• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bionic Quadruped Robot Dynamic Gait Control Strategy Based on Twenty Degrees of Freedom

    2018-01-26 03:51:14DaweiGongPengWangShuangyuZhaoLiDuandYuDuan
    IEEE/CAA Journal of Automatica Sinica 2018年1期

    DaweiGong,Peng Wang,Shuangyu Zhao,Li Du,and Yu Duan

    I.INTRODUCTION

    M ORE and more researchers have been giving great attention to the robot research[1].Quadruped robot which can be used to simulate the common animals becomes a hot topic in recent time[2].It has higher carrying capacity and stability compared with single-legged and biped robot.And it also reduces redundancy in structure design compared to hexapod and more legs robot.So the quadruped robot has been studied widely and developed rapidly in the recent years.Quadruped robot is inspired by four-legged animals not only in structure but also in the ways of moving.The common gaits include craw l,trot,pace,bound and so on.In which,craw l is static gait,and others are dynamic gaits.Static gait is the most stable gait in quadruped movement.But dynamicgait has more advantages on speed and efficiency that makes it become a hot topic for research[3].

    Nowadays,scholars have obtained some achievements in quadruped robot research.In 2004,Hornbyet al.realized pace gait and trot gait in a straight line on Sony’s two small quadruped robot ERS-110 and OPEN-R using evolutionary algorithm.Both of them have three degrees of freedom in leg,two in hip and one in knee[4].In 2011,Wanget al.realized bound gait in a simple quadruped robot which has four passive legs and a spine connecting front and rear body[5].Each hip is equipped with only one drive.Quadruped robot models used in the above researches are simplified in leg structure and degrees of freedom compared to tetrapods.Due to this reason,this model-based control algorithms have few limitations to complex road.In 2008,Maet al.proved that quadruped robot is able to achieve bound gait under the initial condition of a fixed point by numerical calculation[6].However,this conclusion has not been realized in simulation platform.

    In summary,the paper presents a complex quadruped robot model with 20 degrees of freedom which could contain all the above models.Each leg in the model has 5 degrees of freedom,a yaw and a pitching freedom of hip,a pitching freedom of knee and ankle.And each leg also has an elastic component simulating leg tendon in motion as a passive degree of freedom.The model retains basic motion characteristics of quadruped leg movement that can simulate four-legged animals movement very well.Finally,we realize a better pace gait and bound gait in the ADAMS-MATLAB simulation platform that is proving the feasibility of technical route.Although the technical route making pace gait and bound gait is an example,it also applies to dynamic gait such as trot gait.The research of trot gait is so mature that it is not being focused on in this paper.

    In the current research,scholars focus more on flexible contact and gait control of single-legged robot.But,it lacks attention of the effect on high speed contact,with feet and ground,in quadruped robot dynamic gait.And we also ignore how to achieve stabilizing control.Due to this reason,we build a relatively complete 3D model for quadruped robot based on SLIP model,analyze the inverse kinematics of the model,plan the trajectory of the dynamic gait with 0 velocity and acceleration when touch the ground and analyze the hydraulic drive.At last,we achieve a better simulation of pace gait and bound gait.The paper is focusing on the dynamic gaits control in such a complex situation for the first time.This can provide reference for quadruped robot design.

    II.SLIPMODEL

    Spring loaded inverted pendulum(SLIP)is a very common model in research of biological running and jumping,with few degrees of freedom,simple structure,less coupling and simple control,as shown in Fig.1[7].The motion of planar SLIP model can be decomposed into the forward direction(Xdirection)and the vertical direction(Ydirection).Its motion has the standing and vacating phase.Running or jumping could be considered as alternation between two states.The 3D-SLIP model also has speed in lateral direction(Ydirection)except in forward direction(Xdirection)and vertical direction(Zdirection).Compared to the planar SLIP model,it is a more appropriate choice for bionic robot research.

    Fig.1.Planar SLIP model and 3D-SLIP model.

    A.SLIP-based Single-leg Robot Control Algorithm

    Single-legged robot control algorithm is the basis of legged robot control which includes forward speed,body attitude and jumping height control[8]?[10].

    B.Quadruped Robot Modeling

    Quadruped robot model from this paper is based on 3DSLIP.The 3D-model is provided by the Harbin Institute of Technology,as shown in Fig.2.

    Fig.2.Quadruped robot’s 3D model.

    III.PATH PLANNING FOR QUADRUPED ROBOT DYNAM IC GAIT

    A.Gait Description

    The gait is a coordinative relationship of animals limb between time and space.It includes regularly repeating sequence and method of moving legs.

    Quadruped robot gait can be divided into static and dynamic gait.Static gait means projection of robot gravity on the ground is always located within the supporting triangle.It has the slowest speed and the best stability.Crawl is a kind of static gait.Common dynamic gait includes trot,pace,bound and gallop,in which,gallop is a symmetric gait with time difference of any two legs movement.The other three are symmetrical gaits.

    Trot gait means that the two legs on diagonal have consistently movement.And they are as standing and vacating legs by turns.

    Pace gait means same-side feet having synchronous motion.The body during exercise has significantly tumbling motion which causes less stability.But it avoids the mutual interference between front and rear legs like trot.So,it is more suitable for camels,giraffes and other long leg quadrupeds.

    Bound gait means front and rear legs are paired respectively.It suits for smaller flexible quadruped with poor walking ability.The body has an obvious pitching during motion.

    In this paper,we focus on control strategy of symmetrical gait based on pace and bound gait.

    B.Virtual Leg

    Virtual leg is an important tool in research of multi-legged robot,proposed by Sutherland in 1989.The virtual leg means one virtual leg could instead of two real legs when the two real legs are exerting equal force on the ground,producing same horizontal displacement and equal torque on the hips.Different quadruped robot gaits can be equivalent to the corresponding biped robot gait by the principle of virtual leg,as shown in Fig.3.

    Fig.3.Application of the virtual leg in quadruped robot.

    And biped robot motion can be seen as two single-leg robots movement whose each leg could as standing and vacating leg by turns.So,we can establish connections between quadruped robot and single-leg robot by virtual leg to extend of control strategy from single-leg robot to quadruped robot.

    C.Foot Trajectory Settings

    During the forward movement,the trajectory of the swing foot needs to satisfy some conditions.

    1)Leg lifting must be enough high to prevent collision with ground and obstacles.

    2)Velocity and acceleration of the swing foot are set to 0 to reduce the impact of collision with ground when starting and hitting the ground.

    Using the simple curve(such as sine curve,elliptic curves)as the swinging foot trajectory curve,the foot will have an additional acceleration at the moment it touching ground.So we consider using composite cycloid instead of simple curve in this paper.

    First,consider the robot forward foot trajectory.

    According to the condition 2),the acceleration is set to 0 when getting off and hitting the ground.The acceleration curve can be set to a sine curve.

    The velocity is also 0when leaving and touching the ground.Integral the formula att=0 ort=T,˙x=0.The following equation will be obtained:

    By the velocity curve,we can obtain foot trajectory curve as follows:

    Boundary conditions are as follows:

    Substitute this into(3),we have:

    Therefore,we can obtain:

    Sis the robot step length.

    Then,focus on the robot foot trajectory in the vertical direction.

    Swinging leg movement in the vertical direction is symmetric about the highest point.So only consider the case 0≤t≤T/2.

    The velocity and acceleration of swinging leg in the vertical direction are both 0 at start of movement in every cycle and at the highest point.So,we can describe vertical foot trajectory as sine curve learning from forward acceleration curve.We have:

    When,we can obtain:

    Boundary conditions are as follows:

    The foot trajectory curve in the vertical direction is as follows:

    His the height of the swing leg lift in the vertical direction.

    It is easy to validate the foot trajectory curve in the vertical direction also satisfying the formula in the second half of the cycle.

    If we setT=0.7 s,step lengthS=450mm and foot left heightH=100mm.

    Fig.4 shows the swinging foot trajectory based on composite cycloid planning.Thex-axis represents the forward direction.Andz-axis represents the vertical direction.And Figs.5 and 6 are displacement time series plots of forward and vertical direction.The first and second derivatives of the curve are both 0 at the start and the end that matches the foot trajectory condition correctly.

    D.Inverse Kinematic Analysis of Quadruped Robot Leg

    Kinematic analysis is the basis for robot path planning.We establish the relationship between the trajectory of foot and the joint angle through it.And we could implement the expected foot motion by controlling the joint angle[11],[12].

    Structure of the single leg is shown in Fig.7,where ΣNis global coordinate system;ΣBis moving coordinate system at the center of the body.H,M,K,E,Frepresent yaw motion,pitching motion of hip joint,knee,ankle and foot,respectively.The lengths of the leg between joints are,in order,l0,l1,l2,l3.θ1represents Yaw angle of hip.Angles of leg areθi=(θi1,θi2,θi3).Yaw,Pitch,Roll are namedα,β,γ.

    The rotation matrix from ΣBto ΣNis

    Assume the position ofBandFare known as(xb,yb,zb)and(xf,yf,zf).In theXB-YBplane,the angle between foot andXBis?.It is not difficult to get the conclusion according to mechanism sketch

    Substituting each vector into the equation,inverse kinematics solution can be obtained as follows:

    Fig.4.The foot trajectory curve.

    Fig.5.Displacement time series plots in forward direction.

    Fig.6.Displacement time series plots in vertical direction.

    Fig.7.Model of frame and structure of the single leg.

    where

    dandware the length and width of the body.

    In the same way,we can obtain inverse kinematics solution of other 3 legs.In the case of foot trajectory is known,corresponding joint angles can be calculated by inverse kinematics.

    E.Analysis the Hydraulic Drive System

    Quadruped robot model used in this paper is driven by hydraulic cylinders.We can control the hydraulic position to achieve the control of robot leg joints[13].

    Each leg has four hydraulic cylinders for driving in this model.The first one drives yawing motion of the hip.The second one drives pitching motion of the hip.The third one drives knee pitching movement.And the fourth one drives ankle pitching motion.

    First,calculate the first hydraulic cylinder elongation.We intends to use cosine law to calculate the corresponding angle which hydraulic cylinder in.It can be calculated by cosine law through calculating the corresponding angle in the triangle which includes hydraulic cylinder.

    According to Fig.8,it is easy to obtain:

    According to the relation between each angle in graph,we have:

    So

    Fig.8.Hydraulic cylinder of the first joint.

    This is the extended length of first hydraulic cylinder.Minusing original length,we can get hydraulic cylinder’s elongation.

    Fig.9 shows hydraulic cylinder of the second,third and fourth joints.From Fig.9,it is easy to obtain:

    According to the cosine law,we have:

    Fig.9.Hydraulic cylinder of the second,third and fourth joints.

    This is the extended length of second,third and fourth hydraulic cylinder.Their elongations are respectively equal to the result of extended length minus original length.

    F.Planning of State Variables

    The above analysis can fully describe the motion of the robot’s single leg.The quadruped robot gait can be planned based on it.The implementation process of quadruped robot gait is actually the coordination process of four legs movement along established path.In the control process,it is often useful to define the movement in one stage as a state variable.By controlling the state variable,the robot could move along the established path.

    In the example of pace and bound gait,we define the state variable for every process of paired legs rise and fall.It can be expressed as Fig.10.

    Fig.10. Transition between the state variables.

    In this paper,the left front leg and left hind leg are the first pair of legs in pace gait.The right front leg and right hind leg are the second pair.In bound gait,the left front leg and right front leg are the first pair of legs.And the right hind leg and left hind leg are for the second pair.Four-leg support state is the initial state of every cycle.Cycles of four states form the forward gait.

    IV.SIMULATION RESULTS AND ANALYSIS OF GAIT

    According to the above method,joint angles of each leg can be figured out by foot trajectory.Then,the hydraulic cylinder elongation as driving function can be obtained.Attitude angles(yaw,pitch,roll)are adjusted by PID control based on SLIP.Import the 3D-model of quadruped robot into Adams and establish control variables and constraints.Adopting the ADAMS and MATLAB joint simulation method,we can obtain simulation graphics and parameters of robot motion in ADAMS post-processing module.

    A.Result of Pace Gait

    As shown in Fig.9,we begin from the state of four leg on land.Then robot first raises left front leg and left hind leg simultaneously.Then,the left front and left hind legs touch the ground,and raise right front leg and right hind leg up.It fits in with the characteristics of pace,reciprocating cycle.(Fig.11 is in right view.The actual forward direction in simulation of the robot is in left in Fig.11.So that the right front and right hind leg in this right view is actually left front and left hind leg of the robot,and vice versa).

    Fig.11. Four-leg state of pace gait.

    As Fig.12 shows,at the beginning of the movement,the body’s pitch,roll and yaw have greater volatility.And then the movement becomes smooth.

    Fig.12. Curve of attitude angle in pace gait.

    B.Result of Bound Gait

    Similar as Fig.11,Bound Gait can be seen in Fig.13.As seen in Fig.14,the body pitch and roll is better in convergence.However,due to control error,the yaw fluctuated slightly with periodical change as same as the single-leg robot movement.

    V.CONCLUSION

    1)Using composite cycloid to plan the swing foot trajectory curve makes the velocity and acceleration to be 0 which can reduce the impact of collision with ground and energy loss.

    2)After setting the swing foot trajectory curve,we can get relationship between trajectory and joint angle by inverse kinematic analysis for single leg model of quadruped robot.This is the foundation of control for single leg motion.

    3)Establishing the relationship between the joint angle and the hydraulic cylinder elongation by analysing of hydraulic cylinder strobe,then we can adjust the joint angle through control of hydraulic cylinder elongation.

    4)By combining with the pace and bound gait characteristics,we can plan state variables and achieve two gaits cyclical motion.

    5)Based on the above analysis,we realize a better pace and bound gait of quadruped robot in simulation platform proving the feasibility of technical route.

    Fig.13. Four-leg state of bound gait.

    Fig.14. Curve of attitude angle in bound gait.

    [1]W.He,Y.T.Dong,and C.Y.Sun,“Adaptive neural impedance control of a robotic manipulator with input saturation,”IEEE Trans.Syst.Man Cybern.Syst.,vol.46,no.3,pp.334?344,Mar.2016.

    [2]Z.Y.Liu,D.D.Liu,and T.L.Shi,“Gait planning and movement simulation of biped robots,”J.Wuyi Univ.(Nat.Sci.Ed.),vol.30,no.1,pp.29?33,Mar.2016.

    [3]Z.W.Chen,B.Jin,S.Q.Zhu,H.L.Huang,and G.Chen,“Design and experiment of single leg of hydraulically actuated bionic multi-legged robot,”Trans.Chinese Soc.Agric.Eng.,vol.32,no.5,pp.36?42,Mar.2016.

    [4]G.S.Hornby,S.Takamura,T.Yamamoto,and M.Fujita,“Autonomous evolution of dynamic gaits with two quadruped robots,”IEEE Trans.Robot.,vol.21,no.3,pp.402?410,Jun.2005.

    [5]X.Wang,M.T.Li,P.F.Wang,and L.N.Sun,“Running and turning control of a quadruped robot with compliant legs in bounding gait,”inProc.2011 IEEE Int.Conf.Robotics and Automation,Shanghai,China,2011,pp.511?518.

    [6]S.P.Ma,G.H.Miao,and L.Q.Yu,“Research on the leaping gait of four feet robot with articulated legs,”J.Machine Des.,vol.25,no.8,pp.32?36,Oct.2008.

    [7]B.B.Xu,Y.J.Li,and Z.Wang,“Control method of spring loaded inverted pendulum model for legged robots,”Mech.Eng.Automat.,no.4,pp.141?143,Aug.2014.

    [8]M.T.Li,Z.Y.Jiang,W.Guo,and L.M.Sun,“Leg prototype of a bioinspired quadruped robot,”Robot,vol.36,no.1,pp.21?28,Jan.2014.

    [9]M.Raibert,M.Chepponis,and H.Brown,“Running on four legs as though they were one,”IEEE J.Robot.Automat.,vol.2,no.2,pp.70?82,Jun.1986.

    [10]M.H.Raibert,H.B.Brown Jr,and C.Michael,“Experiments in balance with a3D one-legged hopping machine,”Int.J.Robot.Res.,vol.3,no.2,pp.75?92,Jun.1984.

    [11]G.B.Xu and L.Z.Zeng,“Robot and it’s simulation,”Comput.Simulat.,vol.33,no.2,pp.1?16,May2016.

    [12]J.H.Zheng,J.C.Niu,M.S.Jiang,M.Li,and X.W.Rong,“Dynamic analysis and simulation of spring legs in quadruped robot based on trot gait,”J.Cent.South Univ.(Sci.Technol.),vol.46,no.8,pp.2877?2883,Aug.2015.

    [13]M.Zhuang,Z.W.Yu,D.P.Gong,M.L.Xu,and Z.D.Dai,“Gait planning and simulation of quadruped robot with hydraulic drive based on ADAMS,”Mach.Des.Manufact.,no.7,pp.100?102,Jul.2012.

    欧美日韩亚洲国产一区二区在线观看| 国产成年人精品一区二区| 亚洲av免费在线观看| 窝窝影院91人妻| 性色avwww在线观看| 九色成人免费人妻av| 久久精品人妻少妇| 无限看片的www在线观看| svipshipincom国产片| 美女cb高潮喷水在线观看| 男女床上黄色一级片免费看| 国产精品影院久久| 国产成+人综合+亚洲专区| 亚洲久久久久久中文字幕| 在线观看午夜福利视频| 国产亚洲欧美在线一区二区| 日韩欧美精品v在线| av福利片在线观看| a级一级毛片免费在线观看| 久久久国产成人精品二区| 成人无遮挡网站| 色综合站精品国产| 最新中文字幕久久久久| 人妻夜夜爽99麻豆av| 欧美乱色亚洲激情| 最近最新中文字幕大全电影3| 国内精品久久久久久久电影| 精品久久久久久久末码| 国产国拍精品亚洲av在线观看 | av在线蜜桃| 熟妇人妻久久中文字幕3abv| 国产又黄又爽又无遮挡在线| 少妇人妻精品综合一区二区 | 免费人成在线观看视频色| 尤物成人国产欧美一区二区三区| 首页视频小说图片口味搜索| 国产成人aa在线观看| 日韩欧美精品免费久久 | 成年女人永久免费观看视频| 男女午夜视频在线观看| 黄色成人免费大全| 天堂av国产一区二区熟女人妻| 淫妇啪啪啪对白视频| 狂野欧美激情性xxxx| x7x7x7水蜜桃| 可以在线观看的亚洲视频| 亚洲成人久久爱视频| 又爽又黄无遮挡网站| 一本精品99久久精品77| 亚洲av中文字字幕乱码综合| 免费av观看视频| 国产精品99久久久久久久久| 国产欧美日韩精品一区二区| 国产又黄又爽又无遮挡在线| 国产成人av激情在线播放| 精品久久久久久久久久久久久| 特大巨黑吊av在线直播| 狂野欧美激情性xxxx| 两人在一起打扑克的视频| 桃色一区二区三区在线观看| 欧美色视频一区免费| 岛国视频午夜一区免费看| 久久久久久国产a免费观看| 在线观看一区二区三区| 成人三级黄色视频| 国产真人三级小视频在线观看| 久久精品国产亚洲av香蕉五月| 国产精品免费一区二区三区在线| 午夜免费观看网址| 国产一区二区亚洲精品在线观看| 一二三四社区在线视频社区8| 五月玫瑰六月丁香| 久久精品影院6| 久久久久久久午夜电影| 免费高清视频大片| 琪琪午夜伦伦电影理论片6080| 18禁在线播放成人免费| 日本免费a在线| 日本 欧美在线| a在线观看视频网站| 免费av毛片视频| 久久中文看片网| 精品国产亚洲在线| 国产成人av激情在线播放| 国产在线精品亚洲第一网站| 国产欧美日韩一区二区精品| 欧美色欧美亚洲另类二区| 亚洲成人久久爱视频| 麻豆国产av国片精品| 最近在线观看免费完整版| 成人无遮挡网站| 母亲3免费完整高清在线观看| 亚洲五月天丁香| 免费人成视频x8x8入口观看| 欧美黑人巨大hd| 最近最新免费中文字幕在线| www.www免费av| 日韩亚洲欧美综合| 成人鲁丝片一二三区免费| 夜夜躁狠狠躁天天躁| 亚洲最大成人中文| 国产99白浆流出| 久久欧美精品欧美久久欧美| 日本精品一区二区三区蜜桃| 男女视频在线观看网站免费| 国产亚洲欧美98| 黑人欧美特级aaaaaa片| 国产亚洲精品一区二区www| av福利片在线观看| 91久久精品电影网| 亚洲成人精品中文字幕电影| 日韩精品青青久久久久久| 亚洲成人精品中文字幕电影| 日本五十路高清| 大型黄色视频在线免费观看| 亚洲电影在线观看av| av福利片在线观看| 岛国在线观看网站| 岛国在线观看网站| 欧美日韩综合久久久久久 | 不卡一级毛片| 久久99热这里只有精品18| 长腿黑丝高跟| a级毛片a级免费在线| 麻豆国产97在线/欧美| 长腿黑丝高跟| 黄片小视频在线播放| 天堂√8在线中文| 欧美日韩中文字幕国产精品一区二区三区| 舔av片在线| 性色av乱码一区二区三区2| 69人妻影院| 嫁个100分男人电影在线观看| 亚洲欧美日韩高清专用| a在线观看视频网站| 黄片大片在线免费观看| 51午夜福利影视在线观看| 日日干狠狠操夜夜爽| 日本免费a在线| 叶爱在线成人免费视频播放| 天美传媒精品一区二区| 老鸭窝网址在线观看| 一本久久中文字幕| 久久性视频一级片| 热99re8久久精品国产| 中出人妻视频一区二区| 两个人看的免费小视频| 欧美高清成人免费视频www| 国产成人欧美在线观看| 欧美色欧美亚洲另类二区| 久久天躁狠狠躁夜夜2o2o| 国产亚洲欧美在线一区二区| 午夜福利免费观看在线| 国内揄拍国产精品人妻在线| 精品国产三级普通话版| www日本黄色视频网| 最好的美女福利视频网| 在线观看一区二区三区| 在线免费观看不下载黄p国产 | 国产 一区 欧美 日韩| 高潮久久久久久久久久久不卡| 欧美高清成人免费视频www| 亚洲欧美日韩东京热| 国内精品一区二区在线观看| 好男人电影高清在线观看| av国产免费在线观看| 国产三级中文精品| 成人国产一区最新在线观看| 好男人电影高清在线观看| 欧美又色又爽又黄视频| av天堂在线播放| 日韩欧美精品v在线| 亚洲欧美日韩无卡精品| 久久精品国产亚洲av香蕉五月| 99热只有精品国产| 日韩欧美三级三区| 99在线人妻在线中文字幕| 99国产综合亚洲精品| 18美女黄网站色大片免费观看| 日本一二三区视频观看| 日本黄色片子视频| 美女高潮的动态| 桃色一区二区三区在线观看| 内地一区二区视频在线| 国产激情欧美一区二区| 欧美精品啪啪一区二区三区| 在线播放无遮挡| 国产亚洲精品av在线| 又黄又爽又免费观看的视频| 搡老熟女国产l中国老女人| 欧美不卡视频在线免费观看| 午夜两性在线视频| 亚洲国产精品sss在线观看| 婷婷精品国产亚洲av在线| 在线观看一区二区三区| 女生性感内裤真人,穿戴方法视频| 久久久久久久精品吃奶| 很黄的视频免费| 欧美在线一区亚洲| 嫩草影视91久久| 丁香欧美五月| 国产国拍精品亚洲av在线观看 | 成年女人永久免费观看视频| 99热只有精品国产| 国产精品自产拍在线观看55亚洲| 偷拍熟女少妇极品色| 午夜免费激情av| 国产视频内射| 国产v大片淫在线免费观看| 日韩欧美国产在线观看| 久久久久免费精品人妻一区二区| 成人特级黄色片久久久久久久| av国产免费在线观看| 少妇的逼好多水| 亚洲精品影视一区二区三区av| 狂野欧美白嫩少妇大欣赏| 欧美中文综合在线视频| 一级毛片高清免费大全| 99视频精品全部免费 在线| 日韩精品中文字幕看吧| 波野结衣二区三区在线 | 夜夜看夜夜爽夜夜摸| 一区二区三区高清视频在线| 午夜两性在线视频| 91久久精品电影网| 中文字幕av成人在线电影| 搡老岳熟女国产| 久久久久久久午夜电影| 99riav亚洲国产免费| 国产成人欧美在线观看| 久久久精品大字幕| 国产毛片a区久久久久| 午夜福利高清视频| 热99在线观看视频| 有码 亚洲区| 极品教师在线免费播放| 性色av乱码一区二区三区2| 99国产精品一区二区蜜桃av| 午夜福利视频1000在线观看| 18禁黄网站禁片午夜丰满| 亚洲精品456在线播放app | 亚洲成人中文字幕在线播放| 国产精品免费一区二区三区在线| 国产一区二区三区在线臀色熟女| 夜夜爽天天搞| 狂野欧美白嫩少妇大欣赏| 亚洲第一电影网av| 成人永久免费在线观看视频| 波野结衣二区三区在线 | 波多野结衣高清作品| 我要搜黄色片| xxx96com| 超碰av人人做人人爽久久 | 久久天躁狠狠躁夜夜2o2o| www.www免费av| 亚洲最大成人手机在线| 特大巨黑吊av在线直播| 高潮久久久久久久久久久不卡| 久久久久免费精品人妻一区二区| 精品国产亚洲在线| 久久久久久人人人人人| 12—13女人毛片做爰片一| 最新中文字幕久久久久| 最近视频中文字幕2019在线8| 国产亚洲精品久久久com| 一级黄片播放器| 免费人成在线观看视频色| 国产黄片美女视频| 欧美日韩黄片免| 最好的美女福利视频网| 欧美日韩中文字幕国产精品一区二区三区| 免费观看的影片在线观看| 亚洲人成网站在线播| 一级毛片高清免费大全| 麻豆久久精品国产亚洲av| 在线观看一区二区三区| 99国产综合亚洲精品| 午夜激情欧美在线| 精品一区二区三区av网在线观看| av天堂中文字幕网| 最新中文字幕久久久久| 男女之事视频高清在线观看| 很黄的视频免费| 国产激情偷乱视频一区二区| 午夜福利在线观看免费完整高清在 | 搞女人的毛片| 精品一区二区三区人妻视频| 在线观看av片永久免费下载| 久久久久久久久久黄片| 国产欧美日韩精品亚洲av| 淫秽高清视频在线观看| 中国美女看黄片| 亚洲精品乱码久久久v下载方式 | 99在线人妻在线中文字幕| 给我免费播放毛片高清在线观看| www.熟女人妻精品国产| 欧美绝顶高潮抽搐喷水| 日本与韩国留学比较| 噜噜噜噜噜久久久久久91| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩高清在线视频| 国产精品1区2区在线观看.| 此物有八面人人有两片| 亚洲国产精品999在线| a级毛片a级免费在线| 精品熟女少妇八av免费久了| 国产久久久一区二区三区| 久久精品国产综合久久久| 欧美三级亚洲精品| 搡老岳熟女国产| 中文字幕熟女人妻在线| 99在线视频只有这里精品首页| 日本在线视频免费播放| 国语自产精品视频在线第100页| 国产三级在线视频| 哪里可以看免费的av片| 中国美女看黄片| 丰满人妻熟妇乱又伦精品不卡| 网址你懂的国产日韩在线| 男女下面进入的视频免费午夜| 国产伦人伦偷精品视频| 精品无人区乱码1区二区| 一级毛片高清免费大全| 身体一侧抽搐| 亚洲av成人av| 国产真实乱freesex| 午夜视频国产福利| 悠悠久久av| 亚洲内射少妇av| av女优亚洲男人天堂| 国产在视频线在精品| 又黄又爽又免费观看的视频| 国产精品影院久久| 噜噜噜噜噜久久久久久91| 国产成人aa在线观看| 免费在线观看日本一区| 亚洲中文字幕日韩| 色在线成人网| 在线观看美女被高潮喷水网站 | 精品国产美女av久久久久小说| 久久精品91无色码中文字幕| 黄色丝袜av网址大全| 麻豆成人av在线观看| 亚洲,欧美精品.| 一本一本综合久久| 窝窝影院91人妻| 一区二区三区高清视频在线| 亚洲熟妇熟女久久| 久久久久久久精品吃奶| xxxwww97欧美| 亚洲天堂国产精品一区在线| netflix在线观看网站| 99久久九九国产精品国产免费| 国内精品美女久久久久久| 精品无人区乱码1区二区| 真实男女啪啪啪动态图| 成人特级黄色片久久久久久久| 久久中文看片网| 99在线视频只有这里精品首页| 波多野结衣巨乳人妻| 久久人人精品亚洲av| 搡老妇女老女人老熟妇| 欧美极品一区二区三区四区| 在线十欧美十亚洲十日本专区| 精品国产三级普通话版| 日韩欧美精品免费久久 | a在线观看视频网站| 中文字幕人妻熟人妻熟丝袜美 | 99久久无色码亚洲精品果冻| 99热这里只有精品一区| www日本在线高清视频| 欧美+亚洲+日韩+国产| 亚洲精品一区av在线观看| 欧美性猛交黑人性爽| 18禁美女被吸乳视频| 狂野欧美白嫩少妇大欣赏| 少妇的逼水好多| 99国产极品粉嫩在线观看| 嫩草影院精品99| 国产精品亚洲av一区麻豆| 欧美绝顶高潮抽搐喷水| 国产伦精品一区二区三区视频9 | 99热这里只有精品一区| 国产精品久久久久久久电影 | 欧美国产日韩亚洲一区| 欧美最新免费一区二区三区 | 国产老妇女一区| 18禁在线播放成人免费| 日本三级黄在线观看| 在线观看免费视频日本深夜| 免费av毛片视频| 真人一进一出gif抽搐免费| 色综合婷婷激情| 国产一区二区在线观看日韩 | 色av中文字幕| 欧美日韩精品网址| 久久久久久久久大av| 一级作爱视频免费观看| 欧美+日韩+精品| 日本 av在线| tocl精华| 国产熟女xx| 欧美在线黄色| 日韩欧美精品免费久久 | 天堂影院成人在线观看| 12—13女人毛片做爰片一| 色综合站精品国产| 国产成人欧美在线观看| 国产精品98久久久久久宅男小说| 香蕉av资源在线| 女警被强在线播放| 国产精品乱码一区二三区的特点| 国产精品av视频在线免费观看| 91久久精品国产一区二区成人 | 麻豆一二三区av精品| 午夜免费成人在线视频| 国产精品 国内视频| 国产成人a区在线观看| av中文乱码字幕在线| 搡老妇女老女人老熟妇| 国产高清三级在线| av在线蜜桃| 欧美一区二区亚洲| 最新在线观看一区二区三区| 日韩欧美在线乱码| 午夜a级毛片| 99在线视频只有这里精品首页| 国产成+人综合+亚洲专区| 国产不卡一卡二| 午夜老司机福利剧场| 麻豆一二三区av精品| 在线观看一区二区三区| 禁无遮挡网站| 熟妇人妻久久中文字幕3abv| 久久中文看片网| 老司机午夜十八禁免费视频| 亚洲精品一卡2卡三卡4卡5卡| 国产国拍精品亚洲av在线观看 | 午夜精品一区二区三区免费看| 99国产极品粉嫩在线观看| a在线观看视频网站| 欧美国产日韩亚洲一区| 婷婷亚洲欧美| 日韩成人在线观看一区二区三区| 免费看美女性在线毛片视频| 精品熟女少妇八av免费久了| 真人做人爱边吃奶动态| 欧美又色又爽又黄视频| av在线天堂中文字幕| 亚洲一区高清亚洲精品| 动漫黄色视频在线观看| 我要搜黄色片| 淫妇啪啪啪对白视频| 婷婷精品国产亚洲av在线| 中亚洲国语对白在线视频| 中文字幕av在线有码专区| 日本精品一区二区三区蜜桃| 女人十人毛片免费观看3o分钟| 黑人欧美特级aaaaaa片| av天堂在线播放| 亚洲精华国产精华精| 午夜视频国产福利| 国产主播在线观看一区二区| 久久久国产成人免费| 无限看片的www在线观看| 99热只有精品国产| av片东京热男人的天堂| 亚洲电影在线观看av| 俄罗斯特黄特色一大片| 最近最新中文字幕大全电影3| 亚洲国产精品sss在线观看| 欧美乱妇无乱码| 老司机在亚洲福利影院| 国产一区二区激情短视频| 亚洲人成网站在线播| 国产av一区在线观看免费| 亚洲成人久久性| 免费看十八禁软件| 成人永久免费在线观看视频| 天堂√8在线中文| 高清在线国产一区| 亚洲美女黄片视频| 国产欧美日韩一区二区精品| 亚洲国产精品合色在线| 欧美日韩中文字幕国产精品一区二区三区| 成人18禁在线播放| www日本黄色视频网| 国产麻豆成人av免费视频| 99视频精品全部免费 在线| 亚洲精品粉嫩美女一区| 婷婷丁香在线五月| 99久久久亚洲精品蜜臀av| 欧美黑人巨大hd| 一本综合久久免费| 99在线人妻在线中文字幕| 欧美国产日韩亚洲一区| 婷婷精品国产亚洲av在线| 日韩欧美精品免费久久 | 99久久成人亚洲精品观看| 日韩欧美 国产精品| 国模一区二区三区四区视频| 国产探花极品一区二区| 国产一区二区亚洲精品在线观看| 99久久成人亚洲精品观看| 日韩成人在线观看一区二区三区| 一级作爱视频免费观看| 波野结衣二区三区在线 | 国产美女午夜福利| 动漫黄色视频在线观看| 我要搜黄色片| 国产色爽女视频免费观看| 村上凉子中文字幕在线| 一边摸一边抽搐一进一小说| 真人做人爱边吃奶动态| 99久久精品热视频| 无人区码免费观看不卡| 日本成人三级电影网站| 90打野战视频偷拍视频| 国产精品永久免费网站| 18禁黄网站禁片免费观看直播| 欧美3d第一页| 亚洲精品日韩av片在线观看 | netflix在线观看网站| 色吧在线观看| 99久国产av精品| 国产精品久久久久久亚洲av鲁大| 性色avwww在线观看| 久久久久国产精品人妻aⅴ院| 舔av片在线| 国产激情欧美一区二区| 深夜精品福利| av黄色大香蕉| 一区福利在线观看| 首页视频小说图片口味搜索| 好男人电影高清在线观看| 1024手机看黄色片| 动漫黄色视频在线观看| 亚洲黑人精品在线| 欧美日韩精品网址| 深爱激情五月婷婷| 窝窝影院91人妻| 在线免费观看的www视频| 老司机午夜福利在线观看视频| 女人高潮潮喷娇喘18禁视频| 一进一出抽搐动态| av在线蜜桃| 欧美黑人巨大hd| 又黄又粗又硬又大视频| 成人特级av手机在线观看| 99热这里只有是精品50| 久久精品国产清高在天天线| 欧美另类亚洲清纯唯美| 国产午夜精品久久久久久一区二区三区 | 看片在线看免费视频| 国产三级黄色录像| 男女那种视频在线观看| 国产精品,欧美在线| 欧美另类亚洲清纯唯美| 啦啦啦免费观看视频1| 精品无人区乱码1区二区| 亚洲专区中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 不卡一级毛片| 午夜精品在线福利| 波野结衣二区三区在线 | 99热6这里只有精品| 波多野结衣高清无吗| 99精品久久久久人妻精品| 在线观看免费视频日本深夜| 香蕉丝袜av| 天堂av国产一区二区熟女人妻| 国产黄a三级三级三级人| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品久久久久久久久免 | 麻豆一二三区av精品| 床上黄色一级片| 国产色爽女视频免费观看| 黄色女人牲交| 欧美丝袜亚洲另类 | 啪啪无遮挡十八禁网站| 亚洲av五月六月丁香网| 成人午夜高清在线视频| 国产精品一区二区三区四区免费观看 | 熟女电影av网| 99久久无色码亚洲精品果冻| 色老头精品视频在线观看| 最近最新中文字幕大全免费视频| 国产精品亚洲美女久久久| 亚洲无线在线观看| 免费一级毛片在线播放高清视频| 久久中文看片网| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产又黄又爽又无遮挡在线| 国产91精品成人一区二区三区| 男女那种视频在线观看| 天堂√8在线中文| 免费人成在线观看视频色| 亚洲精品国产精品久久久不卡| 丁香六月欧美| 综合色av麻豆| 好看av亚洲va欧美ⅴa在| 我要搜黄色片| 欧美日韩精品网址| 99riav亚洲国产免费| 成年女人看的毛片在线观看| 国产精品嫩草影院av在线观看 | 男女做爰动态图高潮gif福利片| 99热这里只有精品一区| 国产免费av片在线观看野外av| 尤物成人国产欧美一区二区三区| 午夜免费观看网址| 一本精品99久久精品77| 国产高清视频在线观看网站| av专区在线播放| 噜噜噜噜噜久久久久久91|