• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Suboptimal Robust Stabilization of Discrete-time Mismatched Nonlinear System

    2018-01-26 03:50:56NiladriSekharTripathyIndraNarayanKarandKolinPaul
    IEEE/CAA Journal of Automatica Sinica 2018年1期

    Niladri Sekhar Tripathy,Indra Narayan Kar,,and Kolin Paul,

    I.INTRODUCTION

    REQUIREMENT of exact system model to design a feedback control law is the primary shortcoming of the classical feedback control technique.An uncertain system model is a more realistic representation and has far greater significance over the exact system model.However,there are open problems of designing a control law to deal with system uncertainties.To deal with parametric uncertainty,F.Lin and D.Wanget al.have proposed a continuous-time robust control technique for both linear and nonlinear system[1]?[5].In both the cases,they have formulated an equivalent optimal control problem to derive the proposed robust control input.The optimal control problem is solved based on the nominal dynamics by minimizing a quadratic cost-functional with the know ledge of uncertainty bound.Similar concepts are used for nonlinear continuous system in[6],[7],where a non-quadratic cost-functional is considered.The discrete-time version ofthe proposed robust-optimal control approach is still an open problem.Recently,Wanget al.[8]have extended the Lin’s approach[1]?[3]for a discrete-time nonlinear system.To realize the robust control law,the assumption in their work is that the physical system is affected by matched uncertainty(i.e.,uncertainty is in the range space of input matrix[9]?[11]).But there are several physical systems like maglev suspension system[12],[13],aircraft engine system[14],the movement control of truck-trailer problem[15],where the so-called matching condition does not hold.Therefore considering mismatched uncertainty in both state and input functions is a more realistic control problem.In general,it is known that the existence of stabilizing control law can be guaranteed for matched uncertainty but not so form is matched system.

    In this paper,a discrete-time robust control technique for uncertain nonlinear system is proposed.The system is primarily affected by mismatched uncertainty due to bounded parametric variation.To stabilize such systems,a robust control law is derived by solving a nonlinear optimal control problem for nominal virtual system with a cost-functional.To solve the nonlinear optimal control problem,the solution of a discretetime general Hamilton-Jacobi-Bellman (DT-GHJB) equation is approximated using a neural network implementation.Based on the approximated solution of DT-GHJB,the cost-functional and control inputs are estimated.The block diagram representation of proposed control approach is shown in Fig.1.

    Fig.1.The block diagram of proposed discrete-time robust control technique is shown in this figure.Here notations and represent the system’s state and two estimated control inputs,respectively.Using NN based approximation technique,the estimated cost-functional converges to its optimal costUsingthe optimal inputsandare computed.Inputis applied to the nonlinear uncertain system to solve the robust control problem.

    Mathematical analysis is done to prove the stability of the uncertain system by applying the approximated suboptimal control inputs.Finally,numerical results are reported to prove the efficacy of the proposed control algorithm.The key contributions of this work are:

    1)A robust control algorithm is proposed for a discrete time nonlinear system with mismatched uncertainty.A robust control law is derived by formulating an equivalent optimal control problem for a nominal virtual system with a quadratic cost-functional.The virtual dynamics have two control inputsuandv.The concept of virtual inputvis used to derive the existence of stabilizing control inputu.The virtual inputvhelps to tackle the mismatched uncertainty.The proposed robust control law ensures asymptotic convergence of uncertain closed-loop system.

    2)An optimal solution of a DT-GHJB equation is approximated through a NN implementation,to solve the nonlinear optimal control problem.The approximated inputs ensure the asymptotic convergence of uncertain states both analytically and numerically.The convergence of both the NN weight and cost-functional are also shown through the simulation results.

    3)This paper also shows that some of the existing results[8]of matched system are special cases of the proposed results.

    Notation&Definitions:The symbol‖x‖denotes the Euclidean norm of a vectorx∈Rn.The Rnrepresents thendimensional Euclidean real space and Rn×mis a set of all(n×m)real matrices.The notationsandX Tdenote the negative definiteness,inverse and transpose of matrixX,respectively.TheIis used to represent an identity matrix.The minimum and maximum eigenvalue of symmetric matrixP∈Rn×nare represented by the notationsλmax(P)andλmin(P),respectively.The number of iteration for discrete-time system is represented byk.Thekthinstant state and control input for a discrete-time system are denoted byxkanduk.A set ? is used to denote a continuous Lipschitz compact set where statexk(including the initial points)satisfy the conditionxk∈?[16].To prove the theoretical results,following definition is used in this paper.

    Definition 1[17],[18]:Consider a nonlinear discrete-time system as

    wherexk∈Rnanduk∈Rmare system state and input vector respectively.The functionsf(xk)andg(xk)are continuous nonlinear functions andf(xk)+g(xk)uk(xk)is Lipschitz continuous on a set ? including the origin.The control inputuk(xk)ensures the asymptotic convergence of closed loop system(1),?xk∈?.Let ?uis a set of admissible control inputs and inputukminimizes the cost-functional

    Then,the control inputukis considered as an admissible(i.e.,uk∈?u)with-respect to its state penalty functionand control energy penalty functionuTk Ruk,?xk∈?,if the following conditions hold:

    1)?xk∈?,inputuk(xk)is continuous;

    2)uk(0)=0;

    3)ukmust stabilizes(1)for?xk∈?;

    II.ROBUST CONTROL DESIGN

    System Description:A discrete-time uncertain nonlinear system is described by the state equation in the form

    wherexk∈Rnis the state anduk∈Rmis the periodic control input andf∈Rn,g∈Rn×mare the nonlinear functions.It is assumed that(3)is Lipschitz continuous on a compact set ?∈Rnand origin is the equilibrium point,i.e.,f(0)=0 andg(0)=0.The unknown functiond(xk)∈Rnis used to represent the system uncertainty and it is always upper bounded by a known functiondmax(xk),that is

    Generally system uncertainties are classified as matched and mismatched uncertainty and they are defined as follows[3],[8]?[10].

    Definition 2:System(3)suffers through the matched uncertainty if the uncertaintyd(xk)satisfy the following

    whereφ(xk)is the unknown function andUmatchedis the upper bound of‖φ(xk)‖.In other words,d(xk)is in the range space ofg(xk).

    Definition 3:System(3)has mismatched uncertainty if the uncertain componentd(xk)is not in the range space of input matrixg(xk).

    For the simplification,uncertainty can be decomposed in matched and m ismatched component as follows

    whereandare the matched and mismatched components respectively.The matrixg(xk)+=(gT(xk)g(xk))?1g(xk)Tdenotes the left pseudo inverse of matrixg(xk)[19]andSis a scaling matrix whereS/=g(xk).For a matrixS=g(xk),the uncertainty(7)reduces to a matched one as defined in(5).The decomposition of uncertainty into a matched and mismatched components will be used to define a nominal virtual system for(3)which is discussed in the subsequent subsection.

    Problem Statement:Design a state feedback control lawuk=K(xk),to stabilize the discrete-time uncertain nonlinear system(3),such that the closed-loop system is asymptotically stable in the presence of uncertainty(7).

    Proposed Solution:This problem is solved in two steps.First,the controller is designed by adopting nonlinear optimal control theory and then an algorithm is used to approximate the solution of DT-GHJB equation.The approximate solution of DT-GHJB equation is used to compute the stabilizing and virtual control inputsukandvk,respectively.

    Robust Control Problem:Design a state feedback control lawuk=K(xk)such that the uncertain closed-loop system(3)is asymptotically stable? ‖d(xk)‖≤dmax(xk).In order to stabilize(3),the robust control lawukis designed using an optimal control approach.

    Optimal Control Approach:The key idea is to design a discrete-time nonlinear optimal control law for virtual nominal system by minimizing a cost-functionalJ,which depends on the upper-bound of system uncertainty.An extra term(I?g(xk)g(xk)+)Sv(k)is added with the nominal dynamics of(3)to define a virtual system(8).The derived optimal input for virtual system is shown to be a robust input for original uncertain system.The virtual nominal dynamics and cost-functional for solving robust control problem are given below:

    where matricesandR2>0.Herevmaxis a scalar.

    Inspired by the results reported in[20]and[21],the discrete-time HJB(DT-HJB)equation for(8)with the optimal cost-functionalof(9)is

    Using(10),the optimal control input for(8)is

    LetV(xk)be a positive definite continuously differentiable function,which satisfiesV(x0)=J(x0,u).Applying Taylor series expansion of the cost-functional,the DT-HJB(10)reduces to discrete-time general HJB as in[21]

    That meansandwhich correspond to

    The scalarV?(xk)is the optimal value ofV(xk)and it satisfies equation(12).After further simplification,from(14)and(15),the optimal inputs are

    To address the stability issue of virtual nominal system(8)by applying the optimal inputs(16),following Lemma is used.

    Lemma 1:Suppose there exists a Lyapunov functionV(xk)for(8)and DT-GHJB(12)is satisfied.Then the optimal inputsanddefined in(16)ensure the asymptotic convergence of virtual nominal system(8).

    Proof:ConsiderV(xk)is a Lyapunov function for(8).Using(12),the ΔV(xk)=Vk+1?Vkreduces to

    The negative-definiteness of ΔValong the solution of(8)proves the asymptotic stability of(8)through the inputs(16).

    Remark 1:In DT-GHJB,the derivative of cost-functional is linearly related but it is nonlinear for DT-HJB.As a result,solving DT-GHJB corresponds to solving a linear partial difference equation.This makes the DT-GHJB computationally easier to solve than the DT-HJB.However it is still difficult to achieve a closed form solution as it is a partial difference equation.

    Now,the control inputs(16)can be computed if the matrix

    is invertible.HereR1,R2and??2Vare the positive definite matrices.So the sub-matrixis positive definite asand henceNow a suitable selection of design matricesR1andR2helps to satisfy condition 2).

    The realization of optimal control inputs(16)depend on the solution of DT-GHJB(12).In the next section,a brief description of NN based approximation technique is discussed to achieve the estimated solution of(12)which helps to design the optimal inputs(16).

    A.NN Based Approximation Using Least Squares Approach

    Neural network(NN)has universal function approximation property.Using this approximation property,several researchers have used NN to approximate the solution of HJB orGHJB as reported in[6],[20]and[21].The key aim of this section is to approximate the optimal cost functionalV?(xk),using a NN based algorithm.Applying NN based algorithm,the cost-functionalis approximated as.The estimated cost functionalis used to compute the approximate control inputs?ukand?vk.To estimateusing NN,the basis functionand weight vectorare selected.The scalarldenotes the number of hidden layers in the NN.The selection of activation function depends on the following polynomial[17],[18]

    whereLandnrepresent the order of approximation and the dimension of the system respectively.The equation(19)corresponds to the activation function for a 2-dimensional system as

    The selected basis functionσ(xk)is smooth and continuous moreover it also holds the propertyσ(0)=0,?xk=0.Applying the basis functionσ(xk)and NN weight?w,the estimated cost functional reduces to

    with a residual error(er)

    This helps to derive the weight update law with least square error minimizing rule as

    whereXandYare defined as(23)and(24),shown at the bottom of this page.

    Using estimated weight(22),the cost-functional is also estimated by applying(20).The estimated cost-functional(20)is applied to derive the approximated control inputsandAn algorithmic representation of numerical steps to achieve the suboptimal inputsandis given next.

    Remark 3:Given admissible control inputsu0∈?uandv0∈?v,the solutionof DT-GHJB(12)iteratively converges to its optimal solutionV?by updating the control inputs using(25).This claim can be proved analytically using the results reported in[17],[21].

    B.Stability of Uncertain Systems Using Approximate Inputs

    The derived approximated optimal inputs(26)for(8)ensure the asymptotic stability of uncertain system(3).This information is stated as a theorem in Algorithm 1.

    Theorem 1:Suppose there exists a continuously differentiable positive function?V?(xk)which satisfies(12)with the inequality

    The approximated optimal control inputdefined in(26)for(8)will be the robust solution of unmatched system(3)if the following condition holds

    Algorithm 1 Optimal inputs using NN based approximation

    Proof of Theorem 1:LetV(xk)is the solution of(12)and it is approximated asusing the estimated inputs(26).The approximated solution?V?(xk)and inputs(26)also satisfy the following equation

    Now,with the control inputs(26),the difference ofalong the solution of(3)is

    Using(7)in(30),the following is obtained

    where matrixN=g+S.After further simplification,equation(26)can be rewritten as

    Applying(29),(32)and(33)in(31),is simplified as

    After further simplificationreduces to

    The proposed robust control framework considers the general system uncertainty,which includes both matched and mismatched component.Without mismatched part,system(3)reduces to matched system(defined in(5)),i.e.

    Moreover,due to the absence of mismatched part,the virtual control inputvkis not necessary in(8)and(9).Therefore the nominal system and cost-functional for(35)reduce to

    where

    As a special case of Theorem 1,Corollary 1 is introduced for matched system.

    Corollary 1:Suppose there exists a continuously differentiable positive functionwhich satisfies

    Then the designed optimal control input

    for(36)which minimizes(37)is also a robust solution of(35)if the uncertaintyd(xk)satisfies the following bound

    Proof:Due to space limitation,the proof of this corollary is omitted.

    C.Robustness With Input Uncertainty

    The proposed framework can be extended in the presence of input uncertainty.A system with mismatched input uncertainty is described as

    where functiond(xk)is the bounded uncertainty affecting the input functiong(xk).To design the robust control input the virtual nominal system(8)and cost-functional(9)are considered.To tackle the mismatched uncertainty in input function,the optimal control problem is solved for(8)and(9)with the control inputs(26).The following theorem states the robust problem under presence of input uncertainty.

    Theorem 2:Suppose there exists a continuously differentiable positive function?V?(xk)which satisfies(29)with the inequality

    The approximate optimal control inputdefined in(26)for(8)which minimizes(9)will be the robust solution of(41)if the following condition holds

    Proof:The proof of this theorem is similar to the proof of Theorem 1.

    Remark 4:It is observed that the DT-HJB(10)is approximated using Taylor series expansion and it reduces to DTGHJB(12).Due to this approximation,the optimal input(11)is converted to near optimal input(16).The approximated virtual inputis not used to stabilize system(3)but it is used to design theThe inputis used to verify the condition(28).

    D.Comparison With Existing Results

    This subsection compares the main results of this paper with the existing work reported in[8].In 2016,D.Wanget al.have proposed an approximate optimal control based robust control technique for discrete-time nonlinear system.To realize the robust control law,they have considered that the system is affected by matched uncertainty.For the purpose of comparison with the results described in[8],the mismatched component of the uncertainty is neglected.It is observed that without mismatched component,the virtual inputvkis not necessary.Therefore without virtual inputvk,the nominal dynamics and cost-functional defined in this paper are in a form similar to that as mentioned in[8].

    So the results reported in[8]can be recovered as a special case of the proposed work.To solve the nonlinear optimal control problem,a NN based approximation technique is adopted from[8],[21].But,the presence of control inputvkin nominal system(8)modifies the DT-HJB equation reported in[8],[21].To tackle the mismatched uncertainty,the cost functional(9)consists of two extra terms asandThese two extra terms directly affect the computation of matricesXandYas mentioned in(23)and(24)respectively.Moreover,the computation of approximated cost functional?V?also depends on both the control inputsandThe absence of virtual inputvkin[8],[21],makes it easy to compute?V?.

    III.ADDITIONAL RESULTS

    A discrete-time linear system with state uncertainty is described as

    whereAandBare state and input matrices.The uncertain matrixaffects the system due to bounded variation of the uncertain parameterp.The uncertainty is bounded by a known matrixFand it is defined as

    where matrixPis a positive-definite matrix.To solve the robust control problem,the virtual nominal system and cost functional are selected as

    where matrixM=(I?BB+)S.With a quadratic Lyapunov functionV?(x)=xTk Pxk,the gradient vector and Hessian matrix can be expressed as?V=2Pxkand?2V=2P.For the system(46),with a cost-functional(47),the DT-GHJB is

    After further simplification,equation(48)reduces to

    The optimal control inputsandare

    where matricesKandLare the controller gains.It is observed that the equation(49)is a discrete-time Algebraic Riccati equation(DT-ARE).Therefore the DT-ARE related with the optimal control problem for a linear system can be recovered from the proposed DT-GHJB(12).To address the robust control problem for the linear system(44),following lemma is included.

    Lemma 2:Suppose their exists a positive definite solutionPof Riccati equation(49).The optimal input(50)ensures the asymptotic convergence of uncertain closed-loop system(44)for all bounded variation of uncertain parameterp,if it satisfies the inequalities(45)andwhereAc=A+BK.

    Proof:Proof of this Lemma is omitted.

    IV.RESULTS

    The section uses a numerical example to validate the proposed control algorithm.Consider a state space form of uncertain discrete-time nonlinear system as(3)where functionsf(xk),g(xk)andφ(xk)are defined as

    wherepis the uncertain parameter.This system has mismatched uncertainty and hence the results of[8]are not applicable.To solve the optimal control problem for virtual nominal system,the design parametersQ=I,R1=0.5IandR2=0.5Iare selected.The scaling matrixSis selected asS= £0.1 0.2?T.The upper bound of uncertaintyd(xk),defined in(4)is considered asdmax=‖xk‖2.The parameterpcan vary within?0.5 to 0.5.To estimate the optimal cost function through the NN realization,the NN is constructed as

    The mesh pointρ=6 and mesh size Δx=0.01 are selected.For simulation,the initial admissible control inputsu0=x1+1.5x2andv0=0.049x1are used.The simulation is carried out in MATLAB simulation platform for 10 iterations with the initial states[0.5,?0.5]T.After 5 iterations,the NN weightwconverges to

    Analysis of Simulation Results:Fig.2(a)shows that the system has converged to its equilibrium point through the admissible control inputsu0.Figs.3(a)and 3(b)show the convergence of NN weight and approximated value function.In Fig.2(b),the systems state trajectories reach their equilibrium point in-spite-of uncertainty.The simulation results show that the proposed robust suboptimal control technique guarantees the closed-loop stability in presence of mismatched uncertainty.The variation of stabilizing inputand virtual inputis shown in Figs.4(a)and 4(b).

    Now,for a selection of the scaling matrixS=g(xk),the same example is solved numerically.This selection converts them is matched system(3)to a matched system as defined in(35).The closed loop behavior of(35),is shown in Fig.5a and 5b which replicates the results of matched system as stated in[8].

    Fig.2.Results of proposed robust control technique.(a)Convergence of state trajectory(x1,x2)with the initial admissible control inputs u0 and v0 for p=0.(b)Convergence of state trajectory(x1,x2)with the designed robust control input?u?k for p=0.5.

    Fig.3.Results of NN based approximation.(a)Convergence of norm of weight vector(‖?w‖).(b)Convergence of approximated cost-functional.

    Fig.4.Convergences of control inputs.(a)Convergence of approximated control input(b)Convergence of approximated virtual input

    Fig.5.Results for matched uncertain system.(a)Convergence of system states with matched uncertainty for p=0.5.(b)Convergence of approximated control input for matched system.

    V.CONCLUSION

    A discrete-time robust control technique for an uncertain nonlinear system is proposed in this paper.It is considered that the system is primarily affected by mismatched uncertainty.The control law is designed by formulating an optimal control problem for a virtual nominal system with a modified cost functional.The virtual input is defined to design the stabilizing controller gain along with the stability condition.An analytical proof for ensuring asymptotic convergence of closed-loop uncertain system is also given.A comparative study between existing and proposed results is also reported.This paper has several promising future research directions.Few of them are discussed below.

    The proposed control algorithm can be applied in several application and can also be extended to networked control system where subsystems are interconnected by a digital network[25].To address this problem,coupled DT-HJB equation can be formulated[26].The proposed control framework can also be treated as a differential game problem by considering control inputsukandvkas maximizing and minimizing inputs[27].

    [1]F.Lin,“An optimal control approach to robust control design”,Int.J.Controlvol.73,no.3,pp.177?186,2000.

    [2]F.Lin and R.D.Brandt,“An optimal control approach to robust control of robot manipulators”,IEEE Trans.on Robot.and Automat.,vol.14,no.1,pp.69?77,1998.

    [3]F.Lin,W.Zhang and R.D.Brandt,“Robust hovering control of a PVTOL aircraft”,IEEE Trans.on Control Syst.Technol.,vol.7,no.3,pp.343?351,1999.

    [4]D.Wang,D.Liu,Q.Zhang,and D.Zhao,“Data-based adaptive critic designs for nonlinear robust optimal control with uncertain dynamics”,IEEE Trans.on Syst.Man and Cybern.:Syst.,pp.1?12,2016.

    [5]D.Wang,D.Liu,and H.Li,“Policy iteration algorithm for online design of robust control for a class of continuous-time nonlinear systems.”IEEE Trans.Autom.Sci.Eng.,vol.11,no.2,pp.627?632,2014.

    [6]D.M.Adhyaru,I.N.Karand M.Gopal,“Fixed final time optimal control approach for bounded robust controller design using Hamilton Jacobi Bellman solution”,IET Control Theory and Appl..vol.3,no.9,pp.1183?1195,2009.

    [7]D.M.Adhyaru,I.N.Kar and M.Gopal,“Bounded robust control of systems using neural network based HJB solution”,Neural Comput and Applic,vol.20,no.1,pp.91?103,2011.

    [8]D.Wang,D.Liu,H.Li,B.Luo and H.Ma,“An approximate optimal control approach for robust stabilization of a class of discrete-time nonlinear systems with uncertainties”,IEEE Trans.on Syst.Man and Cybern.:Syst.,vol.46,no.5,pp.1?5,2016.

    [9]IR Petersen,“Structural stabilization of uncertain systems:necessity of the matching condition”,SIAM J.Control Optim.,vol.23,no.2,pp.286?296,1985.

    [10]I.N.Kar,“Quadratic stabilization of a collection of linear systems”,Int.J.Syst.Sci.,vol.33,no.2,pp.153?160,2002.

    [11]Y.A.R.I.Mohamed,“Design and implementation of a robust current control scheme for a PMSM vector drive with a simple adaptive disturbance observer”,IEEE Trans.Ind.Electron.,vol.54,no.4,pp.1981?1988,2007.

    [12]H.W.Lee,K.C.Kim,and J.Lee,“Review of maglev train technologies”,IEEE Trans.Magn.,vol.42,no.7,pp.1917?1925,2006.

    [13]J.Yang,S.Li and X.Yu,“Sliding-mode control for systems with mismatched uncertainties via a disturbance observer”,IEEE Trans.Ind.Electron.,vol.60,no.1,pp.160?169,2013.

    [14]L.Ma,Z.Wang,Y.Bo and Z.Gua,“RobustH∞sliding mode control for nonlinear stochastic systems with multiple data packet losses”,Int.J.Robust&Nonlin.Control,vol.22,no.5,pp.474?491,2012.

    [15]Y.Zheng,G.M.Dimirovski,Y.jing and M.Yang,“Discrete-time sliding mode control of nonlinear systems”,American Control Conf.,New York City,USA.pp.3825?3830,2007.

    [16]H.K.Khalil,Nonlinear Systems,Prentice Hall,3rd Edition,New Jersey,2002.

    [17]J.Sarangapani,“Neural network control of nonlinear discrete-time systems”,CRC press,Florida,USA,2006.

    [18]R.W.Beard,“Improving the closed-loop performance of nonlinear systems.”Ph.D.diss.,Rensselaer Polytechnic Institute,1995.

    [19]R.A.Horn and C.R.Johnson,Matrix Analysis,Cambridge University Press,Cambridge,UK.1990.

    [20]A.Al-Tamini,F.L.Lew is and M.Abu-Khalaf,“Discrete-time nonlinear HJB solution using approximate dynamic programming:Convergence Proof”,IEEE Trans.on Syst.,Man and Cybern.B:Cybern.,vol.38,no.4,pp.943?949,2008.

    [21]Z.Chen and S.Jagannathan,“Generalized Hamilton-Jacobi-Bellman formulation-based neural network control of affine nonlinear discrete time systems”,IEEE Trans.on Neural Netw.,vol.19,no.1,pp.90?106.2008.

    [22]D.S.Naidu,Optimal control systems,CRC press,India,2009.

    [23]I.N.Imam,“The Schur complement and the inverseM-matrix problem”,Linear Algebra and its Appl.,vol.62,pp.235?240,1984.

    [24]B.A.Finlayson,“The method of weighted residuals and variational principles”,Academic Press,New York,USA,1972.

    [25]N.S.Tripathy,I.N.Kar,and K.Paul,“Stabilization of uncertain discrete-time linear system with limited communication”,IEEE Trans.Autom.Control,vol.62,no.9,pp.4727?4733,2017.

    [26]Z.Gajic and M.T.J.Qureshi,“Lyapunov matrix equation in system stability and control”,Dover Publication,New York,USA.2008.

    [27]I.R.Petersen,“Linear quadratic differential games with cheap control”,Syst.&Control Lett.,vol.8,pp.181?188,1986.

    成人美女网站在线观看视频| 午夜精品国产一区二区电影 | 亚洲欧美日韩东京热| 18禁在线播放成人免费| 可以在线观看毛片的网站| 中国三级夫妇交换| 精品99又大又爽又粗少妇毛片| freevideosex欧美| 97精品久久久久久久久久精品| 亚洲第一区二区三区不卡| 日日摸夜夜添夜夜爱| 女人久久www免费人成看片| 视频中文字幕在线观看| 人人妻人人看人人澡| 亚洲精品色激情综合| 特大巨黑吊av在线直播| 王馨瑶露胸无遮挡在线观看| 亚洲国产日韩一区二区| 欧美一区二区亚洲| 18+在线观看网站| 精品久久国产蜜桃| 久热这里只有精品99| 欧美国产精品一级二级三级 | 国产精品久久久久久久电影| 69av精品久久久久久| 欧美激情久久久久久爽电影| 一区二区三区四区激情视频| 91狼人影院| 99九九线精品视频在线观看视频| 成人欧美大片| 国产亚洲最大av| 亚洲精品一二三| 成人漫画全彩无遮挡| 色5月婷婷丁香| 国产亚洲最大av| 国产伦在线观看视频一区| 在线观看美女被高潮喷水网站| 免费观看的影片在线观看| 中国三级夫妇交换| 国产一区有黄有色的免费视频| 各种免费的搞黄视频| 国产一区有黄有色的免费视频| 中文精品一卡2卡3卡4更新| 国产探花在线观看一区二区| 国产男女内射视频| 亚洲激情五月婷婷啪啪| 在线观看美女被高潮喷水网站| 不卡视频在线观看欧美| 少妇裸体淫交视频免费看高清| 天天一区二区日本电影三级| 久久97久久精品| 国产男女超爽视频在线观看| 国语对白做爰xxxⅹ性视频网站| 美女脱内裤让男人舔精品视频| 亚洲综合精品二区| 国产女主播在线喷水免费视频网站| 人妻少妇偷人精品九色| 午夜日本视频在线| 又爽又黄无遮挡网站| 99热国产这里只有精品6| 亚洲美女搞黄在线观看| 国产国拍精品亚洲av在线观看| 一级二级三级毛片免费看| 夫妻午夜视频| 国产一区二区在线观看日韩| 天堂中文最新版在线下载 | 91久久精品电影网| 久久久久久久国产电影| 777米奇影视久久| 麻豆成人av视频| 精品久久久精品久久久| 在线观看av片永久免费下载| 国产精品蜜桃在线观看| 亚洲精品乱久久久久久| 18+在线观看网站| av卡一久久| 久久久久久九九精品二区国产| av在线观看视频网站免费| .国产精品久久| 国产又色又爽无遮挡免| 别揉我奶头 嗯啊视频| 最近的中文字幕免费完整| 嫩草影院入口| eeuss影院久久| 80岁老熟妇乱子伦牲交| 免费观看无遮挡的男女| 成人国产av品久久久| 国产午夜精品一二区理论片| 最近中文字幕高清免费大全6| av.在线天堂| 美女高潮的动态| 我的女老师完整版在线观看| 另类亚洲欧美激情| 亚洲精品影视一区二区三区av| 日韩欧美 国产精品| 干丝袜人妻中文字幕| 色吧在线观看| 久久亚洲国产成人精品v| videossex国产| 亚洲精品亚洲一区二区| 婷婷色综合大香蕉| 高清在线视频一区二区三区| 国产视频首页在线观看| 波野结衣二区三区在线| 亚洲精品第二区| 日韩制服骚丝袜av| 亚洲人成网站在线观看播放| 日日摸夜夜添夜夜爱| 精品人妻偷拍中文字幕| 成年av动漫网址| 欧美另类一区| 亚洲国产精品国产精品| 久久久精品94久久精品| 日日啪夜夜爽| 亚洲天堂av无毛| 欧美高清性xxxxhd video| 男女边吃奶边做爰视频| 成人免费观看视频高清| 狂野欧美激情性bbbbbb| 欧美激情久久久久久爽电影| 精品一区二区免费观看| 99热这里只有是精品50| 久久精品久久精品一区二区三区| 欧美三级亚洲精品| 三级国产精品片| 99久久中文字幕三级久久日本| 赤兔流量卡办理| 97热精品久久久久久| 亚洲av国产av综合av卡| 老女人水多毛片| 久久99热这里只频精品6学生| 国产免费一级a男人的天堂| 蜜桃久久精品国产亚洲av| 国产高清国产精品国产三级 | 国产精品国产三级国产专区5o| 国产成人91sexporn| 免费看光身美女| 国产黄色视频一区二区在线观看| av免费在线看不卡| 亚洲欧美日韩东京热| 久久人人爽人人片av| 亚洲av免费在线观看| 女人久久www免费人成看片| 青春草国产在线视频| 中文精品一卡2卡3卡4更新| 人人妻人人澡人人爽人人夜夜| 色视频www国产| 国产一区二区亚洲精品在线观看| 免费av不卡在线播放| 啦啦啦啦在线视频资源| 久久精品综合一区二区三区| av.在线天堂| 久久精品国产a三级三级三级| 建设人人有责人人尽责人人享有的 | 欧美成人精品欧美一级黄| 一级黄片播放器| 国产老妇伦熟女老妇高清| 69人妻影院| 精品久久久久久久久亚洲| 国产精品99久久久久久久久| 免费在线观看成人毛片| 久久久精品94久久精品| 深爱激情五月婷婷| 国产精品国产三级国产专区5o| 午夜免费观看性视频| 国产午夜福利久久久久久| 国产乱人偷精品视频| av卡一久久| 亚洲国产av新网站| 岛国毛片在线播放| 女的被弄到高潮叫床怎么办| 在线观看美女被高潮喷水网站| 高清av免费在线| 日韩精品有码人妻一区| 婷婷色综合大香蕉| 国产 一区精品| 国产精品福利在线免费观看| av在线观看视频网站免费| 欧美日韩精品成人综合77777| 久久久久国产网址| 老师上课跳d突然被开到最大视频| 久久人人爽av亚洲精品天堂 | 黄色欧美视频在线观看| 毛片女人毛片| 国产精品人妻久久久影院| 国产免费福利视频在线观看| 成人美女网站在线观看视频| 日本欧美国产在线视频| 亚洲精品色激情综合| 两个人的视频大全免费| 久久精品熟女亚洲av麻豆精品| 男人爽女人下面视频在线观看| 日韩av免费高清视频| 日韩一本色道免费dvd| 97超碰精品成人国产| 啦啦啦啦在线视频资源| 免费观看性生交大片5| 免费观看a级毛片全部| 国产成人精品福利久久| 日本三级黄在线观看| 日韩免费高清中文字幕av| 亚洲国产欧美在线一区| 寂寞人妻少妇视频99o| av专区在线播放| 一级黄片播放器| 69人妻影院| 久久久成人免费电影| 欧美日韩综合久久久久久| 乱码一卡2卡4卡精品| 麻豆成人午夜福利视频| 91久久精品国产一区二区三区| 久久99蜜桃精品久久| 黄色配什么色好看| 亚洲精品一区蜜桃| 久久国内精品自在自线图片| 一级a做视频免费观看| av播播在线观看一区| 久久久久久久久久久免费av| 新久久久久国产一级毛片| 高清欧美精品videossex| 国产av不卡久久| 国产永久视频网站| 一个人看视频在线观看www免费| 国产v大片淫在线免费观看| 女人十人毛片免费观看3o分钟| 欧美日韩视频精品一区| av福利片在线观看| 久久久久久久亚洲中文字幕| 好男人在线观看高清免费视频| 国产亚洲91精品色在线| 国产乱人视频| 国产精品99久久久久久久久| 成年av动漫网址| 2021少妇久久久久久久久久久| xxx大片免费视频| 久久精品人妻少妇| 亚洲,欧美,日韩| 精品99又大又爽又粗少妇毛片| 91精品伊人久久大香线蕉| 高清日韩中文字幕在线| 美女被艹到高潮喷水动态| 成人鲁丝片一二三区免费| 在线观看免费高清a一片| 美女国产视频在线观看| 亚洲av日韩在线播放| kizo精华| 免费看日本二区| 午夜老司机福利剧场| 久久久久久国产a免费观看| 在现免费观看毛片| 又爽又黄a免费视频| 国产老妇女一区| 精品一区二区免费观看| 能在线免费看毛片的网站| 别揉我奶头 嗯啊视频| 欧美日韩综合久久久久久| 亚洲最大成人手机在线| 国产精品三级大全| 亚洲精品成人久久久久久| 夜夜看夜夜爽夜夜摸| 97超碰精品成人国产| 欧美高清性xxxxhd video| 亚洲欧美中文字幕日韩二区| 欧美性感艳星| 亚洲一级一片aⅴ在线观看| 亚洲精品久久久久久婷婷小说| 日韩,欧美,国产一区二区三区| 精品久久久噜噜| 18禁动态无遮挡网站| 下体分泌物呈黄色| 国产免费视频播放在线视频| 国产成人精品婷婷| 五月伊人婷婷丁香| 三级国产精品欧美在线观看| 亚洲国产日韩一区二区| 亚洲丝袜综合中文字幕| 中文字幕免费在线视频6| 亚洲欧美一区二区三区国产| 免费观看性生交大片5| 黄色视频在线播放观看不卡| 成人综合一区亚洲| 国产一区二区三区综合在线观看 | 日本爱情动作片www.在线观看| 少妇人妻 视频| 男的添女的下面高潮视频| 成人高潮视频无遮挡免费网站| 少妇 在线观看| 国产av国产精品国产| 免费观看a级毛片全部| 日韩一本色道免费dvd| 九九在线视频观看精品| 91狼人影院| 夜夜爽夜夜爽视频| 亚洲美女搞黄在线观看| 性色av一级| 亚洲欧美中文字幕日韩二区| 欧美成人午夜免费资源| 国产免费福利视频在线观看| 中国国产av一级| 国产亚洲av片在线观看秒播厂| 国产女主播在线喷水免费视频网站| 噜噜噜噜噜久久久久久91| 亚洲精品国产av蜜桃| 日本免费在线观看一区| 国产欧美另类精品又又久久亚洲欧美| 午夜激情福利司机影院| 国产精品不卡视频一区二区| 国产真实伦视频高清在线观看| 国模一区二区三区四区视频| 日韩一区二区视频免费看| 精品久久久久久久末码| 中文字幕制服av| 人人妻人人澡人人爽人人夜夜| 日韩三级伦理在线观看| 日本欧美国产在线视频| 日韩一区二区视频免费看| 免费高清在线观看视频在线观看| 欧美日韩视频高清一区二区三区二| 亚洲精品456在线播放app| 大香蕉久久网| 国产精品人妻久久久影院| 熟女人妻精品中文字幕| 亚洲av中文字字幕乱码综合| 亚洲激情五月婷婷啪啪| 69av精品久久久久久| 亚洲三级黄色毛片| 又大又黄又爽视频免费| 久久久久久久精品精品| 欧美成人一区二区免费高清观看| 国产久久久一区二区三区| 亚洲国产高清在线一区二区三| 亚洲国产欧美人成| 99热这里只有精品一区| 日韩一本色道免费dvd| 大片免费播放器 马上看| 老师上课跳d突然被开到最大视频| www.av在线官网国产| 亚洲国产av新网站| 日本欧美国产在线视频| 欧美人与善性xxx| 亚洲自偷自拍三级| 韩国高清视频一区二区三区| 午夜精品一区二区三区免费看| 少妇高潮的动态图| 97超视频在线观看视频| 免费黄色在线免费观看| 免费av不卡在线播放| 听说在线观看完整版免费高清| 蜜桃久久精品国产亚洲av| 午夜福利网站1000一区二区三区| 视频中文字幕在线观看| 亚洲人成网站高清观看| 日日啪夜夜撸| 最近手机中文字幕大全| 国产精品不卡视频一区二区| 七月丁香在线播放| 天堂俺去俺来也www色官网| 国产熟女欧美一区二区| 激情五月婷婷亚洲| 国产乱人偷精品视频| 国产免费一级a男人的天堂| av在线天堂中文字幕| 成人美女网站在线观看视频| 街头女战士在线观看网站| 欧美xxxx黑人xx丫x性爽| av专区在线播放| 久久久久精品久久久久真实原创| 国产亚洲精品久久久com| 久久精品国产亚洲av涩爱| 啦啦啦在线观看免费高清www| 女人被狂操c到高潮| 熟女电影av网| 在线观看美女被高潮喷水网站| 伊人久久国产一区二区| 交换朋友夫妻互换小说| 国产黄片视频在线免费观看| av在线app专区| 亚洲精品自拍成人| 天美传媒精品一区二区| 涩涩av久久男人的天堂| 男女边摸边吃奶| 久久精品久久精品一区二区三区| 久久久a久久爽久久v久久| 欧美亚洲 丝袜 人妻 在线| 国产av不卡久久| 一本久久精品| 久久精品国产a三级三级三级| 亚洲在久久综合| 深夜a级毛片| 偷拍熟女少妇极品色| 黄色视频在线播放观看不卡| 亚洲av成人精品一区久久| 最近中文字幕2019免费版| 国产一区二区在线观看日韩| 亚洲综合精品二区| 欧美高清成人免费视频www| 国产伦精品一区二区三区视频9| 麻豆成人午夜福利视频| 波野结衣二区三区在线| 黄色怎么调成土黄色| 亚洲在线观看片| 中文欧美无线码| 五月天丁香电影| 国产成人精品福利久久| 狂野欧美激情性xxxx在线观看| 老女人水多毛片| 国产一区二区三区av在线| 好男人在线观看高清免费视频| 成人高潮视频无遮挡免费网站| 少妇的逼好多水| 直男gayav资源| 国产极品天堂在线| 五月天丁香电影| 人人妻人人澡人人爽人人夜夜| 国产成人a∨麻豆精品| av天堂中文字幕网| 一本久久精品| 边亲边吃奶的免费视频| 少妇熟女欧美另类| 亚洲真实伦在线观看| 国产亚洲一区二区精品| 最新中文字幕久久久久| 亚洲天堂国产精品一区在线| 一级片'在线观看视频| 成人综合一区亚洲| 精品一区在线观看国产| 国产毛片在线视频| 啦啦啦中文免费视频观看日本| 五月开心婷婷网| 在线观看免费高清a一片| 黄色日韩在线| 在线 av 中文字幕| 神马国产精品三级电影在线观看| 晚上一个人看的免费电影| 少妇丰满av| 国产在线一区二区三区精| 各种免费的搞黄视频| 亚洲三级黄色毛片| av一本久久久久| 日韩在线高清观看一区二区三区| 久久97久久精品| 国产白丝娇喘喷水9色精品| av国产久精品久网站免费入址| 国产精品久久久久久久电影| 一本一本综合久久| 午夜日本视频在线| 国产欧美日韩一区二区三区在线 | 韩国av在线不卡| 亚洲欧美精品专区久久| 国产精品蜜桃在线观看| 久久久久久伊人网av| 男女那种视频在线观看| 久久精品综合一区二区三区| 搞女人的毛片| 久久午夜福利片| 国内精品美女久久久久久| 插逼视频在线观看| 欧美性猛交╳xxx乱大交人| 搞女人的毛片| 最近中文字幕高清免费大全6| av天堂中文字幕网| 成年人午夜在线观看视频| 亚洲精品亚洲一区二区| 晚上一个人看的免费电影| 九九久久精品国产亚洲av麻豆| 久久久a久久爽久久v久久| 亚洲国产欧美人成| 欧美激情国产日韩精品一区| 亚洲婷婷狠狠爱综合网| 成人毛片a级毛片在线播放| 久久精品夜色国产| 久久国产乱子免费精品| 尤物成人国产欧美一区二区三区| 精品久久国产蜜桃| 日韩成人伦理影院| 日韩成人av中文字幕在线观看| 国产高清不卡午夜福利| 国产精品熟女久久久久浪| 亚洲av国产av综合av卡| 久久久久久久大尺度免费视频| 在线观看一区二区三区| 新久久久久国产一级毛片| 啦啦啦在线观看免费高清www| 成人欧美大片| 青青草视频在线视频观看| 女人久久www免费人成看片| 一区二区三区乱码不卡18| 国内少妇人妻偷人精品xxx网站| 天美传媒精品一区二区| h日本视频在线播放| 亚洲综合精品二区| 久久久久久九九精品二区国产| 国产精品一二三区在线看| 黄片wwwwww| 日日啪夜夜爽| 精品久久久久久久久av| 精品少妇黑人巨大在线播放| 王馨瑶露胸无遮挡在线观看| 国产女主播在线喷水免费视频网站| 麻豆精品久久久久久蜜桃| 国产一区二区在线观看日韩| 在线观看人妻少妇| 丰满乱子伦码专区| 国产精品一区二区三区四区免费观看| 国产精品嫩草影院av在线观看| 午夜日本视频在线| 极品教师在线视频| 国产男人的电影天堂91| 日日摸夜夜添夜夜添av毛片| 一个人观看的视频www高清免费观看| 精品国产一区二区三区久久久樱花 | 亚洲精品久久午夜乱码| 国产老妇女一区| 简卡轻食公司| av国产免费在线观看| 国产成人精品一,二区| 日韩强制内射视频| 国产精品一区二区三区四区免费观看| 国产老妇伦熟女老妇高清| 汤姆久久久久久久影院中文字幕| 亚洲av不卡在线观看| 日韩大片免费观看网站| 国产毛片在线视频| 性色avwww在线观看| 亚洲激情五月婷婷啪啪| 亚洲久久久久久中文字幕| 亚洲内射少妇av| 欧美激情国产日韩精品一区| 久久久久九九精品影院| 国产极品天堂在线| 国产日韩欧美亚洲二区| 久久久久久国产a免费观看| 精品少妇黑人巨大在线播放| 美女cb高潮喷水在线观看| 日本与韩国留学比较| 丝瓜视频免费看黄片| 又粗又硬又长又爽又黄的视频| 日韩国内少妇激情av| 高清欧美精品videossex| 亚洲真实伦在线观看| 亚洲天堂国产精品一区在线| 国产国拍精品亚洲av在线观看| 国产探花极品一区二区| 亚洲欧美清纯卡通| 亚洲欧美精品专区久久| 在线观看一区二区三区激情| 深爱激情五月婷婷| 国产精品久久久久久久电影| 女人被狂操c到高潮| 国产精品国产三级国产av玫瑰| 国产毛片在线视频| 国产在视频线精品| 黄片无遮挡物在线观看| 老师上课跳d突然被开到最大视频| 久久久国产一区二区| 亚洲在久久综合| 毛片一级片免费看久久久久| 午夜日本视频在线| 久久精品国产鲁丝片午夜精品| 国产亚洲午夜精品一区二区久久 | 热99国产精品久久久久久7| 2021天堂中文幕一二区在线观| 高清在线视频一区二区三区| 久久久精品欧美日韩精品| 在线天堂最新版资源| 日韩一区二区三区影片| 久久99热这里只有精品18| 欧美老熟妇乱子伦牲交| videossex国产| 亚洲激情五月婷婷啪啪| 中文在线观看免费www的网站| 久久ye,这里只有精品| .国产精品久久| 国产视频内射| 色吧在线观看| 亚洲精华国产精华液的使用体验| 婷婷色综合www| 久久99蜜桃精品久久| 日本一本二区三区精品| 欧美性感艳星| 日本-黄色视频高清免费观看| 麻豆乱淫一区二区| 免费电影在线观看免费观看| 高清视频免费观看一区二区| 春色校园在线视频观看| 国产精品无大码| 免费人成在线观看视频色| 日日摸夜夜添夜夜爱| 亚洲精品视频女| 亚洲国产精品国产精品| 18禁在线播放成人免费| 麻豆久久精品国产亚洲av| 国产精品蜜桃在线观看| 一级毛片电影观看| .国产精品久久| 美女高潮的动态| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩成人伦理影院| 毛片女人毛片| 成人国产麻豆网| 欧美高清成人免费视频www| 久久国内精品自在自线图片| 日本午夜av视频| 小蜜桃在线观看免费完整版高清| 欧美成人一区二区免费高清观看| 国产精品无大码| 日韩电影二区| 日韩欧美精品免费久久| 国产精品无大码| 日韩电影二区| 最后的刺客免费高清国语| 只有这里有精品99| 青春草视频在线免费观看| 毛片一级片免费看久久久久| 久久99蜜桃精品久久|