張 杰,顧 紅,程大偉,張威遠(yuǎn),郭西智,張 洋,陳錦永
(中國農(nóng)業(yè)科學(xué)院 鄭州果樹研究所/果樹生長發(fā)育與品質(zhì)控制實(shí)驗(yàn)室,河南 鄭州 450009)
褪黑素(N-乙酰-5-甲氧基色胺),又名松果素、美拉托寧,是一種低分子量(232.27)的吲哚胺類物質(zhì),1958年于牛的松果體中被首次發(fā)現(xiàn)[1],之后近40年,相關(guān)學(xué)者均將其作為一種僅存在于動物體內(nèi)的神經(jīng)激素進(jìn)行研究[2]。在動物中,褪黑素的合成起始于色氨酸,并通過色氨酸脫羧酶(tryptophan decarboxylase, TDC)、色胺5-羥化酶(tryptamine 5-hydroxylase, T5H)、5-羥色胺N-乙酰轉(zhuǎn)移酶(serotoninN-acetyltransferase, SNAT)以及乙酰5-羥色胺甲基轉(zhuǎn)移酶(acetylserotonin methyl transferase, ASMT)參與的酶促反應(yīng)最終合成[3-4]。褪黑素在動物中參與了眾多的生理過程,包括影響晝夜節(jié)律、睡眠、情緒、體溫、活動能力、進(jìn)食、視網(wǎng)膜生理活動、性行為、繁殖能力以及免疫系統(tǒng)。另外,褪黑素還能夠?yàn)榇竽X及周圍淋巴組織提供信號,作為一種內(nèi)源的生理節(jié)律同步器[5-9]。直至1995年,Dubbels等通過放射免疫測定以及液質(zhì)聯(lián)用技術(shù)檢測到了煙草以及5種可食植物提取物中褪黑素的存在[10]。兩個(gè)月之后,Hattori等通過放射免疫測定、高效液相色譜以及熒光檢測等方法證實(shí)了可食植物中褪黑素的存在[11]。自此之后,一系列研究證明褪黑素普遍存在于植物界當(dāng)中,并發(fā)揮著重要的調(diào)控作用。本文就近些年來植物中褪黑素的合成、含量及功能進(jìn)行了綜述,以期為褪黑素作為一種植物生長調(diào)節(jié)物質(zhì)應(yīng)用于農(nóng)業(yè)生產(chǎn)提供一定的理論依據(jù)。
已有大量研究證明,不同物種中的褪黑素生物合成途徑是類似的。通過放射性同位素示蹤法,Murch等首次發(fā)現(xiàn)植物中褪黑素生物合成的主要前體物質(zhì)是色氨酸[12]。由于色氨酸也是植物激素生長素以及其它一些次級代謝物生物合成的起始物質(zhì),這就使得褪黑素的合成不僅能夠影響植物體內(nèi)的激素平衡,也成為了植物次生代謝的一個(gè)重要分支點(diǎn)[13]。植物中褪黑素的合成途徑與動物類似,均由色氨酸脫羧酶(TDC)、色胺5-羥化酶(T5H)、5-羥色胺N-乙酰轉(zhuǎn)移酶(SNAT)以及乙酰5-羥色胺甲基轉(zhuǎn)移酶(ASMT)參與催化合成[14-17]。色氨酸首先在TDC的作用下生成色胺;色胺作為底物,在T5H的催化下生成5-羥色胺;SNAT繼而以5-羥色胺為底物催化生成N-乙酰5-羥色胺;最后在ASMT的作用下最終合成褪黑素。但在由5-羥色胺轉(zhuǎn)化為褪黑素的過程中存在著兩條途徑。主要途徑中,5-羥色胺經(jīng)過SNAT催化生成N-乙酰5-羥色胺,繼而在ASMT的作用下合成褪黑素[18];而在另一條替代途徑中,5-羥色胺與褪黑素之間的中間產(chǎn)物為5-甲氧色胺,另外,該途徑中還引入了一個(gè)苯丙烷類代謝過程中的催化酶——咖啡酸O-甲基轉(zhuǎn)移酶(caffeic acid O-methyltransferase, COMT),它不僅能夠催化5-羥色胺轉(zhuǎn)化為5-甲氧色胺,也能夠替代ASMT催化N-乙酰5-羥色胺合成褪黑素[3,19-21]。褪黑素生物合成途經(jīng)中的中間產(chǎn)物均在不同的亞細(xì)胞組分(細(xì)胞質(zhì)、內(nèi)質(zhì)網(wǎng)、葉綠體等)中合成。因此,細(xì)胞器之間的交流與運(yùn)輸也決定了褪黑素合成的酶促反應(yīng)效率[22]。
許多植物的根、葉、花、果實(shí)、種子等器官均富含褪黑素。中果咖啡新鮮種子中的褪黑素含量高達(dá)115.25 μg/g[23]。薔薇科、葡萄科、禾本科、傘形科以及十字花科的植物均含有褪黑素,而對于一些尚未開展研究的植物而言,其體內(nèi)褪黑素的含量可能會更高。不同植物之間褪黑素的含量存在差異,同一物種不同品種之間褪黑素的含量亦有所不同。究其原因,可能與以下幾種因素相關(guān):(1)植物的基因型;(2)植物所處的外界環(huán)境;(3)植物所處的生長發(fā)育階段;(4)褪黑素提取及檢測方法。
褪黑素已在140多種植物及其加工產(chǎn)品中被檢測到,這些植物的基因型不盡相同,其所含褪黑素含量亦高低有別[24-25]。在一些禾本科作物,如:水稻、大麥、玉米以及燕麥中,褪黑素含量較高,而在一些多年生植物中褪黑素含量則有所不及[11,26]。另外,Wang等[27]在相同的地理環(huán)境下分別種植了58個(gè)不同品種的玉米和25個(gè)不同品種的水稻,對其中的褪黑素含量進(jìn)行測定發(fā)現(xiàn),58個(gè)玉米品種中褪黑素含量區(qū)間為11~2034 ng/g,25個(gè)水稻品種中褪黑素含量區(qū)間為11~264 ng/g。以上數(shù)據(jù)所顯示的褪黑素含量差異在很大程度上是由植物基因型不同所導(dǎo)致的。
植物中褪黑素的合成也存在一個(gè)晝夜節(jié)律現(xiàn)象。在自然條件下,鳳眼蘭中褪黑素的水平顯示出了明顯的晝夜節(jié)律性,其含量高峰出現(xiàn)在光周期的最后階段,將植株移至黑暗條件下,褪黑素的含量明顯下降,因此,相關(guān)研究者認(rèn)為鳳眼蘭中褪黑素的水平在日落之前達(dá)到最高,說明其在整個(gè)日照周期內(nèi)均在進(jìn)行褪黑素的合成和積累,而在黑暗條件下其合成速率降低或停止[28]。對于短花期植物紅葉藜而言,其體內(nèi)褪黑素的合成同樣具有一定的節(jié)律性,但其規(guī)律恰與鳳眼蘭相反,褪黑素含量高峰出現(xiàn)在夜晚,而白天的褪黑素含量則維持在一個(gè)較低的水平[29-30]。將水稻小苗放置在黑暗且高溫的條件下,能夠促進(jìn)其體內(nèi)褪黑素的合成[31]。類似的,將番茄植株移至黑暗條件下,同樣能夠增加其體內(nèi)褪黑素的含量[32]。甜櫻桃中的褪黑素含量在一天中出現(xiàn)兩次明顯的高峰,一次在凌晨5:00左右,一次在14:00左右。第一次高峰的出現(xiàn)得益于夜晚的黑暗條件,第二次高峰則與高溫及高光強(qiáng)有關(guān)[33]。依據(jù)目前所取得的研究結(jié)果來看,外界環(huán)境,尤其是光與溫度也能夠影響植物體內(nèi)褪黑素的合成與積累。
據(jù)已有報(bào)道,植物內(nèi)源褪黑素水平與其所處的生長發(fā)育階段也有一定的關(guān)系。白曼陀羅花芽中含有高水平的褪黑素,但是隨著花發(fā)育進(jìn)程的推進(jìn),其褪黑素含量逐漸減少[34]。對于傳統(tǒng)藥用植物甘草而言,褪黑素在3~6個(gè)月植株的根中可以檢測到,但在1個(gè)月植株的根組織中卻檢測不到褪黑素的存在[35]。另外,果實(shí)的成熟程度也對褪黑素的含量存在一定的影響。甜櫻桃果實(shí)發(fā)育第一階段中,其果實(shí)內(nèi)褪黑素的含量約為15 ng/g;第二階段中褪黑素的含量大幅升高至36.6~124.7 ng/g;而在第三階段,褪黑素的含量又下降至10~20 ng/g[36]。番茄果實(shí)成熟分為以下6個(gè)時(shí)期:青熟期、破色期、轉(zhuǎn)色期、粉紅期、淺紅期以及紅熟期,采用高效液相色譜測定番茄不同成熟階段果實(shí)中褪黑素含量發(fā)現(xiàn),青熟期的番茄果實(shí)中褪黑素含量最低,而紅熟期的果實(shí)中含量最高[37]。因此,植物及其果實(shí)所處的不同發(fā)育階段,也是其內(nèi)源褪黑素含量具有差異的原因之一。
隨著科學(xué)技術(shù)的進(jìn)步,越來越多的檢測方法可以應(yīng)用于植物中褪黑素的檢測,包括放射性免疫測定(radioimmunoassay, RIA)、酶聯(lián)免疫吸附檢測(enzyme-linked immunosorbent assay, ELISA)、氣質(zhì)聯(lián)用檢測(gas chromatography-mass spectrometry, GC-MS)、高效液相色譜-電化學(xué)測定(high performance liquid chromatography-electrochemical detection, HPLC-ECD)、高效液相色譜-熒光測定(HPLC-fluorescence detection, HPLC-FD)以及高效液相色譜質(zhì)譜聯(lián)用檢測(HPLC-MS)等。這些方法檢測的結(jié)果依據(jù)提取方法以及檢測的敏感度而有所不同[36]。對于動物樣本而言,可以取其血液或尿液,利用RIA或HPLC來直接測定褪黑素的含量。相較于動物褪黑素測定的簡單直接,植物褪黑素的測定則要復(fù)雜得多。首先要破碎植物組織樣本進(jìn)行褪黑素抽提,由于植物組織中化學(xué)成分復(fù)雜,常含有大量碳水化合物、脂質(zhì)物以及色素等,因此在粗提之后需要進(jìn)一步的純化才能進(jìn)行檢測[38]。有些植物組織材料較大,需要在抽提之前將其干燥,使之更易破碎,但在此過程中,褪黑素的含量就會發(fā)生改變。Murch等以新鮮的、凍干的以及烘干的小白菊葉片作為提取材料,并對其中褪黑素的含量進(jìn)行測定發(fā)現(xiàn),與新鮮葉片相比,凍干葉片及烘干葉片中褪黑素的含量分別減少了15%和30%[39]。另外,在破碎植物組織過程中,會產(chǎn)生高水平的氧化物,如H2O2及一些超氧陰離子,這些氧化物能夠輕易破壞植物中的褪黑素,使之測定產(chǎn)生偏差[40]。由于褪黑素較易粘附在玻璃、聚乙烯聚吡咯烷酮以及尼龍膜等材質(zhì)上,在提取及純化過程中也會出現(xiàn)褪黑素的損失[41]。囿于褪黑素純化技術(shù),用于檢測的植物內(nèi)源褪黑素中或多或少都會含有一些初級或次級代謝產(chǎn)物,這些代謝產(chǎn)物所具有的藥理學(xué)或抗氧化特性,與褪黑素具有較高的相似度或與一些免疫檢測物質(zhì)發(fā)生交叉反應(yīng),均能給RIA、ELISA、HPLC以及與HPLC聯(lián)用的檢測方法帶來一定的誤差[38,42-44]。
為了獲得更加可靠的研究結(jié)果,相關(guān)研究者會將植物樣本的組織特性、生長地點(diǎn)、所處環(huán)境以及成熟程度等因素考慮在內(nèi),從而選擇與之相適應(yīng)的提取純化及檢測方法,減小植物褪黑素的檢測誤差,從而獲得全面和準(zhǔn)確的測量數(shù)據(jù),更加真實(shí)地反映褪黑素在植物中的分布及含量。
褪黑素廣泛存在于植物體中,其功能涉及植物的整個(gè)生長發(fā)育階段,從促進(jìn)種子萌發(fā)到延緩葉片衰老,顯示了其在植物體內(nèi)功能的多效型[45-48]。
3.1.1 調(diào)控營養(yǎng)器官的生長發(fā)育 調(diào)控植物的生長發(fā)育是褪黑素與生長素極為相似的特性。早在2001年,Murch等發(fā)現(xiàn)改變植物內(nèi)源褪黑素的含量并限制褪黑素的轉(zhuǎn)運(yùn),能夠抑制生長素誘導(dǎo)的根的發(fā)生和細(xì)胞分裂素誘導(dǎo)的芽的生長,并據(jù)此提出褪黑素有可能是一種潛在的植物生長調(diào)節(jié)物質(zhì)的假說[49-50]。此后,大量的研究證實(shí)了該假說的真實(shí)性。以黃化的羽扇豆為材料,將其下胚軸浸入一系列濃度梯度的褪黑素和生長素溶液中,低濃度的褪黑素和生長素均能夠促進(jìn)羽扇豆下胚軸的伸長,而高濃度的兩種激素則表現(xiàn)出生長抑制效應(yīng)[51]。類似的研究結(jié)果在一些單子葉植物中也有報(bào)道。以生長素對胚芽鞘生長的促進(jìn)作用作為對照(100%),褪黑素對燕麥胚芽鞘生長的促進(jìn)作用為10%,小麥的為20%,加納利虉草的為32%,大麥的為55%。在高濃度褪黑素條件下,單子葉植物也出現(xiàn)生長受阻的現(xiàn)象[52]。此外,褪黑素還能夠促進(jìn)植物側(cè)根和不定根的形成,但對主根的生長及根毛的發(fā)育,影響效果不甚明顯[53],且該結(jié)論已在甜櫻桃[54]、石榴[55]、番茄[56]等植物中得到了驗(yàn)證。褪黑素在植物芽的生長過程中也發(fā)揮著重要作用。同時(shí)使用吲哚乙酸、吲哚丁酸以及褪黑素對藍(lán)莓芽體進(jìn)行體外培養(yǎng),發(fā)現(xiàn)褪黑素和吲哚乙酸效果更為相似,且均優(yōu)于吲哚丁酸,能夠促進(jìn)藍(lán)莓腋芽及不定芽的形成[57]。使用100 μmol/L褪黑素處理含羞草外植體,能夠促進(jìn)70%的外植體進(jìn)行芽的增殖;若使用褪黑素及5 mmol/L的Ca2+進(jìn)行處理,75%~80%的外植體均能夠發(fā)生芽體增殖,說明褪黑素有可能是通過Ca2+途徑來促進(jìn)芽的生長與增殖[58]。目前,褪黑素的生長促進(jìn)活性在越來越多的植物中得到了證實(shí),包括水稻[59]、辣椒[60]、黑麥草[61]、黃瓜[62]以及豆類作物[63]等。
3.1.2 調(diào)控生殖器官的生長發(fā)育 據(jù)已有報(bào)道,褪黑素在調(diào)控植物開花、生殖器官發(fā)育等方面也發(fā)揮著重要作用。在日落之前以及半夜對短日照植物紅葉藜外源施加褪黑素處理,能夠明顯減少紅葉藜的開花數(shù)量[64]。在此之前,Wolf等研究指出紅葉藜體內(nèi)的褪黑素水平會隨著光照時(shí)間的長短而發(fā)生變化,證明了內(nèi)源褪黑素能夠調(diào)控開花的假說[30]。在水稻中轉(zhuǎn)入SNAT基因,能夠增加轉(zhuǎn)基因株系體內(nèi)褪黑素含量,進(jìn)而影響植株的開花時(shí)間和谷物產(chǎn)量,再次證實(shí)褪黑素能夠影響植物的開花,且這種效應(yīng)可能普遍存在于植物界中[45]。植物的生殖活動是其生命延續(xù)的保證,因此植物的生殖器官是十分重要的,但又是十分脆弱的。過長的休眠以及快速的生長和發(fā)育均能夠改變植物生殖器官中的氧化環(huán)境,如果沒有相應(yīng)的保護(hù)機(jī)制,勢必會導(dǎo)致植物的生殖活動失敗[34,65]。研究發(fā)現(xiàn),在發(fā)育中的花和種子中存在有高濃度的褪黑素,充當(dāng)著保護(hù)生殖器官的角色,該結(jié)論已在羽扇豆[66]、貫葉連翹[67]、蘋果[68]、葡萄[69]以及番茄[70]中得到了證實(shí),且其在生殖器官中的含量遠(yuǎn)遠(yuǎn)高于營養(yǎng)器官。除了保護(hù)作用之外,褪黑素與赤霉酸(gibberellic acid, GA)[71]和脫落酸(abscisic acid, ABA)[72]類似,極有可能作為一種生殖發(fā)育信號存在于植物的生殖器官中。梅洛葡萄中褪黑素的含量隨著葡萄果實(shí)的成熟不斷增加[69];白曼陀羅中褪黑素的含量在花后10 d不斷增加,而此時(shí)的胚珠剛好達(dá)到成熟[34];蘋果果實(shí)中褪黑素的含量高峰出現(xiàn)在果實(shí)生長發(fā)育明顯加快的時(shí)期[68]。另外,在水稻和蘋果中,褪黑素能夠調(diào)控一些與生殖發(fā)育相關(guān)的基因的表達(dá),從而維持植物的正常生殖發(fā)育水平[68,73-74]。
3.1.3 調(diào)控光合效率及葉片衰老 研究證明,褪黑素在增加光合效率、延緩葉片衰老方面亦是功不可沒。與浸在水中的大麥葉片相比,使用不同濃度褪黑素處理后的葉片,其受黑暗誘導(dǎo)的衰老進(jìn)程出現(xiàn)了明顯的放緩跡象,同時(shí)葉綠體的損失亦明顯減少。分別使用激動素和脫落酸處理大麥葉片能夠加速其衰老,但同時(shí)加入褪黑素,受到激動素和脫落酸誘導(dǎo)的葉片衰老速度有所減慢,葉綠體的減少也得到了明顯的抑制[75]。褪黑素的這種抗衰老效應(yīng)在其它植物中也得到了證實(shí),如蘋果[76-77]、水稻[78]、桃[79]、黑麥草[80]、木薯[81]以及擬南芥[82]等。在擬南芥中,褪黑素能夠下調(diào)兩個(gè)葉綠素降解酶(葉綠素酶和脫鎂葉綠酸加氧酶)基因的表達(dá)[82]。在蘋果中,褪黑素能夠抑制一些衰老相關(guān)基因以及脫鎂葉綠酸加氧酶的上調(diào)表達(dá)[76],說明褪黑素在植物葉片衰老過程中起著一定的調(diào)控作用。褪黑素不僅能夠保護(hù)葉綠素不受降解,也能夠減少其它光合色素,如類胡蘿卜素的損失,增加氣孔導(dǎo)度以及CO2的吸收能力,增強(qiáng)植物光合效率,減輕環(huán)境脅迫對光合作用的抑制效應(yīng)[22,83]。近來有文章報(bào)道,褪黑素處理的番茄小苗能夠增加光合系統(tǒng)II的“開放”程度、有效量子產(chǎn)量以及光化學(xué)淬滅系數(shù),從而減輕鹽脅迫對光合系統(tǒng)II電子傳遞鏈的傷害。另外,褪黑素預(yù)處理能夠維持D1蛋白的可利用率,進(jìn)而對鹽脅迫造成的光合系統(tǒng)II的損傷進(jìn)行修復(fù)[84]。Arnao等通過轉(zhuǎn)錄組分析發(fā)現(xiàn),褪黑素能夠上調(diào)一些與光合作用、碳水化合物、脂肪酸代謝以及維生素C合成相關(guān)的基因的表達(dá),暗示著褪黑素在這些生理過程中發(fā)揮著一定的作用[85]。
在動物中,褪黑素已被證明是一種有效的自由基清除劑和廣譜的抗氧化劑[86]。鑒于動物中的研究結(jié)果,褪黑素在植物中被發(fā)現(xiàn)后,關(guān)于其在植物中能否作為抗氧化劑參與植物應(yīng)對外界生物和非生物脅迫的驗(yàn)證工作就很快展開了。最初的研究工作是利用胡蘿卜的懸浮培養(yǎng)細(xì)胞進(jìn)行的,研究者們使用外源褪黑素對懸浮細(xì)胞進(jìn)行處理,發(fā)現(xiàn)受到冷誘導(dǎo)的細(xì)胞凋亡現(xiàn)象明顯減少,并由此提出了褪黑素能夠幫助植物抵抗非生物脅迫的假說[87]。隨后,大量的研究結(jié)果證實(shí)了該假說的真實(shí)性。
3.2.1 增強(qiáng)植物對冷熱脅迫的耐受性 極端的溫度(冷和熱)不僅在宏觀上能夠?qū)е罗r(nóng)作物的減產(chǎn),而且在微觀上能夠影響植物細(xì)胞膜的流動性和體內(nèi)酶活性的高低,進(jìn)而改變植物的生理生化狀態(tài)[88-89]。褪黑素能夠明顯減輕極端溫度對多種植物帶來的不良影響。黃瓜種子使用褪黑素處理之后能夠增強(qiáng)其在寒冷環(huán)境中的萌發(fā)率[90]。使用褪黑素對3 d的綠豆苗進(jìn)行處理,在低溫條件下,處理后的綠豆苗根中脂質(zhì)過氧化物的含量低于對照組,質(zhì)體受到了更好的保護(hù),根部生長受到的負(fù)面影響更小[91]。在預(yù)培養(yǎng)以及再生培養(yǎng)基中加入0.1~0.5 μmol/L的褪黑素能夠增強(qiáng)凍存的美洲榆樹芽外植體的再生[92]。在4 ℃生長條件下,使用褪黑素處理后的擬南芥比對照組具有更好的鮮重、主根以及芽的長度[88]。轉(zhuǎn)化有人類SNAT基因的轉(zhuǎn)基因水稻小苗表現(xiàn)出比野生型更好的抗寒性[93]。法色草種子對光照和高溫十分敏感,強(qiáng)光照和高溫能夠抑制種子的萌發(fā)和生長,褪黑素處理能夠減輕這些抑制效應(yīng)[94]。在高溫條件下,褪黑素處理后的擬南芥種子的萌發(fā)率可以達(dá)到60%左右,明顯高于對照組[95]。褪黑素能夠增強(qiáng)植物對極端溫度的耐受性,同時(shí),冷熱脅迫也能夠增加植物內(nèi)源褪黑素的水平。分別將羽扇豆種植在6 ℃和24 ℃條件下,一段時(shí)間后測定其體內(nèi)褪黑素的含量,發(fā)現(xiàn)6 ℃條件下生長的羽扇豆中內(nèi)源褪黑素的含量是24 ℃的2.5倍[96]。在高溫條件下,水稻和綠藻中褪黑素的水平均有所升高[31,97]。由此再次證明,褪黑素能夠增強(qiáng)植物對冷熱環(huán)境的耐受性。
3.2.2 增強(qiáng)植物對滲透脅迫的耐受性 外界環(huán)境鹽度過高或干旱均會對植物造成滲透脅迫,進(jìn)而引起水分缺失,而且會擾亂植物細(xì)胞中的生化進(jìn)程,從而影響植物正常的生長發(fā)育[98]。使用褪黑素對植物進(jìn)行預(yù)處理,能夠有效減緩或逆轉(zhuǎn)這些不良影響。使用褪黑素對45 d的蘋果小苗進(jìn)行處理,之后置于高鹽環(huán)境下生長,處理組的嫩芽高度、葉片數(shù)量、葉綠素含量以及電解質(zhì)泄漏率等參數(shù)均優(yōu)于未使用褪黑素處理的對照組;另外,處理組植株中H2O2含量明顯低于對照組,活性氧代謝相關(guān)酶類,如抗壞血酸過氧化物酶、過氧化氫酶等的活性受到誘導(dǎo),Na+、K+轉(zhuǎn)運(yùn)體相關(guān)基因的表達(dá)得到上調(diào),從而減輕鹽脅迫帶來的生長抑制效應(yīng)[99]。在黃瓜種子播種之前進(jìn)行褪黑素處理,能夠大幅提高種子中抗氧化酶的活性,進(jìn)而促進(jìn)種子在鹽脅迫條件下的萌發(fā)效率及后續(xù)的生長[100]。在干旱條件下,使用褪黑素對蘋果葉片進(jìn)行預(yù)處理,處理后的葉片中ABA含量是未處理葉片的一半左右,同時(shí),與ABA代謝相關(guān)的一些酶類的活性也受到了不同程度的上調(diào)或下調(diào),而由褪黑素處理所引起的ABA含量降低能夠促進(jìn)氣孔保持合適的孔徑,從而更好地應(yīng)對干旱脅迫[101]。在櫻桃芽尖外植體培養(yǎng)基中加入適量褪黑素,經(jīng)過一段時(shí)間的培養(yǎng),櫻桃外植體中脯氨酸含量是對照組的5倍,總碳水化合物含量是對照組的3~4倍,這些物質(zhì)的積累能夠增加櫻桃外植體對滲透脅迫的耐受力[102]。對過量表達(dá)羊SNAT和HIOMT基因的轉(zhuǎn)基因番茄進(jìn)行干旱處理,20 d之后對轉(zhuǎn)基因和對照組植株澆水,轉(zhuǎn)基因植株恢復(fù)生長,而對照組植株全部死亡;另外在干旱條件下,對照組植株葉片的失水速率明顯高于轉(zhuǎn)基因植株,這可能是導(dǎo)致對照組植株死亡的原因之一[103]。使用適宜濃度的褪黑素溶液浸泡大豆種子能夠優(yōu)化后續(xù)一系列的生長參數(shù),如小苗生長情況、葉片大小、植株高度、生物質(zhì)含量、莢果以及種子數(shù)量等,并能夠增強(qiáng)植株對鹽和干旱脅迫的抗性[48]。外源施加褪黑素對狗牙根進(jìn)行處理,能夠激活狗牙根的內(nèi)在保護(hù)機(jī)制,使其更好地應(yīng)對外界的滲透脅迫[104]。近年來,類似的研究結(jié)果在酸橙[105]、向日葵[106]、輪藻[107]、葡萄[108]中亦有獲得。
3.2.3 增強(qiáng)植物對氧化脅迫的耐受性 動物中,褪黑素的抗氧化活性使其能夠應(yīng)對各種氧化脅迫[109]。當(dāng)植物處于氧化脅迫時(shí),如紫外線照射、土壤重金屬污染等,褪黑素仍然能夠起到保護(hù)的作用。紫外輻射能夠破壞植物體內(nèi)的生物大分子,如DNA和蛋白質(zhì),從而產(chǎn)生活性氧物質(zhì),阻礙細(xì)胞的正常生理活性[110]。生長在高山和地中海地區(qū)的植物經(jīng)常暴露在大量的紫外線照射之下,它們體內(nèi)的褪黑素含量遠(yuǎn)遠(yuǎn)高于生長在低紫外輻射地區(qū)的同種植物[111]。類似的結(jié)果在甘草中也有所體現(xiàn),與低強(qiáng)度紫外線相比,使用高強(qiáng)度的紫外線照射甘草,能夠更加有效地刺激植株體內(nèi)褪黑素水平的提高[35]。另外,在藻類和一些高等植物中,褪黑素能夠?yàn)橹仓晏峁┕獗Wo(hù),從而減輕或消除紫外線帶來的負(fù)面效應(yīng)[28,112]。由此,相關(guān)研究者認(rèn)為紫外輻射能夠促進(jìn)植物體內(nèi)褪黑素的合成,而增加的褪黑素含量則能夠保護(hù)植物免受由紫外線帶來的氧化自由基損害[44,113]。土壤中的重金屬離子,如銅、鋅等,是植物維持正常生長狀態(tài)所必需的,但是過量的重金屬離子不僅能夠破壞蛋白的結(jié)構(gòu)和活性,而且能夠引發(fā)對生物大分子的氧化傷害[114]。從已有的報(bào)道來看,褪黑素能夠有效保護(hù)植物免受重金屬離子的傷害。在播種之前使用褪黑素處理紅球甘藍(lán)的種子,能夠抑制銅離子在種子萌發(fā)及小苗早期生長中的毒副作用[115]。土壤中的銅離子對豌豆種子具有致命的傷害,但在土壤中加入適量的褪黑素后,明顯增強(qiáng)了豌豆種子對重金屬污染的耐受力并增加了其存活率[116]。另外,使用硫酸鋅處理大麥,與對照組相比,處理組根中的褪黑素含量增加了6倍,意味著褪黑素在植物面對重金屬脅迫時(shí)具有一定的保護(hù)作用[117]。水葫蘆能夠清理水體中的重金屬離子,有研究者認(rèn)為這與其體內(nèi)高水平的褪黑素含量相關(guān)[28,118]。
3.2.4 增強(qiáng)植物對病菌脅迫的耐受性 植物病菌能夠引發(fā)農(nóng)業(yè)產(chǎn)量和經(jīng)濟(jì)損失,通過各種策略來預(yù)防和控制植物病菌已成為農(nóng)業(yè)生產(chǎn)的重中之重。近年來,褪黑素在植物生物脅迫中的應(yīng)用越發(fā)受到重視。使用不同濃度的褪黑素溶液對蘋果樹進(jìn)行灌根,能夠有效增強(qiáng)蘋果樹對蘋果褐斑病的抗性;處理后的蘋果樹受害葉片更少,葉片中葉綠素含量更高,落葉更少[119]。Arnao等研究發(fā)現(xiàn),不同濃度的褪黑素能夠抑制多種植物真菌性病原菌的活性,如鏈格孢菌、葡萄孢菌、鐮刀霉菌等。另外,褪黑素還能夠降低青霉菌侵染羽扇豆種子的速率[85]。褪黑素能夠大幅降低丁香假單胞菌侵染擬南芥葉片后的毒力,使用褪黑素處理擬南芥和煙草葉片,能夠誘導(dǎo)多種發(fā)病機(jī)理相關(guān)基因及水楊酸、茉莉酸、乙烯參與的植物防御應(yīng)答途徑中相關(guān)基因的表達(dá)。值得注意的是褪黑素對防御基因的快速誘導(dǎo)僅需0.5 h,而在處理3 h后,基因的表達(dá)就達(dá)到了高峰[120]。此外,在SNAT的擬南芥突變體植株中發(fā)現(xiàn),隨著內(nèi)源褪黑素的減少,水楊酸的水平也有所下降,一些防御基因的表達(dá)受到強(qiáng)烈抑制[121]。通過對多種擬南芥突變體的研究發(fā)現(xiàn),褪黑素位于防御基因信號途徑以及水楊酸、茉莉酸、乙烯合成途徑的上游,它們共同作用形成植物的抗病網(wǎng)絡(luò)[122]。近年來已有報(bào)道,絲裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)能夠參與植物應(yīng)答ABA信號的途徑中,而褪黑素介導(dǎo)的植物先天免疫反應(yīng)需要絲裂原活化蛋白激酶信號級聯(lián)途徑參與其中,暗示著褪黑素可能與茉莉酸及ABA協(xié)作,充當(dāng)著植物免疫反應(yīng)的信號分子[123-126]。
在過去的20年時(shí)間里,已有數(shù)百篇與褪黑素研究相關(guān)的文獻(xiàn)得到了發(fā)表,這些文章不僅擴(kuò)展了褪黑素的研究物種,而且鑒定了褪黑素的代謝途徑及大量的生理功能。即便如此,仍有許多未知之處有待闡明。由于褪黑素的理化性質(zhì)并不十分穩(wěn)定,因此其在植物組織器官中的合成部位及運(yùn)輸情況尚不明確。盡管Tan等通過研究指出,線粒體和葉綠體有可能是褪黑素合成的主要細(xì)胞器[127],但支持該假說的證據(jù)有限,褪黑素確切的合成位置仍屬未知;褪黑素合成途徑中有許多同工酶,不同植物以及同一植物不同組織器官中不同含量的褪黑素與這些同工酶之間的關(guān)系仍需進(jìn)一步闡明;褪黑素在植物中具有多種功能,但目前植物中褪黑素受體及結(jié)合位點(diǎn)仍然不清楚。動物中褪黑素受體的各種亞型已得到認(rèn)定,與之相關(guān)的基因亦被測序[128],因此植物細(xì)胞中特異的褪黑素受體以及信號傳導(dǎo)將會是未來褪黑素研究的重要方面。將動物中與褪黑素合成相關(guān)的基因轉(zhuǎn)入植物當(dāng)中已能夠穩(wěn)定表達(dá)并提升植物當(dāng)中的褪黑素水平,鑒于褪黑素對人畜無害,且適量攝入具有一定的保健作用,未來,褪黑素相關(guān)的轉(zhuǎn)基因植物,尤其是農(nóng)作物可能得到廣泛研究,此舉不僅能夠提高植物本身抵抗外界生物和非生物脅迫的能力,減少化學(xué)制劑及殺蟲劑的使用,確保作物的產(chǎn)量和質(zhì)量,而且能夠獲得一些超富集植物品種,一方面用于藥用褪黑素的提取,另一方面可以作為土壤、水體污染的“清潔工”,清除重金屬離子等有毒物質(zhì)。將來,褪黑素作為一種新型植物生長調(diào)節(jié)物質(zhì),在農(nóng)業(yè)及環(huán)境保護(hù)中必定具有廣闊的應(yīng)用空間和應(yīng)用前景。
參考文獻(xiàn):
[1] Lerner A B, Case J D, Takahashi Y, et al. Isolation of melatonin, a pineal factor that lightens melanocytes [J]. Journal of the American Chemical Society, 1958, 80(10): 2587.
[2] Reiter R J. Pineal melatonin: cell biology of its synthesis and of its physiological interactions [J]. Endocrine Reviews, 1991, 12(2): 151-180.
[3] Tan D X, Hardeland R, Back K, et al. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species [J]. Journal of Pineal Research, 2016, 61(1): 27-40.
[4] Wei Y, Zeng H, Hu W, et al. Comparative transcriptional profiling of melatonin synthesis and catabolic genes indicates the possible role of melatonin in development and stress responses in rice [J]. Frontiers in Plant Science, 2016, 7: 676.
[5] Pandi-Perumal S R, Trakht I, Srinivasan V, et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways [J]. Progress in Neurobiology, 2008, 85(3): 335-353.
[6] Hardeland R, Madrid J A, Tan D X, et al. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling [J]. Journal of Pineal Research, 2012, 52(2): 139-166.
[7] Carrillo-Vico A, Lardone P J, Alvarez-Sánchez N, et al. Melatonin: buffering the immune system [J]. International Journal of Molecular Sciences, 2013, 14(4): 8638-8683.
[8] Singh M, Jadhav H R. Melatonin: functions and ligands [J]. Drug Discovery Today, 2014, 19(9): 1410-1418.
[9] Surbhi, Kumari Y, Rani S, et al. Duration of melatonin regulates seasonal plasticity in subtropical Indian weaver bird,Ploceusphilippinus[J]. General and Comparative Endocrinology, 2015, 220: 46-54.
[10] Dubbels R, Reiter R J, Klenke E, et al. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry [J]. Journal of Pineal Research, 1995, 18(1): 28-31.
[11] Hattori A, Migitaka H, Iigo M, et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates [J]. Biochemistry and Molecular Biology International, 1995, 35(3): 627-634.
[12] Murch S J, Krishnaraj S, Saxena P K. Tryptophan is a precursor for melatonin and serotonin biosynthesis ininvitroregenerated St John’s wort(HypericumperforatumL. cv. Anthos) plants [J]. Plant Cell Reports, 2000, 19(7): 698-704.
[13] Radwanski E R, Last R L. Tryptophan biosynthesis and metabolism: biochemical and molecular genetics [J]. Plant Cell, 1995, 7(7): 921-934.
[14] Fujiwara T, Maisonneuve S, Isshiki M, et al. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice [J]. Journal of Biological Chemistry, 2010, 285(15): 11308-11313.
[15] Kang K, Kong K, Park S, et al. Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice [J]. Journal of Pineal Research, 2011, 50(3): 304-309.
[16] Kang K, Lee K, Park S, et al. Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis [J]. Journal of Pineal Research, 2013, 55(1): 7-13.
[17] Park S, Byeon Y, Back K. Functional analyses of three ASMT gene family members in rice plants [J]. Journal of Pineal Research, 2013, 55(4): 409-415.
[18] Byeon Y, Back K. Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions [J]. Journal of Pineal Research, 2016, 60(3): 348-359.
[19] Byeon Y, Lee H Y, Lee K, et al. Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin inArabidopsis[J]. Journal of Pineal Research, 2014, 57(2): 219-227.
[20] Lee H Y, Byeon Y, Lee K, et al. Cloning ofArabidopsisserotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonininvitrodespite their different subcellular localizations [J]. Journal of Pineal Research, 2014, 57(4): 418-426.
[21] Byeon Y, Back K. Melatonin production inEscherichiacoliby dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase [J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6683-6691.
[22] Arnao M B, Hernández-Ruiz J. Melatonin: plant growth regulator and/or biostimulator during stress? [J]. Trends in Plant Science, 2014, 19(12): 789-797.
[23] Ramakrishma A, Giridhart P, Sankar K U, et al. Endogenous profiles of indoleamines: serotonin and melatonin in different tissues ofCoffeacanephoraP ex Fr. as analyzed by HPLC and LC-MS-ESI [J]. Acta Physiologiae Plantarum, 2012, 34(1): 393-396.
[24] Posmyk M M, Janas K M. Melatonin in plants [J]. Acta Physiologiae Plantarum, 2009, 31(1): 1.
[25] Fernandez-Mar M I, Mateos R, Garcia-Perilla M C, et al. Bioactive compounds in wine: resveratrol, hydroxytyrosol and melatonin: a review [J]. Food Chemistry, 2012, 130(4): 797-813.
[26] Zohar R, Izhaki I, Koplovich A, et al. Phytomelatonin in the leaves and fruits of wild perennial plants [J]. Phytochemistry Letters, 2011, 4(3): 222-226.
[27] Wang J, Liang C, Li S, et al. Study on analysis method of melatonin and melatonin content in corn and rice seeds [J]. Chinese Agricultural Science Bulletin, 2009, 25: 20-24.
[28] Tan D X, Manchester L C, Di M P, et al. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation [J]. FASEB Journal, 2007, 21(8): 1724-1729.
[29] Kolar J, Machackova I, Eder J, et al. Melatonin: occurrence and daily rhythm inChenopodiumrubrum[J]. Phytochemistry, 1997, 44(8): 1407-1413.
[30] Wolf K, Kolar J, Witters E, et al. Daily profile of melatonin levels inChenopodiumrubrumL. depends on photoperiod [J]. Journal of Plant Physiology, 2001, 158(11): 1491-1493.
[31] Byeon Y, Back K. Melatonin synthesis in rice seedlingsinvivois enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities [J]. Journal of Pineal Research, 2014, 56(2): 189-195.
[32] Riga P, Medina S, García-Flores L A, et al. Melatonin content of pepper and tomato fruits: effects of cultivar and solar radiation [J]. Food Chemistry, 2014, 156: 347-352.
[33] Zhao Y, Tan D X, Lei Q, et al. Melatonin and its potential biological functions in the fruits of sweet cherry [J]. Journal of Pineal Research, 2013, 55(1): 79-88.
[34] Murch S J, Alan A R, Cao J, et al. Melatonin and serotonin in flowers and fruits ofDaturametelL. [J]. Journal of Pineal Research, 2009, 47(3): 277-283.
[35] Afreen F, Zobayed S M, Kozai T. Melatonin inGlycyrrhizauralensis: response of plant roots to spectral quality of light and UV-B radiation [J]. Journal of Pineal Research, 2006, 41(2): 108-115.
[36] Feng X, Wang M, Zhao Y, et al. Melatonin from different fruit sources, functional roles, and analytical methods [J]. Trends in Food Science & Technology, 2014, 37(1): 21-31.
[37] Van Tassel D L, Roberts N, Lewy A, et al. Melatonin in plant organs [J]. Journal of Pineal Research, 2001, 31(1): 8-15.
[38] Van Tassel D L, O’Neill S D. Putative regulatory molecules in plants: evaluating melatonin [J]. Journal of Pineal Research, 2001, 31(1): 1-7.
[39] Murch S J, Simmons C B, Saxena P K. Melatonin in feverfew and other medicinal plants [J]. Lancet, 1997, 350(9091): 1598-1599.
[40] Poeggeler B, Hardeland R. Detection and quantification of melatonin in a dinoflagellate,Gonyaulaxpolyedra. Solutions to the problem of methoxyindole destruction in non-vertebrate material [J]. Journal of Pineal Research, 1994, 17(1): 1-10.
[41] Van Tassel D L. Identification and quantification of melatonin in higher plants [D]. California: University of California, 1997.
[42] Caniato R, Pilippini R, Piovan A, et al. Melatonin in plants [J]. Advances in Experimental Medicine and Biology, 2003, 527: 593-597.
[43] Hardeland R, Poeggeler B. Non-vertebrate melatonin [J]. Journal of Pineal Research, 2003, 34(4): 233-241.
[44] Kolar J, Machackova I. Melatonin in higher plants: occurrence and possible functions [J]. Journal of Pineal Research, 2005, 39(4): 333-341.
[45] Byeon Y, Back K. An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield [J]. Journal of Pineal Research, 2014, 56(4): 408-414.
[46] Byeon Y, Lee H Y, Lee K, et al. Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT [J]. Journal of Pineal Research, 2014, 56(1): 107-114.
[47] Chan Z, Shi H. Improved abiotic stress tolerance of bermudagrass by exogenous melatonin [J]. Plant Signaling & Behavior, 2015, 10(3): e991577.
[48] Wei W, Li Q T, Chu Y N, et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants [J]. Journal of Experimental Botany, 2015, 66(3): 695-707.
[49] Murch S J, Campbell S S, Saxena P K. The role of serotonin and melatonin in plant morphogenesis: regulation of auxin-induced root organogenesis ininvitro-cultured explants of St John’s wort(HypericumperforatumL.) [J]. In Vitro Cellular & Developmental Biology-Plant, 2001, 37(6): 786-793.
[50] Murch S J, Saxena P K. Melatonin: a potential regulator of plant growth and development? [J]. In Vitro Cellular & Developmental Biology-Plant, 2002, 38(6): 531-536.
[51] Hernández-Ruiz J, Cano A, Arnao M B. Melatonin: a growth-stimulating compound present in lupin tissues [J]. Planta, 2004, 220(1): 140-144.
[52] Hernández-Ruiz J, Cano A, Arnao M B. Melatonin acts as a growth-stimulating compound in some monocot species [J]. Journal of Pineal Research, 2005, 39(2): 137-142.
[53] Pelagio-Flores R, Muoz-Parra E, Ortiz-Castro R, et al. Melatonin regulatesArabidopsisroot system architecture likely acting independently of auxin signaling [J]. Journal of Pineal Research, 2012, 53(3): 279-288.
[54] Sarropoulou V N, Therios I N, Dimassi-Theriou K N. Melatonin promotes adventitious root regeneration ininvitroshoot tip explants of the commerical sweet cherry rootstocks CAB-6P(PrunuscerasusL.), Gisela 6(P.cerasus×P.canescens), and MxM 60(P.avium×P.mahaleb) [J]. Journal of Pineal Research, 2012, 52(1): 38-46.
[55] Sarrou E, Therios I, Dimassi-Theriou K. Melatonin and other factors that promote rooting and sprouting of shoot cuttings inPunicagranatumcv. Wonderful [J]. Turkish Journal of Botany, 2014, 38(2): 293-301.
[56] Wen D, Gong B, Sun S, et al. Promoting roles of melatonin in adventitious root development ofSolanumlycopersicumL. by regulating auxin and nitric oxide signaling [J]. Frontiers in Plant Science, 2016, 7: 718.
[57] Litwinczuk W, Wadas-Boron M. Development of highbush blueberry(VacciniumcorymbosumHort. non L.)invitroshoot cultures under the influence of melatonin [J]. Acta Scientiarum Polonorum-Hortorum Cultus, 2009, 8(3): 3-12.
[58] Ramakrishna A, Giridhar P, Ravishankar G A. Indoleamines and calcium channels influence morphogenesis ininvitrocultures ofMimosapudicaL. [J]. Plant Signaling & Behavior, 2009, 4(12): 1136-1141.
[59] Han Q H, Huang B, Ding C B, et al. Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings [J]. Frontiers in Plant Science, 2017, 8: 785.
[60] Korkmaz A, Karakas A, Kocacinar F, et al. The effects of seed treatment with melatonin on germination and emergence performance of pepper seeds under chilling stress [J]. Journal of Agricultural Sciences, 2017, 23(2): 167-176.
[61] Zhang J, Shi Y, Zhang X, et al. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass(LoliumperenneL.) [J]. Enviromental & Experimental Botany, 2017, 138: 36-45.
[62] Zhang R, Sun Y, Liu Z, et al. Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress [J]. Journal of Pineal Research, 2017, 62(4): e12403.
[63] Aguilera Y, Herrera T, Liébana R, et al. Impact of melatonin enrichment during germination of legumes on bioactive compounds and antioxidant activity [J]. Journal of Agricultural & Food Chemistry, 2015, 63(36): 7967-7974.
[64] Kolar J, Johnson C H, Machackova I. Exogenously applied melatonin(N-acetyl-5-methoxytryptamine) affects flowering of the short-day plantChenopodiumrubrum[J]. Physiologia Plantarum, 2003, 118(4): 605-612.
[65] Manchester L C, Tan D X, Reiter R J, et al. High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection [J]. Life Sciences, 2000, 67(25): 3023-3029.
[66] Hernández-Ruiz J, Arnao M B. Distribution of melatonin in different zones of lupin and barley plants at different ages in the presence and absence of light [J]. Journal of Agricultural & Food Chemistry, 2008, 56(22): 10567-10573.
[67] Murch S J, Saxena P K. Mammalian neurohormones: potential significance in reproductive physiology of St. John’s wort(HypericumperforatumL.)? [J]. Naturwissenschaften, 2002, 89(12): 555-560.
[68] Lei Q, Wang L, Tan D X, et al. Identification of genes for melatonin synthetic enzymes in “Red Fuji” apple (MalusdomesticaBorkh. cv. Red) and their expression and melatonin production during fruit development [J]. Journal of Pineal Research, 2013, 55(4): 443-451.
[69] Murch S J, Hall B A, Le C H, et al. Changes in the levels of indoleamine phytochemicals during veraison and ripening of wine grapes [J]. Journal of Pineal Research, 2010, 49(1): 95-100.
[70] Okazaki M, Ezura H. Profiling of melatonin in the model tomato (SolanumlycopersicumL.) cultivar Micro-Tom [J]. Journal of Pineal Research, 2009, 46(3): 338-343.
[71] 陳錦永,方金豹,顧紅,等.環(huán)剝和GA處理對紅地球葡萄果實(shí)性狀的影響[J].果樹學(xué)報(bào),2005,22(6):610-614.
[72] 陳錦永,顧紅,趙長竹,等.ABA促進(jìn)巨峰葡萄著色和成熟試驗(yàn)簡報(bào)[J].中外葡萄與葡萄酒,2010(1):43-44.
[73] Byeon Y, Park S, Kim Y S, et al. Microarray analysis of genes differentially expressed in melatonin-rich transgenic rice expressing a sheep serotonin N-acetyltransferase [J]. Journal of Pineal Research, 2013, 55(4): 357-363.
[74] Park S, Le T, Byeon Y, et al. Transient induction of melatonin biosynthesis in rice(OryzasativaL.) during the reproductive stage [J]. Journal of Pineal Research, 2013, 55(1): 40-45.
[75] Arnao M B, Hernández-Ruiz J. Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves [J]. Journal of Pineal Research, 2009, 46(1): 58-63.
[76] Wang P, Yin L, Liang D, et al. Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle [J]. Journal of Pineal Research, 2012, 53(1): 11-20.
[77] Wang P, Sun X, Li C, et al. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple [J]. Journal of Pineal Research, 2013, 54(3): 292-302.
[78] Liang C, Zheng G, Li W, et al. Melatonin delays leaf senescence and enhances salt stress tolerance in rice [J]. Journal of Pineal Research, 2015, 59(1): 91-101.
[79] Gao H, Zhang Z K, Chai H K, et al. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit [J]. Postharvest Biology and Technology, 2016, 118: 103-110.
[80] Zhang J, Li H, Xu B, et al. Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (LoliumperenneL.) [J]. Frontiers in Plant Science, 2016(7): 1500.
[81] Hu W, Kong H, Guo Y, et al. Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava [J]. Frontiers in Plant Science, 2016(7): 736.
[82] Shi H, Reiter R J, Tan D X, et al. Indole-3-acetic acid inducible 17 positively modulates natural leaf senescence through melatonin-mediated pathway inArabidopsis[J]. Journal of Pineal Research, 2015, 58(1): 26-33.
[83] Weeda S, Zhang N, Zhao X, et al.Arabidopsistranscriptome analysis reveals key roles of melatonin in plant defense systems [J]. Plos One, 2014, 9(3): e93462.
[84] Zhou X, Zhao H, Cao K, et al. Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress [J]. Frontiers in Plant Science, 2016(7): 18-23.
[85] Arnao M B, Hernández-Ruiz J. Functions of melatonin in plants: a review [J]. Journal of Pineal Research, 2015, 59(2): 133-150.
[86] Tan D X, Reiter R J, Manchester L C, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger [J]. Current Topics in Medicinal Chemistry, 2002, 2(2): 181-197.
[87] Lei X Y, Zhu R Y, Zhang G Y, et al. Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines [J]. Journal of Pineal Research, 2004, 36(2): 126-131.
[88] Bajwa V S, Shukla M R, Sherif S M, et al. Role of melatonin in alleviating cold stress inArabidopsisthaliana[J]. Journal of Pineal Research, 2014, 56(3): 238-245.
[89] Zhang N, Sun Q, Zhang H, et al. Roles of melatonin in abiotic stress resistance in plants [J]. Journal of Pineal Research, 2015, 66(3): 647-656.
[90] Posmyk M M, Balabusta M, Wieczorek M, et al. Melatonin applied to cucumber(CucumissativusL.) seeds improves germination during chilling stress [J]. Journal of Pineal Research, 2009, 46(2): 214-223.
[91] Szafrańska K, Glińska S, Janas K M. Ameliorative effect of melatonin on meristematic cells of chilled and re-warmedVignaradiataroots [J]. Biologia Plantarum, 2013, 57(1): 91-96.
[92] Uchendu E E, Shukla M R, Reed B M, et al. Melatonin enhances the recovery of cryopreserved shoot tips of American elm (UlmusamericanaL.) [J]. Journal of Pineal Research, 2013, 55(4): 435-442.
[93] Kang K, Lee K, Park S, et al. Enhanced production of melatonin by ectopic overexpression of human serotoninN-acetyltransferase plays a role in cold resistance in transgenic rice seedlings [J]. Journal of Pineal Research, 2010, 49(2): 176-182.
[94] Tiryaki I, Keles H. Reversal of the inhibitory effect of light and high temperature on germination ofPhaceliatanacetifoliaseeds by melatonin [J]. Journal of Pineal Research, 2012, 52(3): 332-339.
[95] Hernández I G, Gomez F J, Cerutti S, et al. Melatonin inArabidopsisthalianaacts as plant growth regulator at low concentrations and preserves seed viability at high concentrations [J]. Plant Physiology & Biochemistry, 2015, 94: 191-196.
[96] Arnao M B, Hernández-Ruiz J. Growth conditions determine different melatonin levels inLupinusalbusL. [J]. Journal of Pineal Research, 2013, 55(2): 149-155.
[97] Tal O, Haim A, Harel O, et al. Melatonin as an antioxidant and its semi-lunar rhythm in green macroalgaUlvasp. [J]. Journal of Experimental Botany, 2011, 62(6): 1903-1910.
[98] Allakhverdiev S I, Sakamoto A, Nishiyama Y, et al. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II inSynechococcussp. [J]. Plant Physiology, 2000, 123(3): 1047-1056.
[99] Li C, Wang P, Wei Z, et al. The mitigation effects of exogenous melatonin on salinity-induced stress inMalushupehensis[J]. Journal of Pineal Research, 2012, 53(3): 298-306.
[100] Zhang H J, Zhang N, Yang R C, et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4interaction in cucumber (CucumissativusL.) [J]. Journal of Pineal Research, 2014, 57(3): 269-279.
[101] Li C, Tan D X, Liang D, et al. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behavior in twoMalusspecies under drought stress [J]. Journal of Experimental Botany, 2015, 66(3): 669-680.
[102] Sarropoulou V, Dimassi-Theriou K, Therios I, et al. Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C(Prunusavium×Prunuscerasus) [J]. Plant Physiology and Biochemistry, 2012, 61: 162-168.
[103] Wang L, Zhao Y, Reiter R J, et al. Changes in melatonin levels in transgenic ‘Micro-Tom’ tomato overexpressing ovineAANATand ovineHIOMTgenes [J]. Journal of Pineal Research, 2014, 56(2): 134-142.
[104] Shi H, Jiang C, Ye T, et al. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodondactylon(L). Pers.] by exogenous melatonin [J]. Journal of Experimental Botany, 2015, 66(3): 681-694.
[105] Kostopoulou Z, Therios I, Roumeliotis E, et al. Melatonin combined with ascorbic acid provides salt adaptation inCitrusaurantiumL. seedlings [J]. Plant Physiology & Biochemistry, 2015, 86: 155-165.
[106] Mukherjee S, David A, Yadav S, et al. Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons [J]. Physiologia Plantarum, 2014, 152(4): 714-728.
[107] Beilby M J, AI Khazaaly S, Bisson M A. Salinity-induced noise in membrane potential of CharaceaeCharaaustralis: effect of exogenous melatonin [J]. Journal of Membrane Biology, 2015, 248(1): 93-102.
[108] Meng J F, Xu T F, Wang Z Z, et al. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology [J]. Journal of Pineal Research, 2014, 57(2): 200-212.
[109] Wang H, Li L, Zhao M, et al. Melatonin alleviates lipopolysaccharide-induced placental cellular stress response in mice [J]. Journal of Pineal Research, 2011, 50(4): 418-426.
[110] Foyer C, Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context [J]. Plant Cell & Enviroment, 2005, 28(8): 1056-1071.
[111] Tettamanti C, Cerabolini B, Gerola P, et al. Melatonin identification in medicinal plants [J]. Acta Phytotherapeutica, 2000(3): 137-144.
[112] Hardeland R. New actions of melatonin and their relevance to biometeorology [J]. International Journal of Biometeorology, 1997, 41(2): 47-57.
[113] Reiter R J, Tan D X. Melatonin: an antioxidant in edible plants [J]. Annals of the New York Academy of Sciences, 2002, 957(1): 341-344.
[114] Hall J. Cellular mechanisms for heavy metal detoxification and tolerance [J]. Journal of Experimental Botany, 2002, 53(366): 1-11.
[115] Posmyk M M, Kuran H, Marciniak K, et al. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations [J]. Journal of Pineal Research, 2008, 45(1): 24-31.
[116] Tan D X, Manchester L C, Helton P, et al. Phytoremediative capacity of plants enriched with melatonin [J]. Plant Signalling and Behavior, 2007, 2(6): 514-516.
[117] Arnao M B, Hernández-Ruiz J. Chemical stress by different agents affects the melatonin content of barley roots [J]. Journal of Pineal Research, 2009, 46(3): 295-299.
[118] Riddle S G, Tran H H, Dewitt J G, et al. Field, laboratory, and X-ray absorption spectroscopic studies of mercury accumulation by water hyacinths [J]. Environmental Science and Technology, 2002, 36(9): 1965-1970.
[119] Yin L, Wang P, Li M, et al. Exogenous melatonin improvesMalusresistance toMarssoninaapple blotch [J]. Journal of Pineal Research, 2013, 54(4): 426-434.
[120] Lee H Y, Byeon Y, Back K. Melatonin as a signal molecule triggering defense responses against pathogen attack inArabidopsisand tobacco [J]. Journal of Pineal Research, 2014, 57(3): 262-268.
[121] Lee H Y, Byeon Y, Tan D X, et al.Arabidopsisserotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen [J]. Journal of Pineal Research, 2015, 58(3): 291-299.
[122] Zhu Z, Lee B. Friends or foes: new insights in jasmonate and ethylene co-actions [J]. Plant & Cell Physiology, 2015, 56(3): 414-420.
[123] Zhang J, Zou D, Li Y, et al. GhMPK17, a cotton mitogen-activated protein kinase, is involved in plant response to high salinity and osmotic stresses and ABA signaling [J]. Plos One, 2014, 9(4): e95642.
[124] Lee H Y, Back K. Mitogen-activated protein kinase pathways are required for melatonin -mediated defense responses in plants [J]. Journal of Pineal Research, 2016, 60(3): 327-335.
[125] Lee H Y, Back K. Melatonin is required for H2O2- and NO-mediated defense signalling through MAPKKK3 and OXI1 inArabidopsisthaliana[J]. Journal of Pineal Research, 2017, 62(2).
[126] Shyu C, Brutnell T P. Growth-defence balance in grass biomass production: the role of jasmonates [J]. Journal of Experimental Botany, 2015, 66(14): 4165-4176.
[127] Tan D X, Manchester L C, Liu X Y, et al. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes [J]. Journal of Pineal Research, 2013, 54(2): 127-138.
[128] Von Gall C, Stehle J, Weaver D. Mammalian melatonin receptors: molecular biology and signal transduction [J]. Cell & Tissue Research, 2002, 309(1): 151-162.