• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Remaining useful life prediction based on variation coefficient consistency test of a Wiener process

    2018-02-02 08:10:06JunLIBoJINGHongdeDAIXioxunJIAOXiodongLIU
    CHINESE JOURNAL OF AERONAUTICS 2018年1期

    Jun LI,Bo JING,Hongde DAI,Xioxun JIAO,Xiodong LIU

    aCollege of Aeronautics and Astronautics Engineering,Air Force Engineering University,Xi’an 710038,China

    bCollege of Mathematics and Statistics,Ludong University,Yantai 264025,China

    cDepartment of Control Engineering,Naval Aeronautical and Astronautical University,Yantai 264001,China

    dChina Aviation Industry Jincheng Nanjing Electrical and Hydraulic Engineering Research Center,Nanjing 210000,ChinaeAviation Science and Technology Key Laboratory of Aviation Mechanical and Electrical System,Nanjing 210000,China

    1.Introduction

    With the increase of reliability and lifetime,it is difficult to obtain failure data of products in a short term,so the traditional failure data based Remaining Useful Life(RUL)prediction methods are limited in utilization.1,2Fortunately,failures of most products are a result of slow degradation of materials,which can be reflected by some performance characteristics gradually.3Therefore,reliability and RUL research based on degradation data gains much attention all over the world,and becomes the key point of Prognostic and Health Management(PHM).4

    Degradation modeling is the core problem of RUL prediction.Considering the complex mechanism of a failure,it is dif-ficult to establish a physical failure model for some products with high reliability and long life,while a data-driven statistical method owns obvious advantages.4,5A random effects degradation model was applied to describe unit-to-unit variations of test units and studied for highly reliable light displays in Ref.6,such as Plasma Display Panels(PDPs)and Vacuum Fluorescent Displays(VFDs).The random effects model is a stochastic variable model,which cannotexpress a dynamic degradation process with time.Therefore,a stochastic process based life prediction method has been developed.The random effects model and the stochastic process model were compared by Peng and Tseng.7A stochastic diffusion process was described in detail in Ref.8,and the Mean-Time-To-Failure(MTTF)of a real Light Emitting Diode(LED)under accelerated testing was achieved.The Gamma process9and the inverse Gaussian process10,11have been extensively applied to degenerate modeling due to their good statistical properties.The random trajectory model and the stochastic process model have been reviewed in Ref.12.Compared to the Gamma process and the inverse Gaussian process,the Wiener process can express the non-monotonicity of the degeneration trend,which has gained great attention.In Ref.13,a Wiener process with a measurement error was used to study the RUL of a lithium battery.In Ref.14,the Wiener process was applied to study accelerated step stress degradation.In Ref.15,the real-time update of RUL prediction was realized by a Wiener process accompanied with recursivefiltering.A new class of Wiener process was proposed in Ref.16,which considers the correlation between the drift parameter and the diffusion parameter,and the proposed Wiener process was demonstrated by a dataset of fatigue crack growth and a dataset of head wears of hard disk drives.Parameters estimation is a part of the major problems in degradation modeling of a Wiener process.Maximum Likelihood Estimation(MLE)is the most widely researched method in the Refs.17–19.However,it is difficult to realize an asymptotically unbiased estimation based on MLE,while the number of samples or the number of observations is small,which may lead to large errors of estimated parameters.Therefore,an unbiased parameters estimation method of the Wiener process in a small-sample case is very important.To solve this problem,an unbiased parameters estimation method for the Wiener process based on modified MLE is proposed.

    Degradation modeling is often researched under the assumption of mechanism consistency in Refs.20,21.Whether the information of different samples or the different stages of the same sample can be fused is based on the consistency of the degradation pattern,so the consistency problem is still ubiquitous in practical engineering.For example,limited by the cost and the actual situation,only a small sample of degradation data can be achieved.A failure happens when degradation reaches a given threshold,22,23and the product can continue to work by replacing some components.Whether the degradation data before the maintenance can be used in RUL prediction after the maintenance is based on the consistency of the degradation data before and after the maintenance,which has never been studied before.Aiming at this problem,considering the independent incremental feature of the Wiener process,a Wiener process variation coefficient based consistency test method is proposed,which is not affected by the sampling time and is suitable for small samples.

    The remainder of this paper is organized as follows.Section 2 introduces the basic theory of the Wiener process and RUL.In Section 3,a modified unbiased MLE method is proposed based on the statistical properties of the Wiener process,and simulations are studied.A Wiener process variation coef-ficient based consistency test method is introduced in Section 4,where simulation data and classic crack data are used for validation of the proposed method.In Section 5,the degradation of an airborne fuel pump is studied,and the RUL prediction after maintenance is discussed;while the consistency test is passed,the work provides a theoretical and practical guidance for engineering.

    2.Basic theory of Wiener process and RUL

    Let{X(t),t≥ 0} be a continuous random process which satis-fiesX(0)=0,tis time,if any two disjoint time intervals with stationary independent increments ΔX(t)=X(t+ Δt)-X(t)obey normal distribution and satisfy

    where Δtis the time interval.The Wiener process{X(t),t≥ 0}is given by

    where θ denotes the drift parameter and σ(σ > 0)the diffusion parameter,whileB(·)denotes the standard Brownian motion function.

    The degradation process can be described by {X(t),t≥ 0}.ldenotes the failure threshold,ξ is defined as the life of the product which is thefirst time arrived at the failure thresholdl,then ξ =inf{t|X(t)≥l} is a random variable of inverse Gaussian distribution,and the distribution functionF(·)and Probability Density Function(PDF)f(·)are given by24

    where Φ(·)is standard normal distribution function.

    If the degradation dataX(tk)=xkis obtained,denote the RUL attkast,the condition distribution function is shown as

    whereP(·)is the probability expressions.As the Wiener process is an independent increment process,the condition distribution function of the RUL can be simplified as15

    Replacing the failure thresholdlbyl-xkin Eq.(4),the density function of the RUL can be get as

    3.Unbiased parameters estimation for Wiener process

    For productsi(i=1,2,···,n),measuredmi+1 times respectively,Xijdenotes thejth measurement about degradation data of theith product.ΔXij=Xi(j+1)-Xij(j=1,2,···,mi)denotes the degradation increment in Δtij=ti(j+1)-tij,considering a constant time interval,that is,Δtij= Δti,and if the time intervals are equal to each other for different products,then Δtij= Δti= Δt.Every product includesmi(i=1,2,···,n)degradation increments.

    3.1.Maximum likelihood estimation

    The MLE is widely used in the parameters estimation of the Wiener process.18,19Considering the independent increment of the Wiener process as ΔXij~N(θiΔti,σ2iΔti),the likelihood functionL(·)is established as

    Deriving the partial differential of Eq.(6),we have

    The MLEs for θiand σ2ican be get as

    Proof.According to Eq.(8)and Δtij= Δti,

    According to the property of the Wiener process in Eq.(1),E(ΔXij)= θiΔti,so

    3.2.Modified maximum likelihood estimation

    By Theorem 1,the modified MLE^θiMof θiand^σ2iMof σ2iare

    Theorem 2.The modified estimations shown in Eq.(12)are unbiased estimations.

    Proof.

    Considering the result of Eq.(11),then

    Corollary.For a small sample number capacity of n,the estimations for^θ,^σ2can be written as

    3.3.Simulations

    Simulations have been done for the verification of the presented unbiased parameters estimation method while the sample numbern=1,drift coefficient θ =5 × 10-5,diffusion parameter σ =2.5× 10-4,and sampling periodT=100.The number of observations about the incremental degradation arem=10,m=100,andm=1000,respectively.The degradation paths are shown in Fig.1.

    Whenm=10,forn=5,10,the degradation paths are shown in Fig.2.

    Fig.1 Degradation paths(n=1).

    Table 1 Parameter estimations(n=1).

    The parameters estimated by the two methods are shown in Table 2.Obviously,the modified estimations are better than those of the MLE method for differentn.

    Fig.2 Degradation paths(m=10).

    Table 2 Parameter estimations(m=10).

    4.Consistency test based on variation coefficient of a Wiener process

    Whether the information of different samples or the different stages of the same sample can be fused is dependent on the consistency of degradation patterns,so the consistency problem is ubiquitous in the practice of engineering.Aiming at the problem of the verification of the consistency,a failure mechanism and degradation model based consistency testing method was proposed in Ref.25,but the ratio of the mean to the variance needs to satisfy a normal distribution,which leads to be inapplicable when the number of samples is small.A rank correlation coefficient based consistency test for the failure mechanism was introduced in Ref.26according to the synergy of different products,but it is influenced by the length of the sampling period.In this paper,according to the incremental independence of a Wiener process,a consistency test method is proposed,based on the Wiener process variation coefficient.

    4.1.Variation coefficient

    The variation coefficient of a normal distribution was discussed clearly in Ref.27,such as the statistical characteristics,the confidence intervals,and the hypothesis testing methods.The variation coefficient ν is defined as the ratio of the standard deviation to the average.

    The variation coefficient is a dimensionless number.For a Wiener process, considering equal time intervals Δtij= Δti=tij-ti(j-1),the variation coefficient νiin theith interval for a product is defined as

    Represent the diffusion level under unit drift.If the distribution of a νicontained statistic is known,hypothesis testing of the variation coefficient can be achieved according to the sampling distribution theorem.In Ref.27,a sampling distribution about the reciprocal of the variation coefficient was constructed,for samples from a normal population,which was applied to the reliability evaluation of a bridge structure.

    A consistency test method based on the variation coefficient of a Wiener process is presented here,considering the normal characteristic of an independent increment from the Wiener process.Inspired by Ref.27,a theorem is presented as follows.

    By the proof in Ref.27,we can have the density function ofSisfS(·)for the Wiener process as

    4.2.Consistency test

    According to Theorem 3,the consistency test based on the variation coefficient of a Wiener process is proposed as follows:

    (5)Calculate h according to the samples observation values.Ifhfalls into the rejection region,the null hypothesis is rejected,which means that the sample variation coeffi-cient has a remarkable difference from the population variation coefficient;otherwise,the null hypothesis is accepted.

    4.3.Simulations and experiment

    Ten groups(n=10)of degradation data are generated by simulations.The sampling periodT=100,and the number of observations is 20,so the number of increments ism=19.

    (1)If θ1=5 × 10-5and σ1=2.5 × 10-4,the degradation path is shown in Fig.3(a).For one new sample with θ2= θ1=5 × 10-5and σ2=5 × 10-4,the degradation path is shown in Fig.3(b).

    (2)When θ1=5 × 10-5,σ1=2.5 × 10-4,the degradation path is shown in Fig.4(a).For one new sample with θ2=10×10-5and σ2= σ1=2.5×10-4,the degradation path is shown in Fig.4(b).

    Fig.3 Degradation paths for different σ.

    Fig.4 Degradation paths for different θ.

    Fig.5 Crack growth paths.

    (3)The classical crack data28is also utilized for the verification of the presented Wiener process variation coeffi-cient based consistency test method.Without loss of generality,assuming that Δt=1 and 13 measurements are contained in each data set,then m=12.M1 to M7 are the population and V1 to V6 are the testing samples.The crack degradation trend is shown in Fig.5(in Fig.5,1 in.=2.54 cm).

    In fact,they came from the same population,but the trend of the variation can be clearly seen by the value ofhstatistics.For example,hV6=0.8325 is farthest from the rejection region,the degradation trend is nearest to the population,and the effectiveness of the proposed method is verified.

    5.Application research

    The fuel pump is one of the important equipment in an aircraft,and RUL prediction is crucial to the safety of the aircraft.The cooperation between each component of the fuel pump is important,the failure mechanism is complex,and themain failureformsareflow-reduced and pressuredropped.The output pressure of the fuel pump is closely related to the healthy status of the fuel pump,which is found in the pre-research by the authors.29Therefore,the output pressure signal of the fuel pump is chosen as an index of performance degradation.

    A piezo-resistive pressure transducer(CY-YZ-001)is chosen in the experiment system,which can transfer a pressure signal to a voltage signal directly,and the pressure transducer is mounted in a transfer tube 70 cm far from the output of the fuel pump.Fig.6 shows the pressure transducer and its installation,and the components of the experiment system were shown in Fig.7.

    Fig.6 Pressure transducer and its installation.

    Fig.7 Components of the experiment system.

    5.1.Basic data analysis

    An experiment under circulations of three voltages has been conducted for the airborne fuel pump,in which each circulation is 10 h including three processes:(A)voltage:207–209 V,frequency:420–422 Hz,0.5 h;(B)voltage:185–187 V,frequency:378–380 Hz,0.5 h;(C)voltage:192–202 V,frequency:398–402 Hz,9 h.Each cycle is 10 h,so Δt=10 h.The output pressure signal of the fuel pump from the pressure sensor is recorded in the experiment.As a highly reliable product,the degradation of the fuel pump is slow and takes a long time.Observations from three samples are recorded asZ1,Z2andZ3,as shown in Fig.8,and the degradation trends are all obvious.According to the experience of engineering applications,the threshold value is chosen as 61.3 kPa.

    When the output pressure of the fuel pump is lower than the threshold value,maintenance about replacing some inner parts of the fuel pump has been done,then the experiment is continued,and the degradation data is recorded asZ2H,which is shown in Fig.9.

    It is appropriate to model the degradation by a Wiener process,while the degradation increment obeys a normal distribution.The Quantiles-Quantiles(QQ)figure is a method of comparing an unknown probability distribution with a speci-fied distribution.If the two distributions are similar,the QQfigure points will be around the 45°line.Computing the increments of the degradation data in Fig. 8,ΔZi=Ai=Zi(t)-Zi(t-1),t=1,2,···,mi;i=1,2,3. By the QQ graph shown in Fig.10,degradation incrementsA1,A2,A3obey normal distributions,and the Wiener process is appropriate for degradation modeling.

    Fig.8 Pressure sensor output value before maintenance.

    Fig.9 Pressure sensor output value after maintenance.

    Fig.10 Quantiles-quantiles graph for normal distribution.

    5.2.Parameters estimation and consistency test

    Table 3 Parameters estimation for θiand σi.

    5.3.RUL estimation

    Taking the pre-repair productZ2as an example,the RUL results of the Wiener process based on the modified MLE are shown in Fig.11.The true value is included in the predicted probability density function,and the prediction of the RUL is realized.

    Fig.11 Comparison between estimated and true RUL values before being repaired.

    Afterfinishing the consistency test,the degradation data before and after the maintenance can be fused,as is shown in Fig.12,compared with the non-integration information before the maintenance.

    It can be seen from the prediction results that the RUL of the airborne fuel pump is exactly predicted after fusing the degradation information before maintenance,and while the consistency test has passed,it provides a feasible method for life prediction of repaired equipment,which lacks prior guidance information.

    6.Conclusions

    (1)A modified unbiased MLE method for estimation about the parameters of a Wiener process is presented,and the estimation precision is improved compared to that of the classical MLE method,when the size of measured data is small.

    (2)A consistency test method based on the variation coeffi-cient of a Wiener process is proposed.Construct a statistical valuehwhich contains the variation coefficient,derive the distribution of the statistical valueh,and propose an H distribution based hypothesis test method.Provide a theoretical foundation for the consistency test of degradation models of different products or different stages of the same product.

    (3)The unbiased MLE method and the consistency test method of a Wiener process proposed in this paper are applied to the performance degradation study of an airborne fuel pump.Under the same degradation model,a weighted method of fusing the information before and after maintenance is proposed,the RUL of the equipment after maintenance is predicted successfully,and the accuracy is improved.

    Fig.12 Comparison for estimated RUL after being repaired.

    Acknowledgement

    This study was supported by the Aeronautical Science Foundation of China(No.201428960221).

    1.Peng CY,Tseng ST.Progressive-stress accelerated degradation test for highly-reliable products.IEEE Trans Rel2010;59(1):30–7.

    2.Guan Q,Tang Y,Xu A.Objective Bayesian analysis accelerated degradation test based on Wiener process models.Appl Math Model2016;40(4):2743–55.

    3.Tseng ST,Hamada M,Chiao CH.Using degradation data to improvefluorescent lamp reliability.J Qual Technol1995;27(4):363–9.

    4.Si XS,Wang WB,Hu CH,Zhou DH.Remaining useful life estimation—A review on the statistical data driven approaches.Eur Oper J Res2011;213(1):1–14.

    5.Gebraeel NZ,Lawley MA,Li R,Ryan JK.Residual-life distributionsfrom componentdegradation signals:A Bayesian approach.IIE Trans2005;37(6):543–57.

    6.Bae SJ,Kvam PH.A nonlinear random-coefficients model for degradation testing.Technometrics2004;46(4):460–9.

    7.Peng CY,Tseng ST.Mis-specification analysis of linear degradation models.IEEE Trans Rel2009;58(3):444–55.

    8.Tseng ST,Peng CY.Stochastic diffusion modeling of degradation data.J Data Sci2007;5(3):315–33.

    9.Noortwijk JV.A survey of the application of gamma processes in maintenance.Reliab Syst Safe2007;94(1):2–21.

    10.Ye ZS,Chen N.The inverse Gaussian process as a degradation model.Technometrics2014;56(3):302–11.

    11.Pan DH,Liu JB,Cao J.Remaining useful life estimation using an inverse Gaussian degradation model.Neurocomputing2016;185:64–72.

    12.Ye ZS,Xie M.Stochastic modelling and analysis of degradation for highly reliable products.Appl Stoch Model Bus2015;31(1):16–32.

    13.Tang S,Yu C,Wang X,Guo X,Si X.Remaining useful life prediction of lithium-ion batteries based on the Wiener process with measurement error.Energies2014;7(2):520–47.

    14.Hu CH,Lee MY,Tang J.Optimum step-stress accelerated degradation test for Wiener degradation process under constraints.Eur J Oper Res2014;241(2):412–21.

    15.Si XS,Wang WB,Hu CH,Chen MY,Zhou DH.A Wienerprocess-based degradation model with a recursivefilter algorithm for remaining useful life estimation.Mech Syst and Signal Pr2013;35(1–2):219–37.

    16.Ye ZS,Chen N,Shen Y.A new class of Wiener process models for degradation analysis.Reliab Syst Safe2015;139:58–67.

    17.Wang X.Wiener processes with random effects for degradation data.J Multivariate Anal2010;101(2):340–51.

    18.Wang X,Lin S,Wang S,He Z,Zhao C.Remaining useful life prediction based on the Wiener process for an aviation axial piston pump.Chin J Aeronaut2016;29(3):779–88.

    19.Tsai C,Tseng S,Balakrishnan N.Mis-specification analyses of gamma and Wiener degradation processes.J Stat Plan Infer2011;141(12):3725–35.

    20.Liao CM,Tseng ST.Optimal design for step-stress accelerated degradation tests.IEEE Trans Rel2006;55(1):59–66.

    21.Tseng ST,Balakrishnan N,Tsai CC.Optimal step-stress accelerated degradation test plan for Gamma degradation processes.IEEE Trans Rel2009;58(4):611–8.

    22.Liu J,Zhang M,Zuo H,Xie J.Remaining useful life prognostics for aeroengine based on superstatistics and information fusion.Chin J Aeronaut2014;27(5):1086–96.

    23.Li Q,Gao Z,Tang D,Li B.Remaining useful life estimation for deteriorating systems with time-varying operational conditions and condition-specific failure zones.Chin J Aeronaut2016;29(3):662–74.

    24.Kao EPC.An introduction to stochastic processes.1st ed.Beijing:China Machine Press;2006.p.374–86.

    25.Wang H,Xu T,Wang W.Test method of failure mechanism consistency based on degradation model.Acta Aeronaut Astronaut Sin2015;36(3):889–97[Chinese].

    26.Feng J.Consistent test of accelerated storage degradation failure mechanism based on rand correlation coefficient.J Aerosp Power2011;26(11):2439–44[Chinese].

    27.Xing RF.The application of estimation method of coefficient of variation in the study on reliability of existing structures[dissertation].Xi’an:Xi’an University of Architecture and Technology;2011[Chinese].

    28.Lu C,Meeker WQ.Using degradation measures to estimate a time-to-failure distribution.Technometrics1993;35(2):161–74.

    29.Li J,Jing B,Qiang XQ,Liu XD.Fault states feature extraction and experimental study for airborne fuel pumps based on sample quantile.ActaAeronautAstronautSin2016;37(9):2851–63[Chinese].

    亚洲精品456在线播放app| 亚洲第一区二区三区不卡| 天天躁夜夜躁狠狠久久av| av免费观看日本| 国产高清视频在线观看网站| 一级毛片久久久久久久久女| 99热全是精品| 久久久久久久国产电影| 国内精品宾馆在线| 18禁在线播放成人免费| 成人三级黄色视频| 欧美最新免费一区二区三区| h日本视频在线播放| 99久久九九国产精品国产免费| 国产午夜精品论理片| 日韩国内少妇激情av| 色5月婷婷丁香| 亚洲在久久综合| 亚洲成人av在线免费| av在线蜜桃| 亚洲自拍偷在线| 婷婷色综合大香蕉| 岛国在线免费视频观看| 天天一区二区日本电影三级| 国产又黄又爽又无遮挡在线| 精品人妻一区二区三区麻豆| 精品久久久久久久久久久久久| 秋霞在线观看毛片| 麻豆成人午夜福利视频| 亚洲最大成人手机在线| 少妇人妻精品综合一区二区| 18禁动态无遮挡网站| 国产成人a区在线观看| 欧美潮喷喷水| 国产 一区 欧美 日韩| 好男人视频免费观看在线| 久久久成人免费电影| 成年女人看的毛片在线观看| 日本免费在线观看一区| 国产精品人妻久久久久久| 亚洲欧美精品综合久久99| 国产成人aa在线观看| 禁无遮挡网站| 国产高清国产精品国产三级 | 成人一区二区视频在线观看| 欧美成人免费av一区二区三区| 国产单亲对白刺激| 成人性生交大片免费视频hd| 在线免费十八禁| 亚洲欧美一区二区三区国产| 三级国产精品片| 国产乱来视频区| 久久久久久久国产电影| 好男人视频免费观看在线| 久久婷婷人人爽人人干人人爱| 亚洲中文字幕日韩| 人体艺术视频欧美日本| 你懂的网址亚洲精品在线观看 | 99久久中文字幕三级久久日本| 五月玫瑰六月丁香| 亚洲自偷自拍三级| 最近中文字幕高清免费大全6| 一二三四中文在线观看免费高清| 色综合站精品国产| 亚洲一级一片aⅴ在线观看| 精品免费久久久久久久清纯| 99久久精品国产国产毛片| 亚洲五月天丁香| 国内精品宾馆在线| 亚洲一区高清亚洲精品| 最近最新中文字幕大全电影3| 亚洲在线自拍视频| 国产伦精品一区二区三区四那| 亚洲成av人片在线播放无| 亚洲经典国产精华液单| av在线蜜桃| 亚洲精品成人久久久久久| 亚洲一级一片aⅴ在线观看| 亚洲av一区综合| 国产精品久久久久久精品电影小说 | 老司机影院毛片| 全区人妻精品视频| 日本黄大片高清| 免费观看a级毛片全部| 久久久久久伊人网av| av免费在线看不卡| 久久人人爽人人爽人人片va| 国产精品,欧美在线| 日本五十路高清| 26uuu在线亚洲综合色| 神马国产精品三级电影在线观看| 在线播放无遮挡| 亚洲无线观看免费| 亚洲精华国产精华液的使用体验| 国产亚洲av片在线观看秒播厂 | 亚洲欧美日韩卡通动漫| 综合色丁香网| 亚洲婷婷狠狠爱综合网| 亚洲精品国产av成人精品| 国产视频内射| 午夜精品在线福利| 久久久精品欧美日韩精品| 一级二级三级毛片免费看| 一区二区三区免费毛片| 一个人观看的视频www高清免费观看| 亚洲aⅴ乱码一区二区在线播放| 欧美zozozo另类| 校园人妻丝袜中文字幕| 嫩草影院新地址| 久久午夜福利片| 一区二区三区免费毛片| 在现免费观看毛片| 久久久国产成人免费| 国产成人aa在线观看| 成人漫画全彩无遮挡| 有码 亚洲区| 国产精品人妻久久久影院| 亚洲精品,欧美精品| 亚洲欧美成人综合另类久久久 | 亚洲av电影不卡..在线观看| 欧美成人免费av一区二区三区| 国产亚洲91精品色在线| 毛片一级片免费看久久久久| 大香蕉97超碰在线| 成人漫画全彩无遮挡| 日本免费a在线| 最近视频中文字幕2019在线8| 欧美一区二区亚洲| 国产精品久久视频播放| 久久久久九九精品影院| 亚洲精品国产av成人精品| 秋霞在线观看毛片| 亚洲久久久久久中文字幕| 日韩视频在线欧美| 亚洲四区av| 最近2019中文字幕mv第一页| 午夜激情欧美在线| 噜噜噜噜噜久久久久久91| 视频中文字幕在线观看| 国产在视频线精品| 免费在线观看成人毛片| 18禁动态无遮挡网站| 欧美成人免费av一区二区三区| 久久久久久久国产电影| 欧美97在线视频| 免费观看精品视频网站| 男女那种视频在线观看| 亚洲国产精品久久男人天堂| 国产v大片淫在线免费观看| 亚洲美女搞黄在线观看| 国产精品人妻久久久久久| 亚洲成人av在线免费| 中文字幕久久专区| 91狼人影院| 日本免费在线观看一区| 波野结衣二区三区在线| 亚洲精品亚洲一区二区| 黄片wwwwww| 日日摸夜夜添夜夜爱| 亚洲国产色片| 老女人水多毛片| av天堂中文字幕网| 国产女主播在线喷水免费视频网站 | 十八禁国产超污无遮挡网站| 一个人看视频在线观看www免费| 美女脱内裤让男人舔精品视频| 久久久午夜欧美精品| 亚洲av男天堂| 日本av手机在线免费观看| 国产麻豆成人av免费视频| 亚洲图色成人| 尾随美女入室| ponron亚洲| 搡女人真爽免费视频火全软件| 九色成人免费人妻av| 亚洲aⅴ乱码一区二区在线播放| 欧美xxxx性猛交bbbb| 亚洲人成网站在线播| 国产探花极品一区二区| 2021天堂中文幕一二区在线观| 99久久中文字幕三级久久日本| 成人特级av手机在线观看| 最后的刺客免费高清国语| 别揉我奶头 嗯啊视频| 久久精品国产亚洲av涩爱| 国产av在哪里看| 国产成人福利小说| 国产老妇伦熟女老妇高清| 欧美97在线视频| 亚洲欧美精品自产自拍| 亚洲av免费在线观看| 狂野欧美白嫩少妇大欣赏| 久久久久国产网址| 国产精品一区二区三区四区久久| 好男人在线观看高清免费视频| 亚洲天堂国产精品一区在线| 国产精品一区二区性色av| 日韩强制内射视频| 久久人妻av系列| 天天躁夜夜躁狠狠久久av| 嫩草影院精品99| 一级黄片播放器| 大香蕉久久网| 日本色播在线视频| 亚洲欧洲日产国产| 男插女下体视频免费在线播放| 国产精品一二三区在线看| 亚洲av成人精品一区久久| 三级经典国产精品| 自拍偷自拍亚洲精品老妇| 少妇的逼好多水| 成人无遮挡网站| 国产在线一区二区三区精 | 精品少妇黑人巨大在线播放 | 精品一区二区三区视频在线| av线在线观看网站| 免费无遮挡裸体视频| 一区二区三区高清视频在线| 免费播放大片免费观看视频在线观看 | 我要看日韩黄色一级片| 一区二区三区免费毛片| 亚洲国产成人一精品久久久| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品熟女亚洲av麻豆精品 | 欧美成人午夜免费资源| 一区二区三区高清视频在线| 激情 狠狠 欧美| 男人狂女人下面高潮的视频| 大话2 男鬼变身卡| 日本爱情动作片www.在线观看| 蜜桃久久精品国产亚洲av| 人妻夜夜爽99麻豆av| 成人特级av手机在线观看| 九九爱精品视频在线观看| av在线蜜桃| 一区二区三区四区激情视频| 少妇的逼水好多| 日本wwww免费看| 少妇熟女欧美另类| 中文亚洲av片在线观看爽| 亚洲自偷自拍三级| 韩国高清视频一区二区三区| 国内精品美女久久久久久| 国产精品女同一区二区软件| 男女那种视频在线观看| 2022亚洲国产成人精品| videossex国产| 亚洲av中文字字幕乱码综合| 亚洲18禁久久av| 午夜福利成人在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区国产精品久久精品| 国产精品久久电影中文字幕| 日韩欧美 国产精品| a级毛片免费高清观看在线播放| 女的被弄到高潮叫床怎么办| 午夜日本视频在线| 欧美精品国产亚洲| 久99久视频精品免费| 久久久久久久亚洲中文字幕| 国产成人精品久久久久久| 日韩大片免费观看网站 | 国产成人aa在线观看| 国产中年淑女户外野战色| 欧美潮喷喷水| 免费无遮挡裸体视频| 亚洲av日韩在线播放| 国产私拍福利视频在线观看| 卡戴珊不雅视频在线播放| 亚洲人成网站在线播| 黄色一级大片看看| 少妇被粗大猛烈的视频| 日韩av在线大香蕉| 啦啦啦啦在线视频资源| 91狼人影院| 男人舔女人下体高潮全视频| 我要看日韩黄色一级片| a级毛色黄片| 少妇高潮的动态图| 99久久精品热视频| 大香蕉97超碰在线| 午夜久久久久精精品| 亚洲色图av天堂| 美女大奶头视频| 国产亚洲午夜精品一区二区久久 | 精华霜和精华液先用哪个| 免费观看人在逋| 特大巨黑吊av在线直播| 久久欧美精品欧美久久欧美| 午夜福利在线观看吧| 日韩一区二区视频免费看| 国产精品av视频在线免费观看| 精品久久久久久久末码| 尾随美女入室| 日本猛色少妇xxxxx猛交久久| 国产精品国产三级国产专区5o | 久久久国产成人免费| 岛国毛片在线播放| 18禁在线播放成人免费| 亚洲在线自拍视频| 午夜a级毛片| 男插女下体视频免费在线播放| 在线播放无遮挡| 久久久久久久久久黄片| 成人二区视频| 91午夜精品亚洲一区二区三区| 日韩av在线大香蕉| 小蜜桃在线观看免费完整版高清| 我的女老师完整版在线观看| 亚洲久久久久久中文字幕| 国产av在哪里看| 18禁在线无遮挡免费观看视频| 国产色婷婷99| 久久久久精品久久久久真实原创| 男插女下体视频免费在线播放| 亚洲精品乱码久久久v下载方式| 精品少妇黑人巨大在线播放 | 免费观看的影片在线观看| 国产黄色视频一区二区在线观看 | 美女大奶头视频| 久久综合国产亚洲精品| 欧美极品一区二区三区四区| 波野结衣二区三区在线| 国产精品人妻久久久影院| 日韩亚洲欧美综合| 欧美变态另类bdsm刘玥| 亚洲av福利一区| 亚洲av电影不卡..在线观看| 午夜日本视频在线| 国产老妇伦熟女老妇高清| 黄色日韩在线| 最近中文字幕高清免费大全6| 国产免费又黄又爽又色| 免费不卡的大黄色大毛片视频在线观看 | 又爽又黄无遮挡网站| 久久精品91蜜桃| 国产精品精品国产色婷婷| 高清在线视频一区二区三区 | 国产在视频线精品| 免费看光身美女| 长腿黑丝高跟| 91精品国产九色| 中文字幕av成人在线电影| 最后的刺客免费高清国语| 一个人看视频在线观看www免费| 亚洲国产欧洲综合997久久,| 久久久a久久爽久久v久久| 久久国产乱子免费精品| 亚洲成人久久爱视频| 国内精品一区二区在线观看| 一级毛片久久久久久久久女| 波多野结衣巨乳人妻| 99热网站在线观看| 青春草国产在线视频| 大话2 男鬼变身卡| 男人的好看免费观看在线视频| 欧美人与善性xxx| 亚洲国产欧美人成| 国产高清三级在线| 国产成人91sexporn| 免费黄网站久久成人精品| 亚洲成人精品中文字幕电影| 禁无遮挡网站| 黄色一级大片看看| 69人妻影院| av福利片在线观看| 丝袜美腿在线中文| 欧美日韩国产亚洲二区| 一级毛片电影观看 | 村上凉子中文字幕在线| 一本久久精品| 一个人看的www免费观看视频| 高清av免费在线| 观看免费一级毛片| 久久精品国产自在天天线| 日韩成人av中文字幕在线观看| 亚洲婷婷狠狠爱综合网| av视频在线观看入口| av在线天堂中文字幕| 韩国高清视频一区二区三区| 国产精品国产高清国产av| 亚洲乱码一区二区免费版| 女人十人毛片免费观看3o分钟| 亚洲在线自拍视频| 亚洲精品,欧美精品| 亚洲国产精品成人综合色| 国产人妻一区二区三区在| 亚洲欧美成人精品一区二区| 久久亚洲精品不卡| 亚洲av熟女| 秋霞在线观看毛片| 精品熟女少妇av免费看| 最近视频中文字幕2019在线8| 国产片特级美女逼逼视频| 人妻制服诱惑在线中文字幕| 一级毛片电影观看 | 久久精品国产亚洲网站| 亚洲性久久影院| 我的女老师完整版在线观看| 99热这里只有是精品在线观看| 男女那种视频在线观看| 亚洲中文字幕日韩| 国产精品三级大全| 日韩欧美国产在线观看| 麻豆久久精品国产亚洲av| 看非洲黑人一级黄片| 51国产日韩欧美| 大香蕉久久网| 国产成年人精品一区二区| 99在线视频只有这里精品首页| 秋霞伦理黄片| 日韩av在线免费看完整版不卡| 91在线精品国自产拍蜜月| 国产又黄又爽又无遮挡在线| 男人舔奶头视频| 免费观看人在逋| 一卡2卡三卡四卡精品乱码亚洲| 在线观看66精品国产| av在线播放精品| www.av在线官网国产| 精品久久久久久久末码| 一个人看的www免费观看视频| 岛国在线免费视频观看| 亚洲成av人片在线播放无| 国产一区二区在线观看日韩| 能在线免费观看的黄片| 国产亚洲av嫩草精品影院| 日韩av不卡免费在线播放| 国产精品日韩av在线免费观看| 亚洲综合精品二区| 日日摸夜夜添夜夜添av毛片| 中文精品一卡2卡3卡4更新| 级片在线观看| 精品人妻偷拍中文字幕| 最后的刺客免费高清国语| 黄色配什么色好看| 日本猛色少妇xxxxx猛交久久| 成年免费大片在线观看| 只有这里有精品99| 国产精品久久久久久久久免| 国产精品久久久久久精品电影| 色播亚洲综合网| 色综合亚洲欧美另类图片| 中文字幕亚洲精品专区| 男人舔女人下体高潮全视频| 麻豆精品久久久久久蜜桃| 国产 一区精品| 免费黄网站久久成人精品| 在线免费观看的www视频| 老司机福利观看| 亚洲av成人精品一二三区| 亚洲人成网站高清观看| 久久精品影院6| 国产精品电影一区二区三区| a级毛片免费高清观看在线播放| a级一级毛片免费在线观看| 床上黄色一级片| 中文资源天堂在线| 日本免费a在线| www.av在线官网国产| 亚洲欧美日韩东京热| 男人狂女人下面高潮的视频| 一区二区三区高清视频在线| 日日干狠狠操夜夜爽| 国产 一区 欧美 日韩| 免费播放大片免费观看视频在线观看 | 在线免费观看的www视频| 中文字幕制服av| 村上凉子中文字幕在线| 人妻少妇偷人精品九色| 国产免费一级a男人的天堂| 日韩欧美精品免费久久| 国产免费男女视频| 日韩大片免费观看网站 | 精品少妇黑人巨大在线播放 | 国产精品不卡视频一区二区| 亚洲18禁久久av| 老女人水多毛片| 久久人人爽人人爽人人片va| 久久久久久久久久成人| 久久久久九九精品影院| 我的老师免费观看完整版| 免费黄色在线免费观看| 国产一区二区在线观看日韩| 欧美一级a爱片免费观看看| 亚洲av电影在线观看一区二区三区 | 久久久久性生活片| 黄片wwwwww| 国产成人精品一,二区| 丰满乱子伦码专区| 国内精品一区二区在线观看| 亚洲国产最新在线播放| 欧美又色又爽又黄视频| 欧美另类亚洲清纯唯美| 中文精品一卡2卡3卡4更新| 国产成人一区二区在线| 国模一区二区三区四区视频| 日韩精品青青久久久久久| 麻豆av噜噜一区二区三区| 亚洲伊人久久精品综合 | 国产伦精品一区二区三区视频9| 国产精品一区二区在线观看99 | 非洲黑人性xxxx精品又粗又长| 成人三级黄色视频| videos熟女内射| 色哟哟·www| 黄色配什么色好看| 国产淫片久久久久久久久| 精品人妻视频免费看| av黄色大香蕉| 亚洲精品国产成人久久av| 亚洲色图av天堂| 国产人妻一区二区三区在| www日本黄色视频网| 99久久成人亚洲精品观看| 成人特级av手机在线观看| 免费无遮挡裸体视频| 99久国产av精品国产电影| 欧美日韩在线观看h| 又爽又黄a免费视频| 国产亚洲最大av| 欧美最新免费一区二区三区| 中文字幕精品亚洲无线码一区| 亚洲国产精品sss在线观看| 国产91av在线免费观看| 天堂√8在线中文| 在线播放无遮挡| 成人无遮挡网站| 神马国产精品三级电影在线观看| 亚洲人成网站在线播| 日本猛色少妇xxxxx猛交久久| 搞女人的毛片| 亚洲欧美清纯卡通| 自拍偷自拍亚洲精品老妇| 国产亚洲av片在线观看秒播厂 | 卡戴珊不雅视频在线播放| 国产爱豆传媒在线观看| 中文字幕制服av| 麻豆国产97在线/欧美| 日韩,欧美,国产一区二区三区 | 国产av在哪里看| 色尼玛亚洲综合影院| 日韩强制内射视频| 美女脱内裤让男人舔精品视频| 简卡轻食公司| 草草在线视频免费看| 可以在线观看毛片的网站| 久久综合国产亚洲精品| 亚洲中文字幕一区二区三区有码在线看| 国产视频内射| 美女国产视频在线观看| 尾随美女入室| 99久国产av精品国产电影| 亚洲成人中文字幕在线播放| 美女被艹到高潮喷水动态| 99国产精品一区二区蜜桃av| 永久免费av网站大全| 特大巨黑吊av在线直播| 亚洲国产欧美人成| 成人亚洲欧美一区二区av| 热99re8久久精品国产| 久久久久久伊人网av| 亚洲性久久影院| 一本一本综合久久| 国产 一区精品| 国产淫语在线视频| 日韩av在线大香蕉| 久久热精品热| 精品久久久久久久久久久久久| 国产精品三级大全| 亚洲成人av在线免费| 日韩一区二区三区影片| 日韩制服骚丝袜av| 亚洲欧美成人精品一区二区| 2021少妇久久久久久久久久久| 91aial.com中文字幕在线观看| 国产高清三级在线| av视频在线观看入口| 纵有疾风起免费观看全集完整版 | 又爽又黄a免费视频| 乱人视频在线观看| 大话2 男鬼变身卡| 亚洲不卡免费看| 中国国产av一级| 天堂中文最新版在线下载 | 草草在线视频免费看| 亚洲国产精品久久男人天堂| 美女黄网站色视频| 国产午夜精品论理片| 亚洲最大成人手机在线| 欧美日韩在线观看h| 日本一本二区三区精品| 舔av片在线| 免费观看在线日韩| 中文字幕免费在线视频6| 亚洲最大成人av| 亚洲欧美精品自产自拍| 午夜激情欧美在线| 欧美日韩精品成人综合77777| 久久草成人影院| 热99在线观看视频| 老师上课跳d突然被开到最大视频| 日本色播在线视频| 久久久久久久久久久丰满| 国产成人精品婷婷| 亚洲国产日韩欧美精品在线观看| 我要看日韩黄色一级片| 亚洲国产精品合色在线| 69av精品久久久久久| 国产黄片美女视频| av卡一久久| 麻豆久久精品国产亚洲av| 99热6这里只有精品| 成人三级黄色视频| 亚洲图色成人|