• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Formation Maneuvers Through Sliding Mode for Multi-agent SystemsWith Uncertainties

    2018-01-26 03:50:50DianweiQianChengdongLiSukGyuLeeandChaoMa
    IEEE/CAA Journal of Automatica Sinica 2018年1期

    Dianwei Qian,Chengdong Li,SukGyu Lee,and Chao Ma

    I.INTRODUCTION

    WITH the development of artificial intelligence,multiagent systems have been hailed as a novel paradigm for conceptualizing,designing,and implementing intelligent systems[1]?[3].A multi-agent system is a coupled network of some agents,where the agents can interact to achieve some goals that are beyond the individual capacities or knowledge of each agent[4],[5].The advantages of the multi-agent system include but are not limited to efficiency,extensibility and reliability.On the other hand,many increasing applications in reality require the agents that have to work together[6].To enable these applications,requirement of coordination of the agents has substantially increased.

    As one of coordination task,the consensus problem is emerging because it integrates both graph theory and control theory[7].The consensus problem covers some typical control tasks,i.e.,formation control,rendezvous,attitude alignment,flocking and foraging[8].Among the tasks,the formation control concentrates on forming up a multi-agent system as well as making the agents move in given geometrical shapes.The task is rooted in the real applications.For example,the agents have to maintain some formations when they move at disaster sites,warehouses and hazardous areas[9].See[10]for a complete review of recent philosophies in this field.

    One scheme of multi-agent formations is called“l(fā)eader follower”[11].As the name suggests,one agent in a multiagent system is named as leader and other agents are successively designated as followers.The sole leader takes charge of tracking a predefined trajectory.The followers keep on tracking the leader to form up a desired formation while the multi-agent system moves.The scheme has been successfully applied to the analysis and design of multi-agent formations.

    Inherently,the leader-follower scheme is centralized and heavily depends on the leader and it suffers from the problem of“single point of failure”[12].Besides,the scheme has been paid increasing attention because its dynamics are not only experimentally modelled,but the internal formation stability can be theoretically guaranteed[13].Adopting the scheme,various control methods have been developed for multi-agent formations,that is,neural network-based adaptive design[1],robust control[14],adaptive output feedback method[15],nonlinear predictive mechanism[16],and iterative learning technique[17],to name but a few.

    The methodology of sliding mode control(SMC)is popular due to its invariance property[18].Some SMC-based methods have been addressed to solve the formation-control problem of multi-agent systems,that is,fuzzy SMC[19],[20],first-order SMC[21],terminal SMC[22],backstepping SMC[23],[24],etc.Previous contributions have verified the feasibility of the SMC methodology for multi-agent formations.

    In a multi-agent system,uncertainties exist everywhere.Each agent may contain uncertainties,i.e.,external disturbances,unmodelled dynamics and parameter perturbations.Originated from the uncertainties of the agents,formation dynamics of the multi-agent system become uncertain.In previous works about the SMC-based multi-agent formations,uncertainties are considered because they adversely affect the formation stability.However,two solutions can be summarized from the aforementioned works.One solution is to discuss the formation stability by means of graph theory[19],[24].The other is to analyze the formation stability in light of Lyapunov’s theorem[20]?[23].To guarantee the formation stability,the uncertainties are usually assumed to be bounded by a known boundary.Unfortunately,the assumption is not mild because the uncertainties are rather hard to exactly measure or to know in advance.The lack of such a boundary may result in severe problems,i.e.,decrease of the formation robustness,deterioration of the formation performance as well as deficiency of the formation stability.In order to obtain the important information,it is desired to adaptively approximate the formation uncertainties.

    The technique of nonlinear disturbance observer(NDO)has been proven to be effective in handling uncertainties and improving robustness[25].The applications of NDO have been investigated by some actual cases[26],[27].This technique can be considered as an alternative to attack the issue of uncertainties for multi-agent formations.So far,the academic problem of how to eliminate the adverse effects of uncertainties in multi-agent formations via NDO still remains unsolved.

    This paper touches the academic problem and investigates a robust control design for formation maneuvers of a multiagent system.The multi-agent system under consideration is leader-follower-based,and the communication topology is considered in order to strengthen the adaptability,reliability and practicability of the leader-follower scheme.Since the multi-agent system is subjected to uncertainties,the robust control design contains two parts.One is to develop an SMC-based controller and the other is to present an NDO-based observer.The controller and observer work together to realize formation maneuvers of the multi-agent system in the presence of uncertainties.The main contributions of this paper can be summarized as follows:1)a formation control design that integrates SMC and NDO is proposed for each follower agent;2)the presented design with guaranteed stability is extended to the multi-agent system under a given communication topology;3)some comparisons are drawn to illustrate the feasibility and validity of the presented design.

    The remainder of this paper is organized as follows.The modelling of one single agent and the communication topology of the agents are given in Section II.Formation design is presented in Section III.Simulation results are illustrated in Section IV.Finally,conclusions are drawn in Section V.

    II.SYSTEM MODELLING

    A.Modelling One Agent

    The multi-agent system under consideration consists ofNmobile robots.The robots are identical and each robot can be treated as an agent.Fig.1 displays a robot in the multi-agent system.The robot is round with differential wheels having radiusR,and its movement is actuated by two separately driven wheels placed on either side of its body.Indexiis used to represent the robot.The Cartesian coordinate system in Fig.1 specifies(xLi,yLi)as the center of the left wheel,(xRi,yRi)as the center of the right wheel,(xci,yci)as the center of the robot’s body and(xhi,yhi)as the robot’s head.In Fig.1,xhi=xci+hcosθi,xLi=xci?lsinθi,xRi=xci+lsinθi,yhi=yci+hsinθi,yLi=yci?lcosθiandyRi=yci+lcosθi,whereris the radius of wheels,lis the distance between the center of robot and the wheel,his the distance between the center and the head position andθiis the rotation angle.Let us specify aqi=[xhi yhiθi]Tto describe the robot’s posture.

    Fig.1.Schematic diagram of one agent.

    The Lagrangian equations of motion to describe the agent can have the form of(1)with respect to the vectorqi.

    whereLi=K i?Pi(K iandPidenote the kinetic energy and the potential energy of the agent,respectively.),τi=[τLiτRi]Tis the torque vector applied to the wheels andB(qi)is a time-varying matrix.

    Concerning the agent,its motion is restricted to horizontal plane,its potential energy is kept unchanged andPican be defined as 0.Therefore,Lican be written by

    whereK bi,K LiandKRiare the kinetic energies of the agent’s body,left wheel and right wheel,respectively.The kineticenergies can be formulated byandwherembandIbare the mass and the moment of inertia of the agent’s body,respectively;mwandIware the mass and the moment of inertia of the agent’s wheel,respectively.

    LetandBy the Lagrangian method,the dynamic model of the agent can be formulated by

    where the matricesandin order are determined by

    From Fig.1,two symbols of the agent are kept unexplained,that is,the linear velocityviand the rotation angular velocityωi.Differentiatingqiwith respect to timetyields

    Substituting(4)into(3)gives

    In(3),det[M(qi)]=0 if and only ifConsequently,it is justified to assume thatis invertible in(5).Taking the assumption into consideration,the equations of motion describing the behavior of the agent can be written as

    Recall(4)such that the equations of motion of the agent at its head has a form of

    Differentiating(7)with respect to timetyields

    whereandsinθi.

    Considering the agent’s uncertainties,the equations of motion of the agent can be described by

    whereδxiandδyidenote the uncertain terms.

    This paper deals with formation maneuvers of multi-agent systems in the presence of uncertainties.It is justified to assume that the uncertainties are bounded by an unknown constant,that is,andwhereandare constant but unknown.In order to implement the technique of nonlinear disturbance observer,the designed observer should evaluate or calculateδxiandδyimuch faster than the changing rates ofδxiandδyi.In this sense,bothδxiandδyiare assumed to be slow ly time-varying,that is,and

    B.Modelling Communication Topology

    Recall the multi-agent system.Its formation maneuvers are leader-follower-based.In the leader-follower scheme,the sole leader agent takes the responsibility of tracking a pre-defined trajectory while other follower agents keep on tracking the leader.Such a scheme indicates that the sole leader does not need to receive any information from the followers.On the other hand,the followers need to receive some information by communication link in order to form up a desired formation.Here some ideal conditions are considered,such as no communication delay or no packet loss.

    The communication topology of the multi-agent system can be modelled via the theory of algebraic graph.Define a directed graphG=(V,E)composed of a vertex setVand an edge setE,wherethe nodeνidenotes theith agent andi=1,2,...,N.This paper investigates the directed graphGin the multi agent system.Assuming thatGof the multi-agent system has a spanning tree,the zero eigenvalue ofLis simple.Consider theith agent whose collection of neighbors is defined asN i={νj∈V: (νi,νj)∈E}.The ordered pair(νi,νj)∈Emeans that thejth agent can send information to theith agent,but the information cannot be sent vice versa.

    The weighted adjacency matrixAofGhas a form of

    whereaijindicates the weight of the pair(νi,νj);andaii=0.

    The degree matrix ofGis a diagonal matrix,determined byD=diag{d1,d2,...,dN}∈RN×N.In the diagonal matrix,diis the in-degree ofνi,formulated by(i=1,2,...,N).Accordingly,the Laplacian matrix ofGcan be defined byL=D?A∈RN×N.As proven in[4],Lhas at least one zero eigenvalue as well as all other eigenvalues are located at the open right-half plane ifGis connected.

    ConcerningL,its zero eigenvalue is simple.For the zero eigenvalue,an eigenvector ofLis1N,that is,L1N=0Nholds true,where1N=[1,1,...,1]T∈RN×1and0N=[0,0,...,0]T∈RN×1.Further,rank(L)=N?1 for the simple zero eigenvalue[4].

    Without loss of generality,theNth agent in the multi-agent system is named leader and otherN?1 agents are followers,that is,aNi=0(i=1,2,...,N)and the Laplacian matrixLofGcan be written as

    Further,the communication topology among all the followers can be described by a directed graphApparently,is a subgraph ofG.The weighted adjacency matrixA∈R(N?1)×(N?1)ofis defined by

    Similarly,assuming that the subgraphGis itself a directed graph,can be drawn.Here1N?1= [1,1,...,1]T∈R(N?1)×1and0N?1=[0,0,...,0]T∈R(N?1)×1.Moreover,define a matrixwhere1,2,...,N?1).Apparently,it holds rank(L+B)=rank(L)=N?1.

    III.FORMATION DESIGN

    The formation maneuvers in this paper are leader-follower based.Concerning the leader’s duty,its control problem is the tracking-control problem of a single robot,which can be well controlled by a developed technology[9].In the multi-agent system,theNth agent has been named as leader that can be treated as a nominal one in the formation-control problem,that is,δxN=δyN=0.Accordingly,the otherN?1 agents act as followers and they are equipped with the designed formation controllers to achieve the formation maneuvers of the multiagent system.

    In order to concentrate on the formation-control design of theith follower(i=1,2,...,N?1),recall its equations of motion(9).The equations in(9)are decoupled in thexaxis andy-axis.Consequently,its formation-control design can be divided into the design of thex-axis subsystem and the design of they-axis subsystem.Here the design of thex-axis subsystem is taken into account at first.From(9),thex-axis subsystem with uncertainties can be written by

    which can be re-written by the following state-space representation.

    A.Design of NDO-based Observer

    Consider thex-axis subsystem(15)and design its NDO-based observer(16)[25].

    wherepxiis the internal state variable of the observer,is the approximation ofδxiand the gain vector Lxi∈R2×1is designed such that the constantis positive.

    Define an estimation-error variableHere an assumption of the estimation-error variable iswhereis constant but unknown.Differentiate the error variable with respect to timetand substitute(16)into the derivative ofexid.Subsequently,(17)can be obtained.

    The solution of(17)iswhereexid(0)is the initial condition att=0.Owing toλxi>0,this fact indicates that the estimation-error variableexidis exponentially convergent to 0 as

    B.Design of SMC-based Controller

    The formation maneuvers of the multi-robot system need to achieve a designated formation pattern with velocity consensus,where the agents have to transmit information among local neighbors according to a designated communication topology.Therefore,the error function is defined as

    whereρxi>0 is a pre-defined constant,is the pre-defined relative position between theith follower and thejth follower andis the pre-defined relative position between theith follower and the leader.

    Differentiatingexiin(18)with respect to timetand substituting thex-axis subsystem(14)into the derivative ofexiyields

    Successively,differentiatingin(19)with respect to timetand substituting thex-axis subsystem(14)into the second derivative ofexiyields

    With regard to thex-axis subsystem(14),a sliding surface with the output of the NDO-based observer(16)is defined as

    wherecxi>0 is constant.

    Differentiating the sliding-surface variable with respect to timetgives

    Substituting(18),(19)and(20)into(22)yields

    Design the following formation-control law for thex-axis subsystem of theith follower.

    whereκxi>0 is a predefined parameter and sgn(·)is the sign function.In(24),the control signaluxiis determined by a first-order differential equation with the zero initial condition.Further,the control signals of other agents also contribute touxi,which can be obtained by the given communication topology.

    Substituting(24)into(23)and re-arranging˙sxiin(23)gives

    C.Stability Analysis

    Theorem 1:For theith follower agent,consider itsxaxis subsystem(14),design the NDO-based observer(16),define the sliding-mode surface(21)and utilize the SMC-based control law(24).The closed-loop control system of thex-axis subsystem is asymptotically stable ifκxi>[(cxiρxi

    Proof:Pick up a Lyapunov candidate function

    DifferentiateVwith respect to timetin(27).The derivative ofVcan be written byReplacewith(26).The derivative ofVhas the form of

    Selectsuch thatexists.ConcerningV≥0,the closed-loop control system of thex-axis subsystem is asymptotically stable in the sense of Lyapunov.

    D.Extension to the Multi-agent System

    For theNth leader agent,the following augmented vectors can be defined,that is,zN=[xhN yhN]T,uN=[uxN uyN]TandvN=[vxN vyN]T.HerezN,uNandvN∈R2×1.

    Further,define the following diagonal matrices

    whereΥ,c,Λandκ∈R2(N?1)×2(N?1).

    The augmented tracking-error vectorecan be written by

    whereI2is a 2×2 identity matrix and?means the Kronecker product.

    Differentiatingein(29)with respect to timetgives

    Considering the properties of uncertainties in(9),we haveHereis a zero vector.Further,the second derivative ofewith respect to timethas the form of

    The augmented sliding-surface vector is formulated by

    Differentiatingswith respect to timetyields

    Design the following control law(34).

    Substituting(34)into(33)gives

    Theorem 2:Take the multi-agent system into consideration,suppose that its communication graph has a directed spanning tree.The stability of the leader-follower-based formation control is guaranteed if the controller parameters of each follower agent are designed by Theorem 1.

    Proof:Define a Lyapunov candidate function

    where‖·‖2means 2-norm.

    DifferentiateV′(t)with respect to timetin(36).The derivative ofV′can be written by

    Replacing˙sin(37)with(35)yields

    Note thataii=0(i=1,...,N?1)in(12)such thatLetSubsequently,(39)can be re-arranged by

    wherewheremeans∞-norm.

    If the controller parameters of each follower agent are selected by Theorem 1,˙V′<0 can be deduced from(40).ConsideringV′≥0,the formation control of the multi-agent system is asymptotically stable in the sense of Lyapunov.

    From Theorem 1 and Theorem 2,the formation stability is concerned to the tracking-error variablethat is constant but unknown as well,indicating that it is hard to determineκikin Theorem 1 as well asκin Theorem 2.To guarantee the formation stability,a conservative value ofshould be designated.From this aspect,there seem no benefits earned from such a robust control method.However,exidoriginated from the presented method is exponentially convergent as proven,meaning that a small value ofcould be chosen.According to Theorem 1,the kind of formation-control design could contribute to the decrease of chattering phenomenon as well as the improvement of the formation performance.

    IV.SIMULATION RESULTS

    This section implements some simulations on a multi-agent platform and discusses the results.The platform consists of four mobile robots.These robots are structured by the leader follower scheme.One robot is designated as leader and the other three as followers.The follower agents are numbered as indexes1,2 and 3,respectively.The sole leader is identified by index 4.Some physical parameters of these agents are picked up from[24],listed asl=0.0265m,h=0.04m,r=0.02m,m b=0.018 kg,mw=0.007 kg,Ib=1.44×10?4kg·m2andIw=1.44×10?6kg·m2.The communication topology of this multi-agent system under consideration is illustrated in Fig.2.

    Fig.2.Communication topology of the multi-agent platform.

    According to this communication topology,the communication graphGin Fig.2 becomes a standard spanning tree,where the adjacency and Laplacian matrices are determined by

    Further,the communication subgraphis derived fromG,whose adjacency and Laplacian matrices are formulated by

    Apparently,the subgraphGis itself a directed graph.

    For theith follower agent(i=1,2,3),the presented robust control design of itsx-axis subsystem can be implemented.The uncertain term of thex-axis subsystem is designed byδxi=0.02×rand(),where rand()is a uniformly distributed random number in the closed interval[?1 1].Some parameters of the SMC-based controller are predefined ascxi=9 andκxi=0.4.The gain vector of the NDO-based observer is chosen as L=[0 6]Tby trial and error such thatλxi=LTB=6 and the constantρxiin(18)is set as 1.0.Successively,the SMC-based controller and the NDO-based observer of theyaxis subsystem are kept unchanged from those corresponding parameters of thex-axis subsystem.Considering the motor load of the follower agents,bothuxianduyiare limited touxi≤0.5 anduyi≤0.5.

    In order to achieve formation maneuvers of the multi-agent system,a given formation task is taken into consideration.In the formation task,the leader agent 4 moves along a straight line and the other follower agents keep tracking the leader and form up into a diamond-shaped formation.

    The straight trajectory of the leader is presented as follows.In a Cartesian coordinate system,the initial head position of the leader is located at(0m,0.6m).Correspondingly,its velocities in thex-direction andy-direction are setby 0.2m/s and 0.1m/s,respectively.In order to form up into the desired diamond in this coordinate system,the initial head positions of follower agent 1,follower agent 2 and follower agent 3 in order are placed at(0m,1.1m),(0m,0.8m)and(0m,0.3m),respectively.Their relative coordinations in order are designated as(?0.2m,0.2m),(?0.4m,0m)and(?0.2m,?0.2m)with respect to the leader agent 4.

    Fig.3 displays the simulation results of the presented robust control method by the multi-agent system.In Fig.3(a),the four agents form up into the diamond-shaped formation from a string while moving in straight lines,whereas filled triangles denote the initial positions of the agents and filled circles indicate the agents’positions in the dynamic process.In order to demonstrate the formation maneuver,the dashed lines bond the agents together at the same moment.

    These results in Figs.4 and 5 are adopted for performance comparisons and our motivation is to highlight the superiority of the presented control scheme.Fig.4 illustrates the simulation results of the sole sliding-mode control approach by the same multi-agent system.In this formation-control system,the parameter of the sliding-surfacecxiis kept unchanged from the presented control method and the parameter ofκxiis selected as 1.1,where the value ofκxiis conservative to guarantee the formation stability.Compared with the results in Figs.4(f)?(g),the presented robust control method in Figs.3(f)?(g)can apparently decrease the chattering phenomenon because its formation stability is concerned with the exponentially-convergent tracking errorwhich is also the benefit we can earn from the presented robust control method.

    As another comparison,the simulation results of the adaptive fuzzy sliding-mode control approach[24]is displayed in Fig.5 by the same multi-agent system.From Fig.5(a),the approach in[24]can also realize the same formation maneuver as the formation in Fig.4(a).However,the presented robust control method has better control performance in Figs.4(f)?(g)via the comparisons in Figs.5(f)?(g)because it can apparently decrease the magnitude of control action.On the other hand,the presented method in the paper and the approach in[24]focus on dealing with formation maneuvers in spite of uncertainties.In[24],a fuzzy inference system(FIS)is designed to resist the uncertainties such that the control performance is subject to the number of fuzzy logic rules.The FIS with the limited number of fuzzy rules is hard to keep better performance against the variations of uncertainties.The uncertainties in this paper are formulated by 0.02×rand(),compared with the expression of 0.005×rand()in[24].

    Fig.3.Simulation results of the presented robust control method.(a)Formation maneuvers in the Cartesian coordinate system.(b)Curves of epxi.(c)Curves of epyi.(d)Curves of evxi.(e)Curves of evyi.(f)Curves of uxi.(g)Curves of uyi(i=1,2,3).

    Fig.4.Simulation results of the sole sliding-mode control approach without an NDO-based observer.(a)Formation maneuvers in the Cartesian coordinate system.(b)Curves of epxi.(c)Curves of epyi.(d)Curves of evxi.(e)Curves of evyi.(f)Curves of uxi.(g)Curves of uyi(i=1,2,3).

    Fig.5.Simulation results of the adaptive sliding mode control approach[24].(a)Formation maneuvers in the Cartesian coordinate system.(b)Curves of epxi.(c)Curves of epyi.(d)Curves of evxi.(e)Curves of evyi.(f)Curves of uxi.(g)Curves of uyi(i=1,2,3).

    V.CONCLUSIONS

    This paper has investigated the formation-control problem of multiple agents.The agents under consideration are wheeled mobile robots.The formation mechanism is leader-follower based.The uncertainties originated from each individual agent result in the formation uncertainties.It is conveniently assumed that the formation uncertainties are bounded by an unknown boundary.In order to resist the formation uncertainties when forming up the agents,a robust control method that integrates the technique of NDO-based observer and the method of SMC-based controller is addressed.According to a given communication topology,the theoretical analysis has proven that the formation control of multiple agents in the presence of uncertainties is asymptotically stable.The control scheme has achieved the formation maneuvers by amulti-robot platform.The simulation results have demonstrated the effectiveness of the control scheme through some performance comparisons.In order to focus on the motivation of control design,some difficulties in reality,such as communication delays and collisions between agents,are not considered during the control design.The no-communication-delay and no-collision conditions are mild enough for small-scale formations but they are rather idealized for large-scale formations.In order to take the presented robust control method into practical account,this field is of our continuous interest and some contributions are still in progress.

    [1]L.Cheng,Z.G.Hou,M.Tan,Y.Z.Lin,and W.J.Zhang,“Neural network-based adaptive leader-following control for multiagent systems with uncertainties,”IEEE Trans.Neural Netw.,vol.21,no.8,pp.1351?1358,Aug.2010.

    [2]L.Cheng,Y.P.Wang,W.Ren,Z.G.Hou,and M.Tan,“On convergence rate of leader-following consensus of linear multi-agent systems with communication noises,”IEEE Trans.Autom.Control,vol.61,no.11,pp.3586?3592,Nov.2016.

    [3]L.Cheng,Y.P.Wang,W.Ren,Z.G.Hou,and M.Tan,“Containmennt control of multiagent systems with dynamic leaders based on aP I-type approach,”IEEE Trans.Cybern.,vol.46,no.12,pp.3004?3017,Dec.2016.

    [4]W.Ren and R.W.Beard,Distributed Consensus in Multi-Vehicle Cooperative Control.London,UK:Springer,2008.

    [5]C.L.P.Chen,G.X.Wen,Y.J.Liu,and F.Y.Wang,“Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks,”IEEE Trans.Neural Netw.Learn.Syst.,vol.25,no.6,pp.1217?1226,Jun.2014.

    [6]H.G.Zhang,T.Feng,G.H.Yang,and H.J.Liang,“Distributed cooperative optimal control for multiagent systems on directed graphs:An inverse optimal approach,”IEEE Trans.Cybern.,vol.45,no.7,pp.1315?1326,Jul.2015.

    [7]H.Zhang,R.H.Yang,H.C.Yan,and F.W.Yang,“H∞consensus of event-based multi-agent systems with switching topology,”Inf.Sci.,vol.370?371,pp.623?635,Nov.2016.

    [8]H.Rezaee and F.Abdollahi,“Average consensus over high-order multiagent systems,”IEEE Trans.Autom.Control,vol.60,no.11,pp.3047?3052,Nov.2015.

    [9]M.Biglarbegian,“A novel robust leader-following control design for mobile robots,”J.Intell.Robot.Syst.,vol.71,no.3?4,pp.391?402,Sep.2013.

    [10]J.Y.C.Chen and M.J.Barnes,“Human-agent team ing for multirobot control:A review of human factors issues,”IEEE Trans.Hum.Mach.Syst.,vol.44,no.1,pp.13?29,Feb.2014.

    [11]C.C.Hua,X.You,and X.P.Guan,“Leader-following consensus for a class of high-order nonlinear multi-agent systems,”Automatica,vol.73,pp.138?144,Nov.2016.

    [12]D.W.Qian,S.W.Tong,J.R.Guo,and S.Lee,“Leader-follower-based formation control of nonholonomic mobile robots with mismatched uncertainties via integral sliding mode,”Proc.Inst.Mech.Eng.IJ.Syst.Control Eng.,vol.229,no.6,pp.559?569,Jul.2015.

    [13]D.W.Qian,S.W.Tong,and C.D.Li,“Leader-following formation control of multiple robots with uncertainties through sliding mode and nonlinear disturbance observer,”ETRIJ.,vol.38,no.5,pp.1008?1018,Oct.2016.

    [14]J.Dasdemir and A.Loría,“Robust formation tracking control of mobile robots via one-to-one time-varying communication,”Int.J.Control,vol.87,no.9,pp.1822?1832,Mar.2014.

    [15]S.J.Yoo,“Formation tracker design of multiple mobile robots with wheel perturbations:Adaptive output-feedback approach,”Int.J.Syst.Sci.,vol.47,no.15,pp.3619?3630,Dec.2016.

    [16]T.P.Nascimento,A.G.S.Conceic?a?,and A.P.Moreira,“Multi-robot nonlinear model predictive formation control:The obstacle avoidance problem,”Robotica,vol.34,no.3,pp.549?567,Mar.2016.

    [17]Y.Liu and Y.M.Jia,“Robust formation control of discrete-time multiagent systems by iterative learning approach,”Int.J.Syst.Sci.,vol.46,no.4,pp.625?633,Apr.2015.

    [18]V.I.Utkin,Sliding Modes in Control and Optimization.Berlin Heidelberg,Germany:Springer,1992.

    [19]Y.H.Chang,C.W.Chang,C.L.Chen,and C.W.Tao,“Fuzzy sliding-mode formation control for multirobot systems:Design and implementation,”IEEE Trans.Syst.Man Cybern.B Cybern.,vol.42,no.2,pp.444?457,Apr.2012.

    [20]Y.Y.Dai,Y.Kim,S.Wee,D.Lee,and S.Lee,“Symmetric caging formation for convex polygonal object transportation by multiple mobile robots based on fuzzy sliding mode control,”ISA Trans.,vol.60,pp.321?332,Jan.2016.

    [21]L.J.Dong,S.C.Chai,B.H.Zhang,and S.K.Nguang,“Sliding mode control for multi-agent systems under a time-varying topology,”Int.J.Syst.Sci.,2016,vol.47,no.9,pp.2193?2200,Sep.2016.

    [22]A.M.Zou,K.D.Kumar,and Z.G.Hou,“Distributed consensus control for multi-agent systems using terminal sliding mode and Chebyshev neural networks,”Int.J.Robust Nonlinear Control,vol.23,no.3,pp.334?357,Feb.2013.

    [23]D.Zhao,T.Zou,S.Li,and Q.Zhu,“Adaptive backstepping sliding mode control for leader-follower multi-agent systems,”IET Control Theory Appl.,vol.6,no.8,pp.1109?1117,May2012.

    [24]Y.H.Chang,C.Y.Yang,W.S.Chan,H.W.Lin,and C.W.Chang,“Adaptive fuzzy sliding-mode formation controller design for multirobot dynamic systems,”Int.J.Fuzzy Syst.,vol.16,no.1,pp.121?131,Mar.2014.

    [25]W.H.Chen,J.Yang,L.Guo,and S.H.Li,“Disturbance-observer based control and related methods-an overview,”IEEE Trans.Industr.Electron.,vol.63,no.2,pp.1083?1095,Feb.2016.

    [26]B.Xiao,S.Yin,and O.Kaynak,“Tracking control of robotic manipulators with uncertain kinematics and dynamics,”IEEE Trans.Industr.Electron.,vol.63,no.10,pp.6439?6449,Oct.2016.

    [27]T.Du,L.Guo,and J.Yang,“A fast initial alignment for SINS based on disturbance observer and Kalman filter,”Trans.Inst.Meas.Control,vol.38,no.10,pp.1261?1269,Oct.2016.

    亚洲激情五月婷婷啪啪| 中文字幕人妻熟人妻熟丝袜美| 欧美精品人与动牲交sv欧美| 午夜免费观看性视频| 欧美精品国产亚洲| 国产黄频视频在线观看| 亚洲国产精品999| 亚洲人成网站在线播| 99热6这里只有精品| 交换朋友夫妻互换小说| 亚洲成人一二三区av| √禁漫天堂资源中文www| 日日摸夜夜添夜夜添av毛片| 热re99久久国产66热| 永久网站在线| www.av在线官网国产| 免费日韩欧美在线观看| 国产免费一级a男人的天堂| 久久鲁丝午夜福利片| 亚洲成人手机| 国产av码专区亚洲av| 亚洲国产欧美日韩在线播放| 久久久久久久精品精品| 精品一区二区免费观看| av黄色大香蕉| 久久国内精品自在自线图片| av有码第一页| 下体分泌物呈黄色| 国模一区二区三区四区视频| 精品一品国产午夜福利视频| 国产视频首页在线观看| 久久久午夜欧美精品| 丝袜脚勾引网站| 我要看黄色一级片免费的| 最近中文字幕高清免费大全6| 欧美激情极品国产一区二区三区 | 欧美激情 高清一区二区三区| 妹子高潮喷水视频| 亚洲精品久久午夜乱码| 最新中文字幕久久久久| 老熟女久久久| 中文乱码字字幕精品一区二区三区| 观看美女的网站| 女人精品久久久久毛片| 欧美最新免费一区二区三区| 三上悠亚av全集在线观看| 一本一本综合久久| 久久久久久久久久久免费av| 久久这里有精品视频免费| 国产深夜福利视频在线观看| 欧美成人精品欧美一级黄| 99九九在线精品视频| 97在线视频观看| 九色成人免费人妻av| 久久人人爽人人爽人人片va| 这个男人来自地球电影免费观看 | 国产成人精品福利久久| 国产成人午夜福利电影在线观看| 久久精品国产a三级三级三级| 人妻 亚洲 视频| 久久久久久久亚洲中文字幕| 人人澡人人妻人| 亚洲情色 制服丝袜| 伊人亚洲综合成人网| 永久免费av网站大全| 99国产精品免费福利视频| 国产日韩欧美亚洲二区| 香蕉精品网在线| 色婷婷久久久亚洲欧美| 丝袜脚勾引网站| 日韩中字成人| 欧美+日韩+精品| 两个人的视频大全免费| 熟女av电影| 在线观看免费高清a一片| 免费久久久久久久精品成人欧美视频 | 午夜福利视频在线观看免费| 婷婷色av中文字幕| 丝袜在线中文字幕| 丰满饥渴人妻一区二区三| 日本av手机在线免费观看| av在线观看视频网站免费| 久久久午夜欧美精品| av.在线天堂| 国产国语露脸激情在线看| 寂寞人妻少妇视频99o| 热re99久久精品国产66热6| 亚洲av.av天堂| 午夜日本视频在线| 午夜激情av网站| 亚洲三级黄色毛片| 久久精品久久久久久久性| 日韩成人av中文字幕在线观看| 免费播放大片免费观看视频在线观看| 久久人妻熟女aⅴ| 日韩成人伦理影院| 精品卡一卡二卡四卡免费| 精品少妇内射三级| 久久热精品热| 99久久中文字幕三级久久日本| 岛国毛片在线播放| 国产精品人妻久久久久久| 肉色欧美久久久久久久蜜桃| 精品人妻偷拍中文字幕| 黄片无遮挡物在线观看| 黄片无遮挡物在线观看| 亚洲欧洲日产国产| 又粗又硬又长又爽又黄的视频| 人人澡人人妻人| 国产一区二区在线观看av| 成人漫画全彩无遮挡| 18禁在线无遮挡免费观看视频| 国产日韩一区二区三区精品不卡 | 日韩av在线免费看完整版不卡| 久久久久久久大尺度免费视频| 婷婷色综合www| 免费久久久久久久精品成人欧美视频 | 日本vs欧美在线观看视频| 少妇被粗大的猛进出69影院 | 国产精品偷伦视频观看了| 欧美激情国产日韩精品一区| 国产在视频线精品| 免费观看性生交大片5| 少妇人妻久久综合中文| 极品人妻少妇av视频| 国产av精品麻豆| 中国美白少妇内射xxxbb| 人妻一区二区av| 国产成人午夜福利电影在线观看| 在线精品无人区一区二区三| 久久久精品免费免费高清| 99热6这里只有精品| 日韩 亚洲 欧美在线| 夫妻午夜视频| 免费不卡的大黄色大毛片视频在线观看| 亚洲怡红院男人天堂| 成人亚洲精品一区在线观看| 久久久国产欧美日韩av| 欧美 亚洲 国产 日韩一| 亚洲高清免费不卡视频| 国产男女内射视频| 丰满乱子伦码专区| 久久影院123| 亚洲欧洲国产日韩| 国产熟女欧美一区二区| 午夜日本视频在线| 久久精品国产自在天天线| 亚洲激情五月婷婷啪啪| 婷婷色麻豆天堂久久| 另类亚洲欧美激情| 国产亚洲一区二区精品| 91精品伊人久久大香线蕉| 91精品伊人久久大香线蕉| 热99国产精品久久久久久7| 亚洲精品色激情综合| 亚洲国产av新网站| 七月丁香在线播放| 日韩三级伦理在线观看| 久久国产精品大桥未久av| 伊人亚洲综合成人网| 免费观看a级毛片全部| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av男天堂| 中文字幕人妻丝袜制服| 欧美三级亚洲精品| 少妇被粗大的猛进出69影院 | 在线观看免费高清a一片| 女人精品久久久久毛片| 午夜福利网站1000一区二区三区| 啦啦啦啦在线视频资源| 91久久精品国产一区二区成人| 亚洲色图 男人天堂 中文字幕 | 丝瓜视频免费看黄片| 视频中文字幕在线观看| √禁漫天堂资源中文www| 免费久久久久久久精品成人欧美视频 | 美女大奶头黄色视频| 男人操女人黄网站| 国产成人精品久久久久久| 高清黄色对白视频在线免费看| 国产精品久久久久久久久免| 中文字幕亚洲精品专区| 一个人看视频在线观看www免费| 国产精品99久久久久久久久| 亚洲av国产av综合av卡| 免费不卡的大黄色大毛片视频在线观看| 久久久久视频综合| 最近手机中文字幕大全| 欧美3d第一页| 亚洲在久久综合| 边亲边吃奶的免费视频| 又大又黄又爽视频免费| 一二三四中文在线观看免费高清| 黄色毛片三级朝国网站| 老熟女久久久| 久久久欧美国产精品| 精品酒店卫生间| 大香蕉久久成人网| 亚洲精品国产色婷婷电影| 最近手机中文字幕大全| 久久久久久久国产电影| 欧美日本中文国产一区发布| 国产精品一区二区三区四区免费观看| 国产极品粉嫩免费观看在线 | 自拍欧美九色日韩亚洲蝌蚪91| 黄色毛片三级朝国网站| 一区二区三区免费毛片| 99久久人妻综合| 亚洲精品美女久久av网站| 国产精品99久久久久久久久| 观看av在线不卡| 91aial.com中文字幕在线观看| 成人18禁高潮啪啪吃奶动态图 | 涩涩av久久男人的天堂| 国产精品一区二区三区四区免费观看| 亚洲av国产av综合av卡| 各种免费的搞黄视频| av播播在线观看一区| 国产精品欧美亚洲77777| 亚洲高清免费不卡视频| 亚洲国产精品国产精品| 丁香六月天网| 日本黄色日本黄色录像| 欧美最新免费一区二区三区| 日本-黄色视频高清免费观看| 777米奇影视久久| 91久久精品国产一区二区成人| 欧美丝袜亚洲另类| 欧美变态另类bdsm刘玥| 黄色欧美视频在线观看| 人成视频在线观看免费观看| 精品一区二区免费观看| 黑人欧美特级aaaaaa片| 香蕉精品网在线| 精品视频人人做人人爽| 汤姆久久久久久久影院中文字幕| 国产综合精华液| 嫩草影院入口| 国产色爽女视频免费观看| 亚洲无线观看免费| 大话2 男鬼变身卡| 中国三级夫妇交换| 国产精品熟女久久久久浪| 人妻人人澡人人爽人人| 中文字幕久久专区| 人妻一区二区av| freevideosex欧美| 久久久国产一区二区| 日韩免费高清中文字幕av| 亚洲不卡免费看| 在线精品无人区一区二区三| av免费观看日本| 男女高潮啪啪啪动态图| 麻豆精品久久久久久蜜桃| 99久久精品一区二区三区| 免费人妻精品一区二区三区视频| 国产极品粉嫩免费观看在线 | 黑丝袜美女国产一区| 欧美日韩成人在线一区二区| 人人妻人人添人人爽欧美一区卜| 嘟嘟电影网在线观看| 80岁老熟妇乱子伦牲交| 男女无遮挡免费网站观看| 欧美最新免费一区二区三区| 欧美人与性动交α欧美精品济南到 | 如日韩欧美国产精品一区二区三区 | 亚洲av福利一区| 狂野欧美白嫩少妇大欣赏| 麻豆成人av视频| 亚洲av成人精品一二三区| √禁漫天堂资源中文www| a级毛色黄片| 亚洲,欧美,日韩| 欧美三级亚洲精品| 亚洲色图 男人天堂 中文字幕 | av福利片在线| 亚洲精品日韩av片在线观看| 精品卡一卡二卡四卡免费| 亚洲欧美日韩另类电影网站| 99国产精品免费福利视频| 亚洲欧美成人综合另类久久久| 亚洲av.av天堂| 国产老妇伦熟女老妇高清| 久久久a久久爽久久v久久| 色5月婷婷丁香| 亚洲av成人精品一二三区| 一区二区三区免费毛片| 一个人免费看片子| 人成视频在线观看免费观看| 搡女人真爽免费视频火全软件| 色视频在线一区二区三区| 曰老女人黄片| 欧美人与善性xxx| 亚洲国产av新网站| 中国三级夫妇交换| 王馨瑶露胸无遮挡在线观看| 久久久国产欧美日韩av| 最新的欧美精品一区二区| av免费在线看不卡| 在线免费观看不下载黄p国产| 久久久久久久亚洲中文字幕| 天天躁夜夜躁狠狠久久av| 人人妻人人澡人人看| av不卡在线播放| 久久久a久久爽久久v久久| 国产精品久久久久久久电影| 久久久精品94久久精品| 能在线免费看毛片的网站| 精品一品国产午夜福利视频| 国产精品 国内视频| 只有这里有精品99| 精品少妇内射三级| h视频一区二区三区| 精品人妻熟女毛片av久久网站| 少妇被粗大猛烈的视频| 国内精品宾馆在线| av国产精品久久久久影院| 久久99热6这里只有精品| 国产精品.久久久| 免费播放大片免费观看视频在线观看| 老司机亚洲免费影院| 国产欧美日韩一区二区三区在线 | 国产免费一区二区三区四区乱码| 99久国产av精品国产电影| 人妻 亚洲 视频| 交换朋友夫妻互换小说| 成人黄色视频免费在线看| 免费观看的影片在线观看| av电影中文网址| 国产av一区二区精品久久| av免费观看日本| 人人妻人人澡人人看| 曰老女人黄片| 九草在线视频观看| 国产国拍精品亚洲av在线观看| 久久97久久精品| 国产日韩欧美在线精品| 国产欧美亚洲国产| 在线观看三级黄色| a级毛片黄视频| 建设人人有责人人尽责人人享有的| 久久久久久久久久人人人人人人| 亚洲精品色激情综合| 一区二区三区乱码不卡18| 亚洲第一av免费看| 这个男人来自地球电影免费观看 | 欧美国产精品一级二级三级| 亚洲国产成人一精品久久久| 欧美最新免费一区二区三区| 伦精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 少妇熟女欧美另类| 色5月婷婷丁香| 日韩中字成人| 狂野欧美激情性bbbbbb| 亚洲不卡免费看| 亚洲av国产av综合av卡| 久久ye,这里只有精品| 99九九线精品视频在线观看视频| 少妇精品久久久久久久| 汤姆久久久久久久影院中文字幕| 校园人妻丝袜中文字幕| 国产一区有黄有色的免费视频| 日产精品乱码卡一卡2卡三| 亚洲成人手机| 日韩精品免费视频一区二区三区 | 天天影视国产精品| 国产 一区精品| 99久国产av精品国产电影| 乱码一卡2卡4卡精品| 午夜av观看不卡| 黄色毛片三级朝国网站| 国产av一区二区精品久久| 日韩伦理黄色片| 人人妻人人添人人爽欧美一区卜| 久久久a久久爽久久v久久| 国产精品无大码| 国精品久久久久久国模美| 久久精品国产亚洲av天美| 免费高清在线观看视频在线观看| 在线观看免费日韩欧美大片 | 18+在线观看网站| 国产免费福利视频在线观看| 国产av国产精品国产| 天天影视国产精品| 亚洲精品视频女| 国产高清有码在线观看视频| 久久久久久久大尺度免费视频| 人人妻人人澡人人爽人人夜夜| 91久久精品国产一区二区三区| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 人人澡人人妻人| 日本黄色片子视频| 22中文网久久字幕| av播播在线观看一区| 黄色视频在线播放观看不卡| 国产成人午夜福利电影在线观看| 日韩不卡一区二区三区视频在线| 亚洲欧美日韩另类电影网站| 99国产综合亚洲精品| 欧美国产精品一级二级三级| 在线观看一区二区三区激情| 国产一区二区在线观看日韩| 亚洲五月色婷婷综合| 久久人妻熟女aⅴ| 热re99久久国产66热| videos熟女内射| 日韩精品有码人妻一区| 在线观看美女被高潮喷水网站| 久久精品熟女亚洲av麻豆精品| 久久99蜜桃精品久久| 精品久久久久久久久亚洲| 亚洲欧美中文字幕日韩二区| 欧美激情 高清一区二区三区| 各种免费的搞黄视频| 狠狠精品人妻久久久久久综合| 亚洲av日韩在线播放| 蜜臀久久99精品久久宅男| 欧美日韩av久久| 日韩,欧美,国产一区二区三区| 高清av免费在线| 国产精品一二三区在线看| 永久网站在线| 91精品国产国语对白视频| av在线app专区| 免费观看a级毛片全部| 丝袜脚勾引网站| 亚洲精品一二三| 国产亚洲欧美精品永久| 中文字幕亚洲精品专区| 日本与韩国留学比较| 在现免费观看毛片| 五月开心婷婷网| 最近最新中文字幕免费大全7| 久久久久久久久久久丰满| 不卡视频在线观看欧美| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| 狠狠婷婷综合久久久久久88av| 亚洲精品乱久久久久久| 久久精品国产a三级三级三级| 这个男人来自地球电影免费观看 | 女性被躁到高潮视频| videos熟女内射| 国产伦精品一区二区三区视频9| 亚洲国产最新在线播放| 女性生殖器流出的白浆| 校园人妻丝袜中文字幕| 亚洲精品美女久久av网站| 久久精品久久久久久噜噜老黄| 老司机影院成人| 熟女电影av网| 黑人猛操日本美女一级片| 一级毛片我不卡| 国产精品国产av在线观看| 国产熟女午夜一区二区三区 | 国产精品久久久久久久久免| 欧美+日韩+精品| 日本vs欧美在线观看视频| 国产爽快片一区二区三区| 2022亚洲国产成人精品| 国产精品嫩草影院av在线观看| 亚洲国产欧美日韩在线播放| 亚洲美女黄色视频免费看| 成人18禁高潮啪啪吃奶动态图 | 亚洲,欧美,日韩| 青春草亚洲视频在线观看| 极品少妇高潮喷水抽搐| 国产 一区精品| 国产精品久久久久久精品电影小说| 欧美人与善性xxx| 国产精品女同一区二区软件| 久久狼人影院| 国产探花极品一区二区| 久久久久久久精品精品| 精品视频人人做人人爽| 久久免费观看电影| 久久97久久精品| 免费大片黄手机在线观看| 日韩制服骚丝袜av| 久久精品国产a三级三级三级| 如日韩欧美国产精品一区二区三区 | 国产片内射在线| 成人综合一区亚洲| 久久久久久久久大av| 国产欧美日韩一区二区三区在线 | 自线自在国产av| 精品人妻在线不人妻| 日本猛色少妇xxxxx猛交久久| 天天影视国产精品| 日日撸夜夜添| 免费黄频网站在线观看国产| 草草在线视频免费看| 狠狠精品人妻久久久久久综合| 亚洲在久久综合| 中文字幕av电影在线播放| 亚洲少妇的诱惑av| 中国三级夫妇交换| 一个人免费看片子| 国产成人免费观看mmmm| 大片免费播放器 马上看| 国产男女超爽视频在线观看| 日韩大片免费观看网站| 丁香六月天网| 亚洲精品亚洲一区二区| 色婷婷久久久亚洲欧美| 亚洲av日韩在线播放| 日本欧美国产在线视频| 99精国产麻豆久久婷婷| av电影中文网址| videosex国产| 国产黄片视频在线免费观看| 久久精品国产亚洲av涩爱| 久久影院123| 乱码一卡2卡4卡精品| 久久99精品国语久久久| 建设人人有责人人尽责人人享有的| 亚洲精品自拍成人| 中文乱码字字幕精品一区二区三区| 交换朋友夫妻互换小说| 黄片播放在线免费| 男女边摸边吃奶| 久久ye,这里只有精品| 新久久久久国产一级毛片| 精品久久久久久电影网| 亚洲美女搞黄在线观看| 色吧在线观看| 涩涩av久久男人的天堂| 最近最新中文字幕免费大全7| 老女人水多毛片| 亚州av有码| 精品久久久噜噜| 多毛熟女@视频| 国产毛片在线视频| 日本av手机在线免费观看| 在线播放无遮挡| 日日爽夜夜爽网站| 亚洲精品一二三| 伦理电影免费视频| 国产免费又黄又爽又色| 国产 一区精品| 一级黄片播放器| 日本午夜av视频| 制服人妻中文乱码| 亚洲精品美女久久av网站| 久久久久人妻精品一区果冻| 亚洲,欧美,日韩| 一级毛片 在线播放| 黑人巨大精品欧美一区二区蜜桃 | 美女xxoo啪啪120秒动态图| 亚洲五月色婷婷综合| 亚洲精品国产色婷婷电影| 久久99热这里只频精品6学生| 伦理电影免费视频| 午夜精品国产一区二区电影| 人人妻人人澡人人爽人人夜夜| 又粗又硬又长又爽又黄的视频| 18禁在线无遮挡免费观看视频| 91精品国产九色| 九九在线视频观看精品| 在线观看美女被高潮喷水网站| 国产精品麻豆人妻色哟哟久久| 国产精品无大码| av不卡在线播放| 久久久久国产网址| 99热国产这里只有精品6| 亚洲欧美中文字幕日韩二区| 日本欧美视频一区| 国产熟女午夜一区二区三区 | 久久这里有精品视频免费| 99精国产麻豆久久婷婷| 成人18禁高潮啪啪吃奶动态图 | 欧美激情 高清一区二区三区| 久久久久视频综合| 欧美日韩亚洲高清精品| 亚洲人成77777在线视频| 欧美另类一区| 纯流量卡能插随身wifi吗| 亚洲国产精品一区二区三区在线| 黄色怎么调成土黄色| 亚洲av成人精品一区久久| 如日韩欧美国产精品一区二区三区 | 精品亚洲乱码少妇综合久久| 在线观看免费日韩欧美大片 | 成年人免费黄色播放视频| av又黄又爽大尺度在线免费看| 嘟嘟电影网在线观看| 欧美精品人与动牲交sv欧美| 卡戴珊不雅视频在线播放| 在线播放无遮挡| 五月玫瑰六月丁香| 亚洲图色成人| 欧美人与性动交α欧美精品济南到 | 美女国产视频在线观看| 日本黄色片子视频| 成人毛片60女人毛片免费| 丰满少妇做爰视频| 午夜福利,免费看| 日本猛色少妇xxxxx猛交久久| 国产爽快片一区二区三区| 日本黄大片高清| 午夜福利视频精品| 久久鲁丝午夜福利片| 国产男女内射视频| 亚洲精品乱码久久久v下载方式| 日韩一本色道免费dvd| 99久国产av精品国产电影| 成人亚洲精品一区在线观看| 久久人人爽av亚洲精品天堂| 精品人妻在线不人妻| 最近最新中文字幕免费大全7| 狠狠精品人妻久久久久久综合| 久久99精品国语久久久| 日韩亚洲欧美综合|