an impact on the expiration process.In this simulation,the equivalent throttling areas of the inspiration and expiration pipelines are constantly set up to 8 and 10 mm2,respectively.The pressure of the supply air(Pin)is set to 4 cmH2O.The external environment pressure(Pen)is set to the following values:4,24,44,and 84 cmH2O lower than the atmospheric pressure,simulating a low-pressure environment.These are expressed as 0,-24,-44 and-84 cmH2O.The results of the study are shown as follows.

    The pressurized cabin of an aircraft counteracts the environmental pressure of its pilot at an overly high altitude.1Under the influences of the environment temperature difference,airtightness,altitude,and the rapid pressure change that occurs during cabin emergency pressure relief,the environmental pressure of a human body will seldom be constant.Therefore,the airflow dynamic characteristics of the oxygen supply system are studied by simulating a relatively low-pressure environment.

    Fig.9 Average and variance of pressure and flow influenced by Pin.

    AsshowninFig.10(a),thedynamicflowdoesnotnoticeably change when the external environment pressure(Pen)is at lower levels.Whiletheexternalenvironmentpressureislowerthan84 cmH2Obelowthestandardatmosphericpressure,theexpirationflow will apparently increase,and the flow ceiling is higher as well.As shown in Fig.10(b),the lung pressure will reduce with a reduction inPen.This is a result of a sufficiently low-pressure breathing environment causing oxygen depletion,which will create a low pressure,gas supply shortage for the pilot.

    As shown in Fig.11(a)and(b),the average pressure decreases and becomes more unsteady whenPenis sufficiently low.The averageflow value through the pipeline of the oxygen supply system is relatively unstable and theflow variance is gradually increasing.From the analysis,it can be seen that the airflow dynamic characteristics will stay relatively stable with ahigherpressureinalow-pressureenvironment.Whentheenvironment pressure is lower than 84 cmH2O below the standard atmospheric pressure,pressure andflow stability will decrease.

    Regarding to the optimization of the aviation oxygen supply system,we can consider that,structurally speaking,the equivalent throttling areas of the inspiration and expiration pipelines can be conclusively determined according to the optimal simulation results.From a parametric perspective,the settled input pressure can be properly controlled for the stability of the system.

    Fig.10 Airflow and lung pressure influenced by Pen.

    Fig.11 Average and variance of pressure and flow influenced by Pen.

    5.Conclusions

    To build a foundation for the optimization of an AOSS,the airflow dynamic characteristics of aviation are analyzed by building a mathematical model and setting up an experimental station.In addition,the influences of key system parameters are researched.Conclusions can be drawn as follows:

    (1)The simulation results are consistent with the experimental ones,and the proposed mathematical model is demonstrated to be effective.

    (2)Increasingtheequivalentthrottlingareaoftheinspiration pipeline may improve the airflow stability during the inspiration process.To avoid the invalidation of the ori-fice throttling principle,the equivalent throttling area of the inspiration pipeline can be set smaller within defined limits.

    (3)As the area of the expiration pipeline increases,the air-flow during the expiration process will increase.However,an overly large expiration area will suddenly intensify the instability.

    (4)An excessively high supplying pressure can disturb the stabilityofthesystemwhichmaycompromisethebreathing process.

    (5)The AOSS can adapt to environments of low pressure with a lower limit of 84 cmH2O below the standard atmospheric pressure.

    This research provides a basis for the design and performance optimization of an aviation oxygen supply system,especially in the area of oxygen supply at altitudes greater than 12000 m.

    1.Xiao HJ.Applied physiology of aviation oxygen protective equipment.Beijing:Military Medicine Science Press;2005.p.248–51[Chinese].

    2.Xiao HJ,Liu XP,Zang B,Wang GY,Gu Z.The denitrogenation by breathing oxygen-rich gas to prevent altitude decompression sickness.Chin J Appl Physiol2012;28(6):568–71[Chinese].

    3.Liu XP,Xiao HJ,Zang B,Gu Z,Wang GY,Shi WR,et al.Test evaluation on oxygen supply scheme at high altitude for two pilots.Sci Technol Eng2014;2014(21):52–6[Chinese].

    4.Hui DS,Hall SD,Chan MT,Chow BK,Ng SS,Gin T,et al.Exhaled air dispersion during oxygen delivery via a simple oxygen mask.Chest2007;132(2):540–6.

    5.Crosbie WA,Warren JP,Smith LA.A new oxygen mask:comparison with other clinical methods of giving oxygen.J Int Med Res1974;2(3):214–9.

    6.Cam BV,Tuan DT,Fonsmark L,Poulsen A,Tien NM,Tuan HM,et al.Randomized comparison of oxygen mask treatment vs.nasal continuous positive airway pressure in dengue shock syndrome with acute respiratory failure.J Trop Pediat2002;48(6):335–9.

    7.Hudes ET,Marans HJ,Hirano GM,Scott AC,Ho K.Recovery room oxygenation:a comparison of nasal catheters and 40 per cent oxygen masks.Can J Anaesth1989;36(1):20–4.

    8.Yu ZJ,Zhao JQ.Numerical simulation of pressure oxygen supply’s performance characteristic of oxygen supply system based on simulink.Microcomp Appl2010;31(2):1–6[Chinese].

    9.Yu ZJ,Zhao JQ.Numerical simulation of oxygen supply system’s performance parameters characteristic at high altitude.J Beijing Univ Aeronaut Astronaut2010;36(8):918–21[Chinese].

    10.Yi WW,Zhang Q,Wang YK,Qin HY.Mechanics modeling and simulation of artificial respiration system based on ventilator.J Syst Simul2009;21(15):4892–5[Chinese].

    11.Jiang YX,Sun QL,Zhang X,Chen Z.Pressure regulation for oxygen mask based on active disturbance rejection control.IEEE Trans Indust Electron2017;64(8):6402–11.

    12.Campkin NT,Ooi RG,Soni NC.The rebreathing characteristics of the Hudson oxygen mask.Anaesthesia1993;48(3):239–42.

    13.Tehrani FT.A control system for mechanical ventilation of passive and active subjects.Comp Meth Prog Biomed2013;110(3):511–8.

    14.Ren S,Shi Y,Cai ML,Xu WQ.Influence of secretion on airflow dynamics of mechanical ventilated respiratory system.IEEE/ACM TransComputBiolBioinf2017. https://doi.org/10.1109/TCBB.2017.2737621).

    15.Ren S,Cai ML,Shi Y,Xu WQ,Zhang XD.Influence of bronchial diameter change on the airflow dynamics based on a pressurecontrolled ventilation system.Int J Numer Meth Biomed Eng2017.https://doi.org/10.1002/cnm.2929.

    16.Shi Y,Zhang BL,Cai ML,Xu WQ.Coupling effect of double lungs on a vcv ventilator with automatic secretion clearance function.IEEE/ACM Trans Comput Biol Bioinf2017.https://doi.org/10.1109/TCBB.2017.2670079.

    17.Adrian RJ.Particle-imaging techniques for experimentalfluid mechanics.Ann Rev Fluid Mech1991;23(1):261–304.

    18.Jiang YX,Sun QL,Tan P,Chen ZQ.Modeling and simulation of an electronic oxygen regulator based on all-coefficient adaptive control.J Dynam Syst Measur Control2016;138(8):1–7.

    19.Oomen PE,Skolimowski MD,Verpoorte E.Implementing oxygen control in chip-based cell and tissue culture systems.Lab on a Chip2016;16(18):3394–414.

    20.Jodat RW,Horgan JD,Lange RL.Simulation of respiratory mechanics.Biophys J1966;6(6):773–85.

    21.Jaimchariyatam N,DweikRA,Kaw R,AboussouanLS.Polysomnographic determinants of nocturnal hypercapnia in patients with sleep apnea.J Clin Sleep Med2013;9(3):209–15.

    22.Yi WW.Research on the key technology of ventilation modes based on active servo lung[dissertation].Changsha:The National Defense Science and Technology University;2009[Chinese].

    23.Yunus AC,Cimbala JM.Fluid mechanics fundamentals and applications.Columbus:McGraw Hill Publication;2006.p.185–201.

    24.Niu JL,Shi Y,Cai ML,Cao ZX,Wang DD,Zhang ZZ,et al.Detectionofsputumbyinterpretingthetime-frequencydistribution of respiratory sound signal using image processing techniques.Bioinformatics2017. https://doi.org/10.1093/bioinformatics/btx652.

    25.Niu JL,Shi Y,Cao ZX,Cai ML,Wei C,Zhu J.Study on airflow dynamic characteristic of mechanical ventilation of a lung simulator.Sci China Technol Sci2017;60(2):1–8.

    26.Shi Y,Zhang B,Cai M,Zhang D.Numerical simulation of volume-controlled mechanical ventilated respiratory system with two different lungs.Int J Numer Methods Biomed2016;33(2852).doi:https://doi.org/10.1002/cnm.2852.

    成年美女黄网站色视频大全免费| 日本黄色日本黄色录像| 国产免费福利视频在线观看| 亚洲精品乱久久久久久| 99九九在线精品视频| 最近2019中文字幕mv第一页| 久久狼人影院| 伊人亚洲综合成人网| 一本色道久久久久久精品综合| 国产成人免费无遮挡视频| 激情视频va一区二区三区| 80岁老熟妇乱子伦牲交| 麻豆av在线久日| 美女国产视频在线观看| 午夜91福利影院| 久久久久久久国产电影| 看十八女毛片水多多多| 亚洲国产av影院在线观看| 岛国毛片在线播放| 国产精品无大码| www.熟女人妻精品国产| 亚洲一区中文字幕在线| 欧美av亚洲av综合av国产av | 久久国产精品大桥未久av| 欧美日韩视频精品一区| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区国产| 亚洲在久久综合| 国产精品国产三级专区第一集| 国产一区亚洲一区在线观看| av不卡在线播放| 伊人久久大香线蕉亚洲五| 黄片小视频在线播放| 视频在线观看一区二区三区| 亚洲av电影在线观看一区二区三区| 黄色视频在线播放观看不卡| 国产成人精品一,二区| 亚洲人成77777在线视频| 一区在线观看完整版| 久久午夜综合久久蜜桃| 久久精品夜色国产| 人人妻人人爽人人添夜夜欢视频| 婷婷色综合大香蕉| 高清不卡的av网站| 天天躁夜夜躁狠狠躁躁| 最近中文字幕2019免费版| 亚洲欧洲国产日韩| 高清不卡的av网站| 女人高潮潮喷娇喘18禁视频| 免费观看在线日韩| 桃花免费在线播放| 欧美 亚洲 国产 日韩一| 丁香六月天网| 欧美精品一区二区大全| 亚洲av电影在线观看一区二区三区| 亚洲国产色片| 韩国精品一区二区三区| 巨乳人妻的诱惑在线观看| 99久国产av精品国产电影| 精品卡一卡二卡四卡免费| 午夜福利影视在线免费观看| 国产 精品1| 亚洲三区欧美一区| 国产亚洲一区二区精品| 纯流量卡能插随身wifi吗| 自线自在国产av| 精品一区二区三卡| 少妇被粗大的猛进出69影院| 99re6热这里在线精品视频| 大陆偷拍与自拍| 一级,二级,三级黄色视频| 99热国产这里只有精品6| 天美传媒精品一区二区| 婷婷成人精品国产| av有码第一页| 日韩中文字幕视频在线看片| 免费日韩欧美在线观看| 国产精品不卡视频一区二区| 精品国产乱码久久久久久小说| 精品少妇久久久久久888优播| 三级国产精品片| 自线自在国产av| 波野结衣二区三区在线| 一边亲一边摸免费视频| 超碰97精品在线观看| 99re6热这里在线精品视频| 欧美日韩精品成人综合77777| 国产1区2区3区精品| 丝袜在线中文字幕| 国产av精品麻豆| av免费在线看不卡| 在线免费观看不下载黄p国产| kizo精华| 亚洲国产av新网站| 男人爽女人下面视频在线观看| 久久这里有精品视频免费| 亚洲精品视频女| 成人18禁高潮啪啪吃奶动态图| 国产无遮挡羞羞视频在线观看| 久久久久精品人妻al黑| 欧美日韩一级在线毛片| 亚洲四区av| 青春草视频在线免费观看| 欧美精品人与动牲交sv欧美| 青青草视频在线视频观看| 丝袜在线中文字幕| 亚洲第一区二区三区不卡| av又黄又爽大尺度在线免费看| av女优亚洲男人天堂| 1024香蕉在线观看| 少妇人妻 视频| 一本久久精品| 18+在线观看网站| 青草久久国产| 99九九在线精品视频| 国产成人精品一,二区| 精品人妻偷拍中文字幕| 久久精品久久精品一区二区三区| 九九爱精品视频在线观看| 美女脱内裤让男人舔精品视频| 一本色道久久久久久精品综合| a 毛片基地| 日韩在线高清观看一区二区三区| 五月伊人婷婷丁香| 在现免费观看毛片| 精品人妻熟女毛片av久久网站| 日韩精品有码人妻一区| 亚洲综合精品二区| 国产毛片在线视频| 成人国语在线视频| 最近的中文字幕免费完整| 黄片小视频在线播放| 免费在线观看黄色视频的| 午夜91福利影院| 久久精品熟女亚洲av麻豆精品| 日产精品乱码卡一卡2卡三| 精品少妇久久久久久888优播| 亚洲伊人色综图| 寂寞人妻少妇视频99o| √禁漫天堂资源中文www| 一级黄片播放器| 涩涩av久久男人的天堂| 岛国毛片在线播放| 欧美人与性动交α欧美精品济南到 | 老汉色av国产亚洲站长工具| 精品福利永久在线观看| 亚洲国产欧美在线一区| 春色校园在线视频观看| 亚洲少妇的诱惑av| 亚洲人成77777在线视频| 久久精品亚洲av国产电影网| av天堂久久9| 欧美人与性动交α欧美软件| av在线app专区| 久久精品国产亚洲av涩爱| 男的添女的下面高潮视频| 久久久久精品久久久久真实原创| 黄色怎么调成土黄色| 免费观看在线日韩| 看非洲黑人一级黄片| 欧美中文综合在线视频| 中文乱码字字幕精品一区二区三区| 晚上一个人看的免费电影| h视频一区二区三区| 久久国产精品大桥未久av| 在线观看免费日韩欧美大片| 国产高清国产精品国产三级| 秋霞在线观看毛片| 国产色婷婷99| 免费观看a级毛片全部| 午夜老司机福利剧场| 精品国产一区二区三区四区第35| 超色免费av| 少妇猛男粗大的猛烈进出视频| 久久久国产欧美日韩av| 一区在线观看完整版| 美国免费a级毛片| 少妇的逼水好多| 免费观看a级毛片全部| 人妻人人澡人人爽人人| 欧美黄色片欧美黄色片| 爱豆传媒免费全集在线观看| 国产精品一二三区在线看| 欧美激情极品国产一区二区三区| 97在线视频观看| 晚上一个人看的免费电影| 成年美女黄网站色视频大全免费| 久久99热这里只频精品6学生| 亚洲伊人色综图| 男女免费视频国产| 久久久久国产一级毛片高清牌| 啦啦啦在线免费观看视频4| 天天躁日日躁夜夜躁夜夜| videossex国产| 婷婷色av中文字幕| 国产成人午夜福利电影在线观看| 国产成人精品久久久久久| 亚洲av男天堂| 丝袜美足系列| 久热久热在线精品观看| 赤兔流量卡办理| 叶爱在线成人免费视频播放| 波多野结衣一区麻豆| 久久ye,这里只有精品| a级毛片黄视频| 国产野战对白在线观看| 亚洲av电影在线进入| 国产精品秋霞免费鲁丝片| 亚洲国产色片| 国产av精品麻豆| 成人影院久久| 精品一区二区三卡| 久久久久久伊人网av| 一级a爱视频在线免费观看| 国产成人精品福利久久| 国产视频首页在线观看| 久久久a久久爽久久v久久| 汤姆久久久久久久影院中文字幕| 夜夜骑夜夜射夜夜干| a级片在线免费高清观看视频| 亚洲伊人久久精品综合| 9热在线视频观看99| 黄色配什么色好看| 男女边吃奶边做爰视频| 丁香六月天网| av福利片在线| 欧美日韩av久久| 国产免费现黄频在线看| 中国国产av一级| 老熟女久久久| 国产一区二区三区av在线| 亚洲欧美清纯卡通| 精品酒店卫生间| 欧美国产精品一级二级三级| 午夜福利视频在线观看免费| 日韩中字成人| 三级国产精品片| 免费观看av网站的网址| 久久青草综合色| 欧美在线黄色| 久久久久精品久久久久真实原创| 欧美成人午夜精品| 美女大奶头黄色视频| 久久国产亚洲av麻豆专区| 一区二区日韩欧美中文字幕| 免费不卡的大黄色大毛片视频在线观看| 性色av一级| 国产成人精品久久久久久| 亚洲色图综合在线观看| 亚洲精品一二三| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久精品古装| 亚洲欧美一区二区三区黑人 | 国产免费现黄频在线看| 精品少妇久久久久久888优播| 国产淫语在线视频| 久久久久久伊人网av| 国产无遮挡羞羞视频在线观看| 亚洲av日韩在线播放| 啦啦啦视频在线资源免费观看| 一区二区日韩欧美中文字幕| av又黄又爽大尺度在线免费看| 999精品在线视频| 亚洲一码二码三码区别大吗| av一本久久久久| 一边摸一边做爽爽视频免费| 亚洲成av片中文字幕在线观看 | 日本av手机在线免费观看| 亚洲精品中文字幕在线视频| 成人亚洲欧美一区二区av| av片东京热男人的天堂| 春色校园在线视频观看| 免费看不卡的av| 2022亚洲国产成人精品| 91精品伊人久久大香线蕉| 日日啪夜夜爽| 91午夜精品亚洲一区二区三区| 伦理电影免费视频| 三上悠亚av全集在线观看| 亚洲中文av在线| 日本vs欧美在线观看视频| 中文字幕精品免费在线观看视频| 18+在线观看网站| 午夜av观看不卡| 男男h啪啪无遮挡| 久久久国产欧美日韩av| 两性夫妻黄色片| 少妇 在线观看| 最近最新中文字幕大全免费视频 | 天堂8中文在线网| 精品视频人人做人人爽| av片东京热男人的天堂| 高清在线视频一区二区三区| 精品国产一区二区久久| 久久久久久人妻| 在线观看免费日韩欧美大片| 亚洲三区欧美一区| 久久99精品国语久久久| 亚洲国产精品成人久久小说| 成人毛片60女人毛片免费| 美国免费a级毛片| 性高湖久久久久久久久免费观看| 亚洲精品av麻豆狂野| 亚洲男人天堂网一区| www.熟女人妻精品国产| 亚洲人成网站在线观看播放| 91久久精品国产一区二区三区| 欧美在线黄色| av网站在线播放免费| 久久久国产欧美日韩av| 成人亚洲欧美一区二区av| 国产av国产精品国产| 亚洲,欧美精品.| www.精华液| 日本欧美视频一区| 午夜激情久久久久久久| 亚洲第一av免费看| 午夜激情久久久久久久| 久久精品熟女亚洲av麻豆精品| 一本—道久久a久久精品蜜桃钙片| 自线自在国产av| av福利片在线| 免费黄网站久久成人精品| 制服诱惑二区| 欧美 日韩 精品 国产| 只有这里有精品99| 亚洲一区中文字幕在线| 精品福利永久在线观看| 国产黄色视频一区二区在线观看| 91午夜精品亚洲一区二区三区| 国产老妇伦熟女老妇高清| 亚洲成人av在线免费| 男男h啪啪无遮挡| 国产成人精品福利久久| 热re99久久国产66热| 久久鲁丝午夜福利片| 久久人人爽av亚洲精品天堂| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩中文字幕欧美一区二区 | 在线看a的网站| 男男h啪啪无遮挡| 久久精品国产亚洲av涩爱| 精品第一国产精品| 亚洲男人天堂网一区| 亚洲av电影在线观看一区二区三区| 老女人水多毛片| 成人手机av| 国产成人免费无遮挡视频| 久久精品国产亚洲av天美| 天堂中文最新版在线下载| 夫妻午夜视频| 成人二区视频| 五月开心婷婷网| 亚洲一级一片aⅴ在线观看| 99热全是精品| 亚洲视频免费观看视频| av在线观看视频网站免费| 国产免费视频播放在线视频| 高清在线视频一区二区三区| 18在线观看网站| 啦啦啦中文免费视频观看日本| 精品人妻一区二区三区麻豆| 寂寞人妻少妇视频99o| 色视频在线一区二区三区| 丁香六月天网| 91午夜精品亚洲一区二区三区| 9色porny在线观看| 新久久久久国产一级毛片| 午夜av观看不卡| 一区二区三区乱码不卡18| av有码第一页| 午夜老司机福利剧场| 国产av精品麻豆| 人妻人人澡人人爽人人| 满18在线观看网站| 国产精品99久久99久久久不卡 | 亚洲内射少妇av| 日韩一区二区视频免费看| 日本猛色少妇xxxxx猛交久久| 在线观看免费视频网站a站| 亚洲欧洲日产国产| 亚洲精品一二三| 亚洲情色 制服丝袜| 亚洲国产精品999| 天堂8中文在线网| 十八禁网站网址无遮挡| 卡戴珊不雅视频在线播放| 女性生殖器流出的白浆| 亚洲综合精品二区| 亚洲精品aⅴ在线观看| 国产精品久久久久久精品电影小说| 成人毛片a级毛片在线播放| 亚洲欧美中文字幕日韩二区| 2022亚洲国产成人精品| 晚上一个人看的免费电影| 最新中文字幕久久久久| 十八禁高潮呻吟视频| 亚洲成国产人片在线观看| av在线老鸭窝| 日韩av免费高清视频| 午夜免费观看性视频| 一级毛片电影观看| 亚洲在久久综合| 黄色毛片三级朝国网站| 精品国产露脸久久av麻豆| av不卡在线播放| 欧美精品一区二区大全| 国产精品一二三区在线看| 制服诱惑二区| 国产在线一区二区三区精| 日韩大片免费观看网站| 成年女人在线观看亚洲视频| 丰满迷人的少妇在线观看| 欧美黄色片欧美黄色片| 在线观看免费高清a一片| 欧美最新免费一区二区三区| 老司机影院成人| 美女大奶头黄色视频| 国产乱来视频区| 欧美日韩视频精品一区| av线在线观看网站| 亚洲综合色网址| 精品人妻在线不人妻| 亚洲国产精品一区三区| 女性生殖器流出的白浆| 不卡av一区二区三区| 成人毛片60女人毛片免费| 亚洲精品第二区| 国产 一区精品| 久久久久久久国产电影| 久久久久视频综合| 18+在线观看网站| 天美传媒精品一区二区| 国产av精品麻豆| 中文乱码字字幕精品一区二区三区| 男女边摸边吃奶| 啦啦啦啦在线视频资源| 精品一区二区免费观看| 日韩视频在线欧美| 久久综合国产亚洲精品| 国产高清不卡午夜福利| 777久久人妻少妇嫩草av网站| 大香蕉久久成人网| 九九爱精品视频在线观看| 亚洲成国产人片在线观看| 午夜免费观看性视频| 人人澡人人妻人| 色94色欧美一区二区| 又黄又粗又硬又大视频| 免费女性裸体啪啪无遮挡网站| 午夜激情av网站| 欧美精品一区二区免费开放| 十八禁高潮呻吟视频| 高清av免费在线| 熟女av电影| 国产1区2区3区精品| 欧美日韩一区二区视频在线观看视频在线| 水蜜桃什么品种好| 欧美日韩精品成人综合77777| 新久久久久国产一级毛片| 一边亲一边摸免费视频| 99国产精品免费福利视频| 国产免费一区二区三区四区乱码| 边亲边吃奶的免费视频| 亚洲精品成人av观看孕妇| 高清黄色对白视频在线免费看| 一本大道久久a久久精品| 91午夜精品亚洲一区二区三区| 日韩中文字幕欧美一区二区 | 国产精品.久久久| 卡戴珊不雅视频在线播放| 伦理电影大哥的女人| 啦啦啦在线免费观看视频4| 大香蕉久久网| 久久久久网色| 91aial.com中文字幕在线观看| 乱人伦中国视频| 日韩中文字幕视频在线看片| 欧美黄色片欧美黄色片| 亚洲国产最新在线播放| 一级片免费观看大全| 婷婷成人精品国产| 纵有疾风起免费观看全集完整版| 妹子高潮喷水视频| 国产一区二区在线观看av| 巨乳人妻的诱惑在线观看| 青春草亚洲视频在线观看| 国产白丝娇喘喷水9色精品| 超碰成人久久| 18在线观看网站| 伊人久久大香线蕉亚洲五| 国产成人精品婷婷| 久久久久精品人妻al黑| 不卡av一区二区三区| 大香蕉久久成人网| 女人高潮潮喷娇喘18禁视频| 国产片内射在线| 国产成人精品福利久久| a级毛片黄视频| 亚洲熟女精品中文字幕| 亚洲欧美色中文字幕在线| 国产亚洲最大av| 美女高潮到喷水免费观看| 五月天丁香电影| 日韩av在线免费看完整版不卡| 中文字幕制服av| 爱豆传媒免费全集在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品久久成人aⅴ小说| 日本av手机在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲三区欧美一区| av免费在线看不卡| 午夜福利,免费看| 一区二区三区乱码不卡18| 婷婷色麻豆天堂久久| 日韩制服丝袜自拍偷拍| 国产精品欧美亚洲77777| 精品酒店卫生间| 国产精品久久久久久精品电影小说| 黄片无遮挡物在线观看| 女人高潮潮喷娇喘18禁视频| 在线观看国产h片| 免费高清在线观看日韩| 97精品久久久久久久久久精品| 精品国产乱码久久久久久小说| 亚洲三级黄色毛片| 久久97久久精品| 永久免费av网站大全| 国产精品久久久久久久久免| 国产成人精品婷婷| 国产在线免费精品| 欧美精品亚洲一区二区| 日韩伦理黄色片| 一个人免费看片子| 国产男女内射视频| 考比视频在线观看| 久久影院123| 尾随美女入室| 人人澡人人妻人| 不卡视频在线观看欧美| 美女xxoo啪啪120秒动态图| 1024香蕉在线观看| 久久午夜综合久久蜜桃| 免费在线观看完整版高清| 午夜免费鲁丝| 亚洲中文av在线| 热re99久久国产66热| 丝袜美腿诱惑在线| 男人爽女人下面视频在线观看| 边亲边吃奶的免费视频| 欧美成人午夜精品| 91国产中文字幕| 黄色 视频免费看| 亚洲美女视频黄频| tube8黄色片| 午夜久久久在线观看| 国产午夜精品一二区理论片| 9色porny在线观看| 国产成人精品福利久久| 人妻人人澡人人爽人人| 满18在线观看网站| 99热全是精品| 69精品国产乱码久久久| 久久精品国产鲁丝片午夜精品| 可以免费在线观看a视频的电影网站 | 久久久久精品性色| 日产精品乱码卡一卡2卡三| 女人被躁到高潮嗷嗷叫费观| 久久久久久伊人网av| 婷婷成人精品国产| 久久久久精品久久久久真实原创| 欧美 日韩 精品 国产| 亚洲av男天堂| 国产 精品1| 国产在线视频一区二区| 制服人妻中文乱码| 美女高潮到喷水免费观看| 在线 av 中文字幕| 最新的欧美精品一区二区| 人妻人人澡人人爽人人| 高清黄色对白视频在线免费看| 丰满饥渴人妻一区二区三| 精品久久久久久电影网| 欧美在线黄色| av天堂久久9| 欧美激情极品国产一区二区三区| 最近手机中文字幕大全| 这个男人来自地球电影免费观看 | 成人影院久久| 尾随美女入室| 人妻人人澡人人爽人人| 永久网站在线| 天堂俺去俺来也www色官网| 欧美人与性动交α欧美精品济南到 | 女的被弄到高潮叫床怎么办| 日韩不卡一区二区三区视频在线| 精品亚洲成a人片在线观看| 亚洲综合色网址| 欧美黄色片欧美黄色片| 91精品伊人久久大香线蕉| 久久精品国产亚洲av高清一级| 97精品久久久久久久久久精品| av福利片在线| 欧美av亚洲av综合av国产av | 国精品久久久久久国模美| 欧美激情高清一区二区三区 | 超碰97精品在线观看| 日韩一卡2卡3卡4卡2021年| 精品一品国产午夜福利视频| 观看美女的网站| 叶爱在线成人免费视频播放| 狂野欧美激情性bbbbbb| 国产欧美日韩综合在线一区二区| 午夜影院在线不卡|