• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bionic Quadruped Robot Dynamic Gait Control Strategy Based on Twenty Degrees of Freedom

    2018-01-26 03:51:14DaweiGongPengWangShuangyuZhaoLiDuandYuDuan
    IEEE/CAA Journal of Automatica Sinica 2018年1期

    DaweiGong,Peng Wang,Shuangyu Zhao,Li Du,and Yu Duan

    I.INTRODUCTION

    M ORE and more researchers have been giving great attention to the robot research[1].Quadruped robot which can be used to simulate the common animals becomes a hot topic in recent time[2].It has higher carrying capacity and stability compared with single-legged and biped robot.And it also reduces redundancy in structure design compared to hexapod and more legs robot.So the quadruped robot has been studied widely and developed rapidly in the recent years.Quadruped robot is inspired by four-legged animals not only in structure but also in the ways of moving.The common gaits include craw l,trot,pace,bound and so on.In which,craw l is static gait,and others are dynamic gaits.Static gait is the most stable gait in quadruped movement.But dynamicgait has more advantages on speed and efficiency that makes it become a hot topic for research[3].

    Nowadays,scholars have obtained some achievements in quadruped robot research.In 2004,Hornbyet al.realized pace gait and trot gait in a straight line on Sony’s two small quadruped robot ERS-110 and OPEN-R using evolutionary algorithm.Both of them have three degrees of freedom in leg,two in hip and one in knee[4].In 2011,Wanget al.realized bound gait in a simple quadruped robot which has four passive legs and a spine connecting front and rear body[5].Each hip is equipped with only one drive.Quadruped robot models used in the above researches are simplified in leg structure and degrees of freedom compared to tetrapods.Due to this reason,this model-based control algorithms have few limitations to complex road.In 2008,Maet al.proved that quadruped robot is able to achieve bound gait under the initial condition of a fixed point by numerical calculation[6].However,this conclusion has not been realized in simulation platform.

    In summary,the paper presents a complex quadruped robot model with 20 degrees of freedom which could contain all the above models.Each leg in the model has 5 degrees of freedom,a yaw and a pitching freedom of hip,a pitching freedom of knee and ankle.And each leg also has an elastic component simulating leg tendon in motion as a passive degree of freedom.The model retains basic motion characteristics of quadruped leg movement that can simulate four-legged animals movement very well.Finally,we realize a better pace gait and bound gait in the ADAMS-MATLAB simulation platform that is proving the feasibility of technical route.Although the technical route making pace gait and bound gait is an example,it also applies to dynamic gait such as trot gait.The research of trot gait is so mature that it is not being focused on in this paper.

    In the current research,scholars focus more on flexible contact and gait control of single-legged robot.But,it lacks attention of the effect on high speed contact,with feet and ground,in quadruped robot dynamic gait.And we also ignore how to achieve stabilizing control.Due to this reason,we build a relatively complete 3D model for quadruped robot based on SLIP model,analyze the inverse kinematics of the model,plan the trajectory of the dynamic gait with 0 velocity and acceleration when touch the ground and analyze the hydraulic drive.At last,we achieve a better simulation of pace gait and bound gait.The paper is focusing on the dynamic gaits control in such a complex situation for the first time.This can provide reference for quadruped robot design.

    II.SLIPMODEL

    Spring loaded inverted pendulum(SLIP)is a very common model in research of biological running and jumping,with few degrees of freedom,simple structure,less coupling and simple control,as shown in Fig.1[7].The motion of planar SLIP model can be decomposed into the forward direction(Xdirection)and the vertical direction(Ydirection).Its motion has the standing and vacating phase.Running or jumping could be considered as alternation between two states.The 3D-SLIP model also has speed in lateral direction(Ydirection)except in forward direction(Xdirection)and vertical direction(Zdirection).Compared to the planar SLIP model,it is a more appropriate choice for bionic robot research.

    Fig.1.Planar SLIP model and 3D-SLIP model.

    A.SLIP-based Single-leg Robot Control Algorithm

    Single-legged robot control algorithm is the basis of legged robot control which includes forward speed,body attitude and jumping height control[8]?[10].

    B.Quadruped Robot Modeling

    Quadruped robot model from this paper is based on 3DSLIP.The 3D-model is provided by the Harbin Institute of Technology,as shown in Fig.2.

    Fig.2.Quadruped robot’s 3D model.

    III.PATH PLANNING FOR QUADRUPED ROBOT DYNAM IC GAIT

    A.Gait Description

    The gait is a coordinative relationship of animals limb between time and space.It includes regularly repeating sequence and method of moving legs.

    Quadruped robot gait can be divided into static and dynamic gait.Static gait means projection of robot gravity on the ground is always located within the supporting triangle.It has the slowest speed and the best stability.Crawl is a kind of static gait.Common dynamic gait includes trot,pace,bound and gallop,in which,gallop is a symmetric gait with time difference of any two legs movement.The other three are symmetrical gaits.

    Trot gait means that the two legs on diagonal have consistently movement.And they are as standing and vacating legs by turns.

    Pace gait means same-side feet having synchronous motion.The body during exercise has significantly tumbling motion which causes less stability.But it avoids the mutual interference between front and rear legs like trot.So,it is more suitable for camels,giraffes and other long leg quadrupeds.

    Bound gait means front and rear legs are paired respectively.It suits for smaller flexible quadruped with poor walking ability.The body has an obvious pitching during motion.

    In this paper,we focus on control strategy of symmetrical gait based on pace and bound gait.

    B.Virtual Leg

    Virtual leg is an important tool in research of multi-legged robot,proposed by Sutherland in 1989.The virtual leg means one virtual leg could instead of two real legs when the two real legs are exerting equal force on the ground,producing same horizontal displacement and equal torque on the hips.Different quadruped robot gaits can be equivalent to the corresponding biped robot gait by the principle of virtual leg,as shown in Fig.3.

    Fig.3.Application of the virtual leg in quadruped robot.

    And biped robot motion can be seen as two single-leg robots movement whose each leg could as standing and vacating leg by turns.So,we can establish connections between quadruped robot and single-leg robot by virtual leg to extend of control strategy from single-leg robot to quadruped robot.

    C.Foot Trajectory Settings

    During the forward movement,the trajectory of the swing foot needs to satisfy some conditions.

    1)Leg lifting must be enough high to prevent collision with ground and obstacles.

    2)Velocity and acceleration of the swing foot are set to 0 to reduce the impact of collision with ground when starting and hitting the ground.

    Using the simple curve(such as sine curve,elliptic curves)as the swinging foot trajectory curve,the foot will have an additional acceleration at the moment it touching ground.So we consider using composite cycloid instead of simple curve in this paper.

    First,consider the robot forward foot trajectory.

    According to the condition 2),the acceleration is set to 0 when getting off and hitting the ground.The acceleration curve can be set to a sine curve.

    The velocity is also 0when leaving and touching the ground.Integral the formula att=0 ort=T,˙x=0.The following equation will be obtained:

    By the velocity curve,we can obtain foot trajectory curve as follows:

    Boundary conditions are as follows:

    Substitute this into(3),we have:

    Therefore,we can obtain:

    Sis the robot step length.

    Then,focus on the robot foot trajectory in the vertical direction.

    Swinging leg movement in the vertical direction is symmetric about the highest point.So only consider the case 0≤t≤T/2.

    The velocity and acceleration of swinging leg in the vertical direction are both 0 at start of movement in every cycle and at the highest point.So,we can describe vertical foot trajectory as sine curve learning from forward acceleration curve.We have:

    When,we can obtain:

    Boundary conditions are as follows:

    The foot trajectory curve in the vertical direction is as follows:

    His the height of the swing leg lift in the vertical direction.

    It is easy to validate the foot trajectory curve in the vertical direction also satisfying the formula in the second half of the cycle.

    If we setT=0.7 s,step lengthS=450mm and foot left heightH=100mm.

    Fig.4 shows the swinging foot trajectory based on composite cycloid planning.Thex-axis represents the forward direction.Andz-axis represents the vertical direction.And Figs.5 and 6 are displacement time series plots of forward and vertical direction.The first and second derivatives of the curve are both 0 at the start and the end that matches the foot trajectory condition correctly.

    D.Inverse Kinematic Analysis of Quadruped Robot Leg

    Kinematic analysis is the basis for robot path planning.We establish the relationship between the trajectory of foot and the joint angle through it.And we could implement the expected foot motion by controlling the joint angle[11],[12].

    Structure of the single leg is shown in Fig.7,where ΣNis global coordinate system;ΣBis moving coordinate system at the center of the body.H,M,K,E,Frepresent yaw motion,pitching motion of hip joint,knee,ankle and foot,respectively.The lengths of the leg between joints are,in order,l0,l1,l2,l3.θ1represents Yaw angle of hip.Angles of leg areθi=(θi1,θi2,θi3).Yaw,Pitch,Roll are namedα,β,γ.

    The rotation matrix from ΣBto ΣNis

    Assume the position ofBandFare known as(xb,yb,zb)and(xf,yf,zf).In theXB-YBplane,the angle between foot andXBis?.It is not difficult to get the conclusion according to mechanism sketch

    Substituting each vector into the equation,inverse kinematics solution can be obtained as follows:

    Fig.4.The foot trajectory curve.

    Fig.5.Displacement time series plots in forward direction.

    Fig.6.Displacement time series plots in vertical direction.

    Fig.7.Model of frame and structure of the single leg.

    where

    dandware the length and width of the body.

    In the same way,we can obtain inverse kinematics solution of other 3 legs.In the case of foot trajectory is known,corresponding joint angles can be calculated by inverse kinematics.

    E.Analysis the Hydraulic Drive System

    Quadruped robot model used in this paper is driven by hydraulic cylinders.We can control the hydraulic position to achieve the control of robot leg joints[13].

    Each leg has four hydraulic cylinders for driving in this model.The first one drives yawing motion of the hip.The second one drives pitching motion of the hip.The third one drives knee pitching movement.And the fourth one drives ankle pitching motion.

    First,calculate the first hydraulic cylinder elongation.We intends to use cosine law to calculate the corresponding angle which hydraulic cylinder in.It can be calculated by cosine law through calculating the corresponding angle in the triangle which includes hydraulic cylinder.

    According to Fig.8,it is easy to obtain:

    According to the relation between each angle in graph,we have:

    So

    Fig.8.Hydraulic cylinder of the first joint.

    This is the extended length of first hydraulic cylinder.Minusing original length,we can get hydraulic cylinder’s elongation.

    Fig.9 shows hydraulic cylinder of the second,third and fourth joints.From Fig.9,it is easy to obtain:

    According to the cosine law,we have:

    Fig.9.Hydraulic cylinder of the second,third and fourth joints.

    This is the extended length of second,third and fourth hydraulic cylinder.Their elongations are respectively equal to the result of extended length minus original length.

    F.Planning of State Variables

    The above analysis can fully describe the motion of the robot’s single leg.The quadruped robot gait can be planned based on it.The implementation process of quadruped robot gait is actually the coordination process of four legs movement along established path.In the control process,it is often useful to define the movement in one stage as a state variable.By controlling the state variable,the robot could move along the established path.

    In the example of pace and bound gait,we define the state variable for every process of paired legs rise and fall.It can be expressed as Fig.10.

    Fig.10. Transition between the state variables.

    In this paper,the left front leg and left hind leg are the first pair of legs in pace gait.The right front leg and right hind leg are the second pair.In bound gait,the left front leg and right front leg are the first pair of legs.And the right hind leg and left hind leg are for the second pair.Four-leg support state is the initial state of every cycle.Cycles of four states form the forward gait.

    IV.SIMULATION RESULTS AND ANALYSIS OF GAIT

    According to the above method,joint angles of each leg can be figured out by foot trajectory.Then,the hydraulic cylinder elongation as driving function can be obtained.Attitude angles(yaw,pitch,roll)are adjusted by PID control based on SLIP.Import the 3D-model of quadruped robot into Adams and establish control variables and constraints.Adopting the ADAMS and MATLAB joint simulation method,we can obtain simulation graphics and parameters of robot motion in ADAMS post-processing module.

    A.Result of Pace Gait

    As shown in Fig.9,we begin from the state of four leg on land.Then robot first raises left front leg and left hind leg simultaneously.Then,the left front and left hind legs touch the ground,and raise right front leg and right hind leg up.It fits in with the characteristics of pace,reciprocating cycle.(Fig.11 is in right view.The actual forward direction in simulation of the robot is in left in Fig.11.So that the right front and right hind leg in this right view is actually left front and left hind leg of the robot,and vice versa).

    Fig.11. Four-leg state of pace gait.

    As Fig.12 shows,at the beginning of the movement,the body’s pitch,roll and yaw have greater volatility.And then the movement becomes smooth.

    Fig.12. Curve of attitude angle in pace gait.

    B.Result of Bound Gait

    Similar as Fig.11,Bound Gait can be seen in Fig.13.As seen in Fig.14,the body pitch and roll is better in convergence.However,due to control error,the yaw fluctuated slightly with periodical change as same as the single-leg robot movement.

    V.CONCLUSION

    1)Using composite cycloid to plan the swing foot trajectory curve makes the velocity and acceleration to be 0 which can reduce the impact of collision with ground and energy loss.

    2)After setting the swing foot trajectory curve,we can get relationship between trajectory and joint angle by inverse kinematic analysis for single leg model of quadruped robot.This is the foundation of control for single leg motion.

    3)Establishing the relationship between the joint angle and the hydraulic cylinder elongation by analysing of hydraulic cylinder strobe,then we can adjust the joint angle through control of hydraulic cylinder elongation.

    4)By combining with the pace and bound gait characteristics,we can plan state variables and achieve two gaits cyclical motion.

    5)Based on the above analysis,we realize a better pace and bound gait of quadruped robot in simulation platform proving the feasibility of technical route.

    Fig.13. Four-leg state of bound gait.

    Fig.14. Curve of attitude angle in bound gait.

    [1]W.He,Y.T.Dong,and C.Y.Sun,“Adaptive neural impedance control of a robotic manipulator with input saturation,”IEEE Trans.Syst.Man Cybern.Syst.,vol.46,no.3,pp.334?344,Mar.2016.

    [2]Z.Y.Liu,D.D.Liu,and T.L.Shi,“Gait planning and movement simulation of biped robots,”J.Wuyi Univ.(Nat.Sci.Ed.),vol.30,no.1,pp.29?33,Mar.2016.

    [3]Z.W.Chen,B.Jin,S.Q.Zhu,H.L.Huang,and G.Chen,“Design and experiment of single leg of hydraulically actuated bionic multi-legged robot,”Trans.Chinese Soc.Agric.Eng.,vol.32,no.5,pp.36?42,Mar.2016.

    [4]G.S.Hornby,S.Takamura,T.Yamamoto,and M.Fujita,“Autonomous evolution of dynamic gaits with two quadruped robots,”IEEE Trans.Robot.,vol.21,no.3,pp.402?410,Jun.2005.

    [5]X.Wang,M.T.Li,P.F.Wang,and L.N.Sun,“Running and turning control of a quadruped robot with compliant legs in bounding gait,”inProc.2011 IEEE Int.Conf.Robotics and Automation,Shanghai,China,2011,pp.511?518.

    [6]S.P.Ma,G.H.Miao,and L.Q.Yu,“Research on the leaping gait of four feet robot with articulated legs,”J.Machine Des.,vol.25,no.8,pp.32?36,Oct.2008.

    [7]B.B.Xu,Y.J.Li,and Z.Wang,“Control method of spring loaded inverted pendulum model for legged robots,”Mech.Eng.Automat.,no.4,pp.141?143,Aug.2014.

    [8]M.T.Li,Z.Y.Jiang,W.Guo,and L.M.Sun,“Leg prototype of a bioinspired quadruped robot,”Robot,vol.36,no.1,pp.21?28,Jan.2014.

    [9]M.Raibert,M.Chepponis,and H.Brown,“Running on four legs as though they were one,”IEEE J.Robot.Automat.,vol.2,no.2,pp.70?82,Jun.1986.

    [10]M.H.Raibert,H.B.Brown Jr,and C.Michael,“Experiments in balance with a3D one-legged hopping machine,”Int.J.Robot.Res.,vol.3,no.2,pp.75?92,Jun.1984.

    [11]G.B.Xu and L.Z.Zeng,“Robot and it’s simulation,”Comput.Simulat.,vol.33,no.2,pp.1?16,May2016.

    [12]J.H.Zheng,J.C.Niu,M.S.Jiang,M.Li,and X.W.Rong,“Dynamic analysis and simulation of spring legs in quadruped robot based on trot gait,”J.Cent.South Univ.(Sci.Technol.),vol.46,no.8,pp.2877?2883,Aug.2015.

    [13]M.Zhuang,Z.W.Yu,D.P.Gong,M.L.Xu,and Z.D.Dai,“Gait planning and simulation of quadruped robot with hydraulic drive based on ADAMS,”Mach.Des.Manufact.,no.7,pp.100?102,Jul.2012.

    欧美激情 高清一区二区三区| 日本欧美国产在线视频| 亚洲激情五月婷婷啪啪| 在线观看人妻少妇| 中文字幕精品免费在线观看视频| 免费不卡黄色视频| 欧美xxⅹ黑人| 久久久精品免费免费高清| 国产一级毛片在线| 91精品国产国语对白视频| 亚洲精品自拍成人| 中文字幕人妻丝袜一区二区| 中文字幕人妻丝袜制服| 久久久亚洲精品成人影院| 亚洲国产av新网站| 男女国产视频网站| 国产免费一区二区三区四区乱码| 国产黄色视频一区二区在线观看| 亚洲av成人不卡在线观看播放网 | 午夜免费成人在线视频| 亚洲精品国产色婷婷电影| 91国产中文字幕| www.999成人在线观看| 精品人妻1区二区| 国产精品一二三区在线看| 热re99久久国产66热| 精品国产一区二区久久| 一级片免费观看大全| 免费高清在线观看日韩| 久热这里只有精品99| 老熟女久久久| 一级毛片我不卡| 久久久久国产一级毛片高清牌| √禁漫天堂资源中文www| 丰满迷人的少妇在线观看| 99久久精品国产亚洲精品| 免费不卡黄色视频| 成人国产av品久久久| 亚洲综合色网址| 只有这里有精品99| 18禁国产床啪视频网站| 国产成人欧美| 亚洲欧美中文字幕日韩二区| 国产av国产精品国产| 两个人看的免费小视频| 亚洲色图综合在线观看| 脱女人内裤的视频| 亚洲av片天天在线观看| 欧美日韩国产mv在线观看视频| 91精品伊人久久大香线蕉| xxx大片免费视频| 国产熟女午夜一区二区三区| 亚洲av日韩在线播放| 亚洲精品日韩在线中文字幕| 极品人妻少妇av视频| 久久国产精品人妻蜜桃| 我要看黄色一级片免费的| 国产亚洲av高清不卡| 国产亚洲精品第一综合不卡| 欧美人与善性xxx| 亚洲av电影在线进入| 亚洲av欧美aⅴ国产| 日韩伦理黄色片| 亚洲精品久久久久久婷婷小说| 丝袜美腿诱惑在线| 99re6热这里在线精品视频| 日韩精品免费视频一区二区三区| 日韩制服丝袜自拍偷拍| 女人被躁到高潮嗷嗷叫费观| 水蜜桃什么品种好| 99久久99久久久精品蜜桃| 在线观看国产h片| 精品欧美一区二区三区在线| 国产成人欧美在线观看 | 成人国语在线视频| 欧美大码av| 啦啦啦在线免费观看视频4| 一本综合久久免费| 777久久人妻少妇嫩草av网站| 午夜日韩欧美国产| 激情五月婷婷亚洲| 亚洲国产av影院在线观看| 美女大奶头黄色视频| 最近中文字幕2019免费版| 久久人妻福利社区极品人妻图片 | 久久久久国产一级毛片高清牌| √禁漫天堂资源中文www| 啦啦啦在线观看免费高清www| 久久99精品国语久久久| 波野结衣二区三区在线| 亚洲精品美女久久久久99蜜臀 | 日本a在线网址| 国产熟女欧美一区二区| 日本a在线网址| 黑丝袜美女国产一区| 两个人免费观看高清视频| 在线亚洲精品国产二区图片欧美| 久久精品久久精品一区二区三区| 国产一区二区在线观看av| 中国美女看黄片| 丝袜美腿诱惑在线| 中国国产av一级| 亚洲美女黄色视频免费看| 五月开心婷婷网| 亚洲精品久久成人aⅴ小说| 免费在线观看影片大全网站 | 热re99久久精品国产66热6| 精品少妇久久久久久888优播| 亚洲精品乱久久久久久| 一区在线观看完整版| 国产成人精品无人区| 最近中文字幕2019免费版| 在线精品无人区一区二区三| 两个人免费观看高清视频| 一个人免费看片子| 久久久久久免费高清国产稀缺| 狂野欧美激情性bbbbbb| 99热全是精品| xxxhd国产人妻xxx| 丁香六月欧美| 亚洲av片天天在线观看| 50天的宝宝边吃奶边哭怎么回事| 成人18禁高潮啪啪吃奶动态图| 亚洲精品av麻豆狂野| 欧美乱码精品一区二区三区| 日韩大片免费观看网站| 亚洲精品自拍成人| 亚洲激情五月婷婷啪啪| 国产在线免费精品| 日韩,欧美,国产一区二区三区| 在线天堂中文资源库| 国产又色又爽无遮挡免| 亚洲精品美女久久久久99蜜臀 | 十八禁网站网址无遮挡| 欧美人与善性xxx| 一本一本久久a久久精品综合妖精| 亚洲成av片中文字幕在线观看| 肉色欧美久久久久久久蜜桃| 国产免费福利视频在线观看| 国产高清不卡午夜福利| 免费看不卡的av| 精品人妻1区二区| av欧美777| 亚洲久久久国产精品| 在线精品无人区一区二区三| 国产又爽黄色视频| 91字幕亚洲| 久久久久久久大尺度免费视频| 性色av一级| 老司机亚洲免费影院| 男男h啪啪无遮挡| 亚洲 欧美一区二区三区| 99精品久久久久人妻精品| 日韩大码丰满熟妇| cao死你这个sao货| 亚洲九九香蕉| 电影成人av| 婷婷色综合大香蕉| 亚洲成国产人片在线观看| 午夜激情久久久久久久| 91麻豆av在线| 久久影院123| 在线观看国产h片| 日韩中文字幕视频在线看片| 久久这里只有精品19| 少妇人妻久久综合中文| 国产欧美日韩综合在线一区二区| 国产精品 国内视频| 日本黄色日本黄色录像| 少妇精品久久久久久久| 精品亚洲成a人片在线观看| 国产无遮挡羞羞视频在线观看| 水蜜桃什么品种好| 水蜜桃什么品种好| a级毛片黄视频| 欧美乱码精品一区二区三区| 国产免费视频播放在线视频| 啦啦啦视频在线资源免费观看| 亚洲成人手机| 脱女人内裤的视频| 人人妻人人添人人爽欧美一区卜| 激情五月婷婷亚洲| 91精品伊人久久大香线蕉| 亚洲国产欧美网| 成人影院久久| 中文字幕最新亚洲高清| 日本猛色少妇xxxxx猛交久久| 各种免费的搞黄视频| 国产成人av教育| 麻豆av在线久日| 老鸭窝网址在线观看| 狠狠婷婷综合久久久久久88av| 国产欧美亚洲国产| 另类亚洲欧美激情| 色婷婷久久久亚洲欧美| 亚洲色图 男人天堂 中文字幕| 亚洲成色77777| 精品人妻1区二区| 精品一区二区三卡| 1024香蕉在线观看| 亚洲国产日韩一区二区| 久久久久国产一级毛片高清牌| 亚洲精品日本国产第一区| 亚洲午夜精品一区,二区,三区| 久久人人97超碰香蕉20202| 黑人巨大精品欧美一区二区蜜桃| 久久久久久久大尺度免费视频| 另类精品久久| 超碰97精品在线观看| 亚洲av成人不卡在线观看播放网 | 一区二区三区精品91| 亚洲av日韩在线播放| av网站免费在线观看视频| 电影成人av| 你懂的网址亚洲精品在线观看| 午夜福利免费观看在线| 波野结衣二区三区在线| 在线天堂中文资源库| 99国产精品免费福利视频| 欧美黑人欧美精品刺激| 高清视频免费观看一区二区| 精品亚洲成国产av| 日韩制服丝袜自拍偷拍| 亚洲国产成人一精品久久久| www.自偷自拍.com| 天天躁夜夜躁狠狠躁躁| 欧美+亚洲+日韩+国产| 丝袜喷水一区| 久久亚洲精品不卡| 国产一区二区三区综合在线观看| 丝袜美腿诱惑在线| 日韩av不卡免费在线播放| 精品一区二区三区四区五区乱码 | 成人国产av品久久久| 大片免费播放器 马上看| 亚洲国产欧美网| 国产精品久久久久成人av| netflix在线观看网站| 亚洲午夜精品一区,二区,三区| 欧美成人精品欧美一级黄| 亚洲 国产 在线| 成年av动漫网址| 亚洲成人免费av在线播放| 在线观看免费视频网站a站| 美女中出高潮动态图| 久久毛片免费看一区二区三区| 少妇被粗大的猛进出69影院| 两个人免费观看高清视频| 少妇被粗大的猛进出69影院| 成人午夜精彩视频在线观看| 久热这里只有精品99| 18禁国产床啪视频网站| 久久精品国产亚洲av涩爱| av有码第一页| 日韩熟女老妇一区二区性免费视频| 国产免费现黄频在线看| 一区二区三区精品91| 一本—道久久a久久精品蜜桃钙片| 校园人妻丝袜中文字幕| 日本欧美国产在线视频| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久av网站| 男女边摸边吃奶| 婷婷丁香在线五月| av不卡在线播放| 女人高潮潮喷娇喘18禁视频| 赤兔流量卡办理| 大陆偷拍与自拍| 亚洲精品日韩在线中文字幕| 别揉我奶头~嗯~啊~动态视频 | 天天添夜夜摸| 99国产精品一区二区蜜桃av | 精品免费久久久久久久清纯 | 亚洲欧美精品自产自拍| 美女大奶头黄色视频| 国产免费福利视频在线观看| 麻豆av在线久日| 欧美黑人欧美精品刺激| 国产午夜精品一二区理论片| 中文字幕人妻丝袜一区二区| 最近中文字幕2019免费版| 大话2 男鬼变身卡| 国产一区二区三区av在线| 久久99精品国语久久久| 色婷婷av一区二区三区视频| 国产精品一区二区在线不卡| 热re99久久国产66热| 精品少妇一区二区三区视频日本电影| 丝袜在线中文字幕| 久久久欧美国产精品| av有码第一页| 男女免费视频国产| 日本av免费视频播放| 一本色道久久久久久精品综合| 亚洲av电影在线观看一区二区三区| 我要看黄色一级片免费的| 欧美成人精品欧美一级黄| 日韩 欧美 亚洲 中文字幕| 日韩视频在线欧美| 亚洲视频免费观看视频| 成人亚洲欧美一区二区av| cao死你这个sao货| 后天国语完整版免费观看| 国产男人的电影天堂91| 最近手机中文字幕大全| 激情视频va一区二区三区| 久热这里只有精品99| 叶爱在线成人免费视频播放| 久久精品亚洲av国产电影网| 亚洲伊人久久精品综合| 国产高清国产精品国产三级| 欧美 亚洲 国产 日韩一| 亚洲精品成人av观看孕妇| 999久久久国产精品视频| 亚洲欧美色中文字幕在线| 深夜精品福利| 美女脱内裤让男人舔精品视频| 日本av免费视频播放| 久久99热这里只频精品6学生| 一区二区三区激情视频| 亚洲少妇的诱惑av| 老司机影院毛片| 少妇人妻 视频| 美女福利国产在线| 啦啦啦啦在线视频资源| 熟女av电影| 欧美人与性动交α欧美精品济南到| av网站在线播放免费| 男女边吃奶边做爰视频| 久久久久精品国产欧美久久久 | 成人亚洲欧美一区二区av| 国产色视频综合| 久久久久久久久免费视频了| 国产欧美日韩一区二区三区在线| 成人亚洲精品一区在线观看| 久久久精品国产亚洲av高清涩受| 日韩免费高清中文字幕av| 欧美精品高潮呻吟av久久| 人成视频在线观看免费观看| 亚洲精品乱久久久久久| 老司机深夜福利视频在线观看 | 欧美 亚洲 国产 日韩一| 一个人免费看片子| 女人久久www免费人成看片| 欧美日韩一级在线毛片| 黄色a级毛片大全视频| 免费看av在线观看网站| 高清视频免费观看一区二区| 超色免费av| 国产日韩一区二区三区精品不卡| 精品少妇一区二区三区视频日本电影| 久久亚洲国产成人精品v| 如日韩欧美国产精品一区二区三区| 9色porny在线观看| 久久精品久久久久久久性| 91精品三级在线观看| 99热国产这里只有精品6| 国产免费一区二区三区四区乱码| videos熟女内射| 久久99一区二区三区| 男女边吃奶边做爰视频| 麻豆乱淫一区二区| 亚洲男人天堂网一区| 人人妻人人澡人人看| 欧美乱码精品一区二区三区| 亚洲国产看品久久| 亚洲精品久久久久久婷婷小说| 亚洲国产精品一区三区| 美女视频免费永久观看网站| 99国产精品免费福利视频| 日韩av在线免费看完整版不卡| 久久久久视频综合| 国产老妇伦熟女老妇高清| 另类亚洲欧美激情| 欧美日韩福利视频一区二区| 高潮久久久久久久久久久不卡| 亚洲少妇的诱惑av| 十八禁人妻一区二区| 国精品久久久久久国模美| av欧美777| 国产成人一区二区三区免费视频网站 | 黄片播放在线免费| 天天躁狠狠躁夜夜躁狠狠躁| 日本午夜av视频| 亚洲国产最新在线播放| 午夜福利一区二区在线看| 日韩大码丰满熟妇| 日本av手机在线免费观看| 成人国产一区最新在线观看 | 久久人人爽av亚洲精品天堂| 飞空精品影院首页| 免费高清在线观看日韩| 欧美少妇被猛烈插入视频| 晚上一个人看的免费电影| 90打野战视频偷拍视频| 亚洲欧洲精品一区二区精品久久久| 黑人巨大精品欧美一区二区蜜桃| 人成视频在线观看免费观看| 男女高潮啪啪啪动态图| 欧美日韩精品网址| 大香蕉久久网| 高清av免费在线| 嫩草影视91久久| 老鸭窝网址在线观看| 欧美久久黑人一区二区| 国产在线一区二区三区精| 亚洲黑人精品在线| 人人澡人人妻人| 国产爽快片一区二区三区| 性色av乱码一区二区三区2| 亚洲国产精品一区三区| 精品亚洲成a人片在线观看| 欧美日韩视频精品一区| 成年人午夜在线观看视频| 亚洲成av片中文字幕在线观看| 久久久精品国产亚洲av高清涩受| 午夜激情av网站| 色网站视频免费| 9色porny在线观看| 日韩电影二区| 亚洲欧洲国产日韩| 久久久久国产精品人妻一区二区| 波野结衣二区三区在线| 校园人妻丝袜中文字幕| 欧美老熟妇乱子伦牲交| 男女边吃奶边做爰视频| 国产免费又黄又爽又色| 桃花免费在线播放| 成年av动漫网址| 在线观看免费午夜福利视频| 啦啦啦啦在线视频资源| 大香蕉久久成人网| 亚洲欧美中文字幕日韩二区| 久久人妻熟女aⅴ| 少妇猛男粗大的猛烈进出视频| 国产成人一区二区在线| 色综合欧美亚洲国产小说| 男女午夜视频在线观看| 精品久久久久久电影网| 久久久久久久大尺度免费视频| 亚洲一区二区三区欧美精品| 热99国产精品久久久久久7| 精品国产一区二区三区久久久樱花| 两个人看的免费小视频| 少妇被粗大的猛进出69影院| 色综合欧美亚洲国产小说| 免费不卡黄色视频| 91九色精品人成在线观看| 免费在线观看完整版高清| 午夜激情久久久久久久| 嫩草影视91久久| 欧美精品一区二区免费开放| 欧美人与性动交α欧美软件| 日韩熟女老妇一区二区性免费视频| 亚洲情色 制服丝袜| 日韩精品免费视频一区二区三区| 国产熟女午夜一区二区三区| 丰满饥渴人妻一区二区三| 久久精品成人免费网站| 悠悠久久av| 七月丁香在线播放| av视频免费观看在线观看| 日本av手机在线免费观看| 免费高清在线观看日韩| 黄色视频在线播放观看不卡| 欧美精品一区二区免费开放| 日本五十路高清| 免费久久久久久久精品成人欧美视频| 国产成人一区二区在线| 精品国产国语对白av| 国产成人精品无人区| 国产精品国产三级国产专区5o| 免费在线观看黄色视频的| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看国产h片| 国产精品.久久久| 国产精品熟女久久久久浪| 亚洲人成电影观看| 亚洲av在线观看美女高潮| 亚洲精品国产一区二区精华液| 亚洲国产精品999| 大片免费播放器 马上看| 男女下面插进去视频免费观看| 日韩中文字幕欧美一区二区 | 国产一级毛片在线| 最新在线观看一区二区三区 | 久久久久国产一级毛片高清牌| 国产不卡av网站在线观看| 啦啦啦视频在线资源免费观看| 免费女性裸体啪啪无遮挡网站| 国产亚洲av高清不卡| 人人妻人人澡人人看| 青春草视频在线免费观看| 精品一区二区三区av网在线观看 | 天天躁夜夜躁狠狠躁躁| 久久久国产一区二区| 欧美人与善性xxx| 一级毛片我不卡| 母亲3免费完整高清在线观看| 老司机靠b影院| 亚洲成国产人片在线观看| kizo精华| 91九色精品人成在线观看| 男女边摸边吃奶| 国产爽快片一区二区三区| 午夜激情久久久久久久| 国产在线视频一区二区| 我要看黄色一级片免费的| 汤姆久久久久久久影院中文字幕| 国产在线一区二区三区精| 多毛熟女@视频| 国产一区二区激情短视频 | 久久精品熟女亚洲av麻豆精品| 亚洲欧美日韩高清在线视频 | 波野结衣二区三区在线| 亚洲精品一卡2卡三卡4卡5卡 | 大片电影免费在线观看免费| 捣出白浆h1v1| 欧美精品啪啪一区二区三区 | 成人国语在线视频| 亚洲国产精品999| 精品久久久精品久久久| 免费人妻精品一区二区三区视频| av在线app专区| 中文字幕最新亚洲高清| 最近中文字幕2019免费版| 秋霞在线观看毛片| 操美女的视频在线观看| 黄片小视频在线播放| 99国产精品99久久久久| 国产精品av久久久久免费| 亚洲自偷自拍图片 自拍| 欧美精品一区二区大全| 一级a爱视频在线免费观看| 亚洲国产欧美一区二区综合| 亚洲专区国产一区二区| 香蕉国产在线看| 欧美成人精品欧美一级黄| 国产国语露脸激情在线看| 欧美+亚洲+日韩+国产| 99久久精品国产亚洲精品| 欧美av亚洲av综合av国产av| 成年女人毛片免费观看观看9 | 免费看av在线观看网站| 国产黄频视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩视频精品一区| 午夜精品国产一区二区电影| 精品久久久久久电影网| 久久久国产欧美日韩av| 自拍欧美九色日韩亚洲蝌蚪91| 日韩 欧美 亚洲 中文字幕| 亚洲国产欧美在线一区| 日韩精品免费视频一区二区三区| 成人三级做爰电影| 美女午夜性视频免费| 亚洲欧洲日产国产| 国产成人一区二区在线| 欧美国产精品va在线观看不卡| 免费观看a级毛片全部| 精品视频人人做人人爽| 中文字幕高清在线视频| 汤姆久久久久久久影院中文字幕| 久久久国产欧美日韩av| 精品少妇久久久久久888优播| 国产福利在线免费观看视频| 国产爽快片一区二区三区| 激情五月婷婷亚洲| 亚洲九九香蕉| 黄色 视频免费看| 高清av免费在线| 成人亚洲精品一区在线观看| 国产精品国产三级国产专区5o| 一本—道久久a久久精品蜜桃钙片| 中文字幕人妻丝袜一区二区| a级毛片黄视频| 午夜老司机福利片| a级片在线免费高清观看视频| 一本大道久久a久久精品| 久9热在线精品视频| 一区福利在线观看| av国产久精品久网站免费入址| 国产精品国产三级专区第一集| 极品少妇高潮喷水抽搐| 天堂8中文在线网| 高清黄色对白视频在线免费看| 成年av动漫网址| 久久影院123| 大话2 男鬼变身卡| 伊人久久大香线蕉亚洲五| 久久午夜综合久久蜜桃| 51午夜福利影视在线观看| 亚洲精品国产av蜜桃| 国产视频首页在线观看| 久久人妻熟女aⅴ| 午夜精品国产一区二区电影| 久久ye,这里只有精品| 欧美xxⅹ黑人| 伊人久久大香线蕉亚洲五| 亚洲国产精品一区三区| 大型av网站在线播放| 人人妻,人人澡人人爽秒播 | 男人添女人高潮全过程视频| 中文字幕高清在线视频| 中文欧美无线码| 亚洲精品久久成人aⅴ小说| 丰满少妇做爰视频| 成人黄色视频免费在线看| 久久久精品免费免费高清| 人妻人人澡人人爽人人| 欧美日韩一级在线毛片| 宅男免费午夜| 美女国产高潮福利片在线看| 日韩制服骚丝袜av| www.999成人在线观看|