• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      小麥株高及其構(gòu)成因子QTL定位研究

      2018-01-05 02:38:28左文松侯大斌
      關(guān)鍵詞:穗長(zhǎng)株高區(qū)段

      余 馬,張 洪,左文松,李 明,侯大斌*

      (1.西南科技大學(xué)生命科學(xué)與工程學(xué)院,四川綿陽(yáng) 621010;2.四川農(nóng)業(yè)大學(xué)小麥研究所,成都 611130;3.瀘州市古藺縣農(nóng)業(yè)局,四川瀘州 646500;4.綿陽(yáng)市三臺(tái)縣立新鎮(zhèn)人民政府,四川三臺(tái) 621101)

      小麥株高及其構(gòu)成因子QTL定位研究

      余 馬1,2,張 洪1,左文松3,李 明4,侯大斌1*

      (1.西南科技大學(xué)生命科學(xué)與工程學(xué)院,四川綿陽(yáng) 621010;2.四川農(nóng)業(yè)大學(xué)小麥研究所,成都 611130;3.瀘州市古藺縣農(nóng)業(yè)局,四川瀘州 646500;4.綿陽(yáng)市三臺(tái)縣立新鎮(zhèn)人民政府,四川三臺(tái) 621101)

      【目的】系統(tǒng)剖析小麥株高與穗長(zhǎng)及各莖節(jié)間長(zhǎng)的遺傳關(guān)系。【方法】利用包含有110個(gè)株系的ITMI重組自交系群體,和已構(gòu)建的高密度遺傳連鎖圖譜對(duì)小麥株高、穗長(zhǎng)及各莖節(jié)間長(zhǎng)進(jìn)行了QTL定位。【結(jié)果】?jī)蓚€(gè)參試環(huán)境共檢測(cè)到株高相關(guān)位點(diǎn)10個(gè),穗長(zhǎng)相關(guān)位點(diǎn)14個(gè),倒一節(jié)間長(zhǎng)相關(guān)位點(diǎn)19個(gè),倒二節(jié)間長(zhǎng)相關(guān)位點(diǎn)15個(gè),倒三節(jié)間長(zhǎng)相關(guān)位點(diǎn)17個(gè),倒四節(jié)間長(zhǎng)相關(guān)位點(diǎn)14個(gè),倒五節(jié)間長(zhǎng)相關(guān)位點(diǎn)22個(gè),莖節(jié)數(shù)相關(guān)位點(diǎn)14個(gè)。所有位點(diǎn)中,2個(gè)株高相關(guān)位點(diǎn),4個(gè)穗長(zhǎng)相關(guān)位點(diǎn),4個(gè)倒五節(jié)間長(zhǎng)相關(guān)位點(diǎn),4個(gè)倒四節(jié)間長(zhǎng)相關(guān)位點(diǎn),2個(gè)倒三節(jié)間長(zhǎng)相關(guān)位點(diǎn),1個(gè)倒二節(jié)間長(zhǎng)相關(guān)位點(diǎn),2個(gè)倒一節(jié)間長(zhǎng)相關(guān)位點(diǎn),2個(gè)莖節(jié)數(shù)相關(guān)位點(diǎn)在兩個(gè)環(huán)境中都被檢測(cè)到?!窘Y(jié)論】共挖掘到125個(gè)與株高及各莖節(jié)間長(zhǎng)相關(guān)的QTL位點(diǎn)。

      小麥;株高;穗長(zhǎng);莖節(jié)間長(zhǎng);QTL

      小麥株高是非常重要的農(nóng)藝性狀,該性狀不僅影響植株的形態(tài)結(jié)構(gòu),還關(guān)系到小麥的田間產(chǎn)量。該性狀等于主穗長(zhǎng)與各莖節(jié)間長(zhǎng)的總和,但小麥株高的遺傳調(diào)控機(jī)制并非主穗長(zhǎng)及各莖節(jié)間長(zhǎng)遺傳位點(diǎn)的簡(jiǎn)單疊加[1]。大量的遺傳研究表明,小麥株高是由質(zhì)量基因及微效數(shù)量基因共同控制的復(fù)雜性狀[1-5]。小麥中大多數(shù)矮稈基因已經(jīng)被發(fā)掘并開(kāi)發(fā)出與之緊密連鎖的分子標(biāo)記應(yīng)用于標(biāo)記輔助選擇育種中[1,5-6],其中 Rht-B1、Rht-D1 及 Rht8 矮稈基因在世界范圍內(nèi)應(yīng)用最為廣泛[1]。分別位于4B和4D染色體上的Rht-B1和Rht-D1基因都屬于赤霉素不敏感基因,對(duì)小麥莖節(jié)伸長(zhǎng)有重要影[5];Rht8位于2D染色體上,屬于油菜素類固醇不敏感基因[7];攜帶Rht8矮稈位點(diǎn)的導(dǎo)入系比對(duì)照株系株高矮化,穗長(zhǎng)變短,小穗數(shù)無(wú)變化,從而產(chǎn)生密穗型表型[8]。

      隨著小麥基因組學(xué)研究技術(shù)及分子標(biāo)記開(kāi)發(fā)技術(shù)的不斷提高,全球?qū)π←溨旮呦嚓P(guān)QTL位點(diǎn)的報(bào)道也日益增加,這類研究多集中于影響最終株高的遺傳位點(diǎn)發(fā)掘[9-11]。從生物學(xué)角度上分析,株高等于小麥穗長(zhǎng)和地上部分所有節(jié)間長(zhǎng)之和,各節(jié)間和穗長(zhǎng)相互作用,并最終影響和決定小麥產(chǎn)量。因此株高的遺傳機(jī)制尚待深入剖析研究。本研究擬通過(guò)對(duì)小麥重組自交系群體及其親本為材料,利用已構(gòu)建的高密度遺傳圖譜對(duì)該群體株高、穗長(zhǎng)及各節(jié)間長(zhǎng)度進(jìn)行QTL定位及條件QTL定位,以期系統(tǒng)探索調(diào)控小麥株高的遺傳機(jī)制。

      1 材料和方法

      1.1 材料及實(shí)驗(yàn)設(shè)計(jì)

      本研究采用由國(guó)際小麥作圖組織(ITMI)構(gòu)建的112份F10重組自交系群體(Opata85×W7984)。ITMI群體母本W(wǎng)7984為人工合成小麥,父本Opata85為推廣品種,該群體構(gòu)建參見(jiàn)V.Deynze等發(fā)表論文[12]。

      ITMI群體及親本于2008—2010年間種植于雅安市。實(shí)驗(yàn)設(shè)計(jì)采用單粒播種,種植行長(zhǎng)1.5 m,株距0.1 m,行距0.3 m,每株系種植5行,常規(guī)肥水管理及病蟲害防治。小麥?zhǔn)斋@時(shí)各株系取具代表性的5株測(cè)量其株高、穗長(zhǎng)和各莖節(jié)間長(zhǎng)度;株高和穗長(zhǎng)測(cè)定參照李立會(huì)編寫標(biāo)準(zhǔn)[13],其中株高為地表到穗頂部的長(zhǎng)度(不包括芒長(zhǎng));穗長(zhǎng)為取樣植株中主穗穗基部到頂部的長(zhǎng)度(不包括芒長(zhǎng))。

      1.2 統(tǒng)計(jì)分析

      方差分析和協(xié)方差分析參照Z(yǔ)hu J.提出的混合線性模型[14]。株高(1)與其組成性狀(2)的遺傳相關(guān)系數(shù)計(jì)算公式為:

      Covg(1,2)為生長(zhǎng)期與組成性狀的遺傳協(xié)方差,σ2g(1)為生長(zhǎng)期的遺傳協(xié)方差,σ2g(2)為組成性狀的遺傳協(xié)方差。

      1.3 QTL定位分析

      ITMI群體以BARC圖譜為定位圖譜(http://wheat.pw.usda.gov),該圖譜包含1410個(gè)位點(diǎn)(SSR和AFLP),圖譜全長(zhǎng)2.541 cM,標(biāo)記密度1.72 cM每個(gè)位點(diǎn)[15]。

      所有的表型鑒定值和條件分析表型值都被用于QTL定位分析。QTL定位分析采用IciMapping 2.0軟件[16];分析采用基于逐步回歸法的ICIM作圖法(inclusive composite interval mapping),分析中所有QTL步移速度為1.0 cM,LOD閾值為2.5。

      2 結(jié)果與分析

      普通小麥“Opata85”在兩年參試環(huán)境中倒一節(jié)間及倒二節(jié)間顯著高于人工合成小麥“W7984”(見(jiàn)表1)。“W7984”株高、倒四節(jié)間長(zhǎng)、倒五節(jié)間長(zhǎng)及莖節(jié)數(shù)顯著高于“Opata85”?!癘pata85”倒三節(jié)間長(zhǎng)在參試環(huán)境2009—2010年顯著低于“W7984”,而在參試環(huán)境2008—2009年中差異不顯著。此外兩個(gè)群體親本穗長(zhǎng)差異不顯著。

      表型相關(guān)分析中,株高與其所有構(gòu)成因素均顯著正相關(guān)(見(jiàn)表2)。穗長(zhǎng)與倒二節(jié)間長(zhǎng)、倒二節(jié)間長(zhǎng)、倒四節(jié)間長(zhǎng)及株高顯著正相關(guān)。倒一節(jié)間長(zhǎng)與株高、倒二節(jié)間長(zhǎng)及倒三節(jié)間長(zhǎng)顯著正相關(guān),與倒五節(jié)間長(zhǎng)及莖節(jié)數(shù)顯著負(fù)相關(guān)。除與莖節(jié)數(shù)相關(guān)性不顯著外,倒二節(jié)間長(zhǎng)和倒三節(jié)間長(zhǎng)與所有參試目標(biāo)性狀均顯著正相關(guān)。倒四節(jié)間長(zhǎng)與倒一節(jié)間長(zhǎng)相關(guān)性不顯著,與其他所有參試目標(biāo)性狀均顯著正相關(guān)。倒五節(jié)間長(zhǎng)與穗長(zhǎng)相關(guān)性不顯著,與倒一節(jié)間長(zhǎng)顯著負(fù)相關(guān),與其他參試性狀均顯著正相關(guān)。莖節(jié)數(shù)與倒一節(jié)間長(zhǎng)顯著負(fù)相關(guān),與株高及倒四節(jié)間長(zhǎng)顯著正相關(guān)。遺傳相關(guān)結(jié)果與表型相關(guān)結(jié)果基本一致。

      表1 ITMI群體及其親本目標(biāo)性狀表型測(cè)定值Table1 Phenotypic values for objective traits of ITMI population and their parents

      表2 株高及其構(gòu)成因素間的表型相關(guān)系數(shù)及遺傳相關(guān)系數(shù)Table2 Phenotypic and genetic correlations among plant height and plant height components

      兩個(gè)參試環(huán)境共檢測(cè)到125個(gè)目標(biāo)性狀相關(guān)QTL位點(diǎn),分別分布于除4B以外的所有染色體上(見(jiàn)表3、圖1)。其中株高相關(guān)遺傳位點(diǎn)10個(gè),解釋表型變異率5.1%~27.8%,其中1A和5B染色體上兩個(gè)位點(diǎn)在兩個(gè)參試環(huán)境被檢測(cè);穗長(zhǎng)相關(guān)遺傳位點(diǎn)14個(gè),解釋表型變異率3.3%~25.0%,其中3D、4A、5A和7A染色體上4個(gè)位點(diǎn)在參試環(huán)境中都被檢測(cè)到;倒一節(jié)間長(zhǎng)相關(guān)位點(diǎn)19個(gè),解釋表型變異率3.6%~26.9%,其中3D和4A染色體上2個(gè)位點(diǎn)在參試環(huán)境中都被檢測(cè)到;倒二節(jié)間長(zhǎng)相關(guān)位點(diǎn)15個(gè),解釋表型變異率4.4%~19.7%,其中2A染色體上位點(diǎn)在參試環(huán)境中都有檢測(cè);倒三節(jié)間長(zhǎng)相關(guān)位點(diǎn)17個(gè),解釋表型變異率3.6%~24.3%,其中2B和5B染色體上2個(gè)位點(diǎn)在參試環(huán)境中都被檢測(cè)到;倒四節(jié)間長(zhǎng)相關(guān)位點(diǎn)14個(gè),解釋表型變異率4.0%~24.7%,其中3A、4D、5A和5B染色體上4個(gè)位點(diǎn)在參試環(huán)境中都被檢測(cè)到;倒五節(jié)間長(zhǎng)相關(guān)位點(diǎn)22個(gè),解釋表型變異率1.4%~18.3%,其中2B、2D、4A和5A染色體上4個(gè)位點(diǎn)在參試環(huán)境中都被檢測(cè)到;莖節(jié)數(shù)相關(guān)位點(diǎn)14個(gè),解釋表型變異率4.5%~25.6%,其中1D和2D染色體上2個(gè)位點(diǎn)在參試環(huán)境中都被檢測(cè)到。

      圖1 ITMI群體株高及其構(gòu)成因素QTL定位結(jié)果Figure1 QTLs for plant height plant height components in ITMI population

      本研究共檢測(cè)到33個(gè)公共位點(diǎn)區(qū)段,分別攜帶2~5個(gè)QTL位點(diǎn),其中5A上Xgwm293-Xbarc40區(qū)段及Xgwm617-Xfba190區(qū)段攜帶了QTL位點(diǎn)數(shù)最多。Xgwm293-Xbarc40區(qū)段對(duì)株高、倒二節(jié)間長(zhǎng)、倒三節(jié)間長(zhǎng)、倒四節(jié)間長(zhǎng)及倒五節(jié)間長(zhǎng)均影響顯著(見(jiàn)表3、圖1)。Xgwm617-Xfba190區(qū)段對(duì)株高、穗長(zhǎng)、倒二節(jié)間長(zhǎng)、倒三節(jié)間長(zhǎng)及倒四節(jié)間長(zhǎng)均影響顯著。此外,1B上Xmwg912-Xbarc80區(qū)段,2B上Xfbb274-Xfba29區(qū)段,3A上Xgwm666-Xmwg30區(qū)段,5B上Xgwm66-Xfbb121區(qū)段,6A上Xgwm494-Xtam36區(qū)段對(duì)4個(gè)性狀影響顯著。

      3 討論與結(jié)論

      前人對(duì)株高的遺傳定位研究報(bào)道較多,目前報(bào)道的矮稈基因有25個(gè)[5,17]。Zhang K.P.等在168份DH群體中(Huapei 3/Yumai 57)發(fā)現(xiàn)株高相關(guān)位點(diǎn)Qph5A-1與Xgwm186緊密連鎖[5]。ITMI圖譜中Xgwm186與Xbarc40遺傳距離為5 cM,因此Xgwm293-Xbarc40區(qū)段內(nèi)株高相關(guān)位點(diǎn)與Qph5A-1具有較高等位性。A.Singh等利用包含261份株系的DH群體將株高相關(guān)QTL位點(diǎn)定位于4B和6D染色體上[18]。S.Griffiths等利用4個(gè)DH群體進(jìn)行QTL元分析共識(shí)別到16個(gè)株高相關(guān)元QTL[19]。T.Würschum等利用410份冬小麥群體進(jìn)行全基因組關(guān)聯(lián)作圖分析,將7個(gè)株高相關(guān) QTL 位點(diǎn)定位于 1D、2A、4D、5A、5B、6A 及 7D染色體上[4]。此外,影響小麥株高的QTL位點(diǎn)在21條染色體上都有報(bào)道[1]。本研究在 1A、1B、2B、3B、5A、5B、6A及7D染色體上共檢測(cè)到10個(gè)株高相關(guān)QTL位點(diǎn),這些位點(diǎn)與前人報(bào)道位點(diǎn)可能位于同一區(qū)間或具有較高等位性。

      相對(duì)產(chǎn)量性狀而言,小麥穗長(zhǎng)遺傳力較高,環(huán)境敏感性更低[20]。在過(guò)去的20年中,穗部形態(tài)相關(guān)QTL位點(diǎn)被定位于21條小麥染色體上[1]。其中1B、2D、4B、5A及7A染色體上的穗長(zhǎng)相關(guān)QTL位點(diǎn)在多個(gè)遺傳背景及環(huán)境下都有報(bào)道[1,21,22]。本研究也發(fā)現(xiàn)ITMI群體中染色體 1A、1B、3D、4A、5A、5D、6A 和7A上都有穗長(zhǎng)相關(guān)QTL位點(diǎn)分布,這些位點(diǎn)對(duì)改良小麥穗部性狀具有重要意義。

      除穗長(zhǎng)以外,目前對(duì)小麥莖節(jié)與株高遺傳關(guān)系的報(bào)道較少,逯臘虎等在2D染色體上Xwmc111-Xcfd36區(qū)段內(nèi)發(fā)掘到第一節(jié)間長(zhǎng)相關(guān)位點(diǎn)1個(gè),第五節(jié)間長(zhǎng)位點(diǎn) 1個(gè),5A染色體上 Xgwm156-Xgwm328區(qū)段內(nèi)發(fā)掘到第四節(jié)間長(zhǎng)相關(guān)位點(diǎn)1個(gè)[23]。以上位點(diǎn)與本研究中2D染色體上Xbcd102-Xbcd262區(qū)段內(nèi)倒一節(jié)間長(zhǎng)相關(guān)位點(diǎn)及倒五節(jié)間長(zhǎng)相關(guān)位點(diǎn),5A染色體上Xgwm293-Xbarc40區(qū)段內(nèi)倒四節(jié)間長(zhǎng)相關(guān)位點(diǎn)具有較高等位性。此外Yu M.等利用ITMI群體及SHW-L1×川麥32重組自交系群體進(jìn)行了排除穗頸節(jié)影響過(guò)后的株高條件QTL定位[24]。Cui F.等利用Weimai 8×Jimai 20重組自交系群體及Weimai 8×Yannong 19重組自交系群體進(jìn)行排除各莖節(jié)影響后的株高QTL定位[1]。

      小麥株高等于主穗長(zhǎng)與各莖節(jié)間長(zhǎng)的總和,但并非所有控制小麥株高的遺傳位點(diǎn)也對(duì)主穗長(zhǎng)及各莖節(jié)間長(zhǎng)起主導(dǎo)作用。本研究發(fā)掘到的10個(gè)株高相關(guān)QTL位點(diǎn)中,3個(gè)位點(diǎn)被檢測(cè)到穗長(zhǎng)相關(guān)QTL位點(diǎn)表達(dá),4個(gè)位點(diǎn)被檢測(cè)到倒一節(jié)間長(zhǎng)相關(guān)QTL位點(diǎn)表達(dá),3個(gè)位點(diǎn)被檢測(cè)到倒二節(jié)間長(zhǎng)和倒三節(jié)間長(zhǎng)相關(guān)QTL位點(diǎn)表達(dá),2個(gè)位點(diǎn)被檢測(cè)到倒四節(jié)間長(zhǎng)相關(guān)QTL位點(diǎn)表達(dá),4個(gè)位點(diǎn)被檢測(cè)到倒五節(jié)間長(zhǎng)相關(guān)QTL位點(diǎn)表達(dá),1個(gè)位點(diǎn)被檢測(cè)到莖節(jié)數(shù)相關(guān)QTL位點(diǎn)表達(dá)。遺傳相關(guān)分析和表型相關(guān)分析結(jié)果表明,所有參試性狀與株高都有顯著相關(guān)性,且穗長(zhǎng)、倒二節(jié)間長(zhǎng)、倒三節(jié)間長(zhǎng)、倒四節(jié)間長(zhǎng)及倒五節(jié)間長(zhǎng)相關(guān)性較強(qiáng),這與QTL定位結(jié)果基本一致。本研究發(fā)掘到的株高相關(guān)QTL位點(diǎn)及株高構(gòu)成因素相關(guān)QTL位點(diǎn)對(duì)改良小麥株高及產(chǎn)量提升具有重要意義。

      [1]CUI F,LI J,DING A M,et al.Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat[J].Theoretical Applied Genetics,2011,122(8):1517-1536.

      [2]LAW C N,SNAPE J W,WORLAND A J.The genetical relationship between height and yield in wheat[J].Heredity,1973,40:133-151

      [3]SNAPE J W,LAW C N,WORLAND A J.Whole-chromosome analysis of height in whea[tJ].Heredity,1977(38):25-36.

      [4]WURSCHUM T,LANGER S M,LONGIN C F H.Genetic control of plant height in European winter wheat cultivars[J].Theoretical and Applied Genetics,2015,128(5):865-874.

      [5]ZHANG K P,TIAN J C,ZHAO L,et al.Mapping QTLs with epistatic effects and QTL×environment interactions for plant height using a doubled haploid population in cultivated wheat[J].Journal of Genetics and Genomics,2008,35(2):119-127.

      [6]ELLIS M H,REBETZKE G J,AZANZA F,et al.Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat[J].Theoretical Applied Genetics,2005,111(3):423-430.

      [7]GASPERINI D,GREENLAND A,HEDDEN P,et al.Genetic and physiological analysis of Rht8 in bread wheat,an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids[J].Journal of Experimental Botany,2012(63):4419-4436

      [8]KOWALSKIA M,GOODING M,F(xiàn)ERRANTE A,et al.Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes[J].Field Crops Research,2016(191):150-160.

      [9]MAO S L,WEI Y M,CAO W G,et al.Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat(Triticum aestivum L.) by QTL meta-analysis[J].Euphytica,2010,174(3):343-356.

      [10]WANG Z,WU X,REN Q,et al.QTL mapping for developmental behavior of plant height in wheat(Triticum aestivum L.)[J].Euphytica,2010,174(3):447-458.

      [11]WU X S,WANG Z H,CHANG X P,et al.Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes[J].Journal of Experimental Botany,2010,61(11):2923-2937.

      [12]DEYNZE V,DUBCOVSKY J,GILL K S,et al.Moleculargenetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oa[tJ].Genome,1995,38(1):45-59.

      [13]李立會(huì),楊欣明,李秀全.小麥種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn)[M].北京:中國(guó)農(nóng)業(yè)出版社,2006:124-211.

      [14]ZHU J.Mixed model-approaches for estimating genetic variances and covariances[J].Journal of Biomathematics,1992,7(1):1-11.

      [15]SONG Q J,SHI J R,SINGH S,et al.Development and mapping of microsatellite(SSR)markers in whea[tJ].Theoretical and Applied Genetics,2005(110):550-560.

      [16]LI H H,YE G Y,WANG J K.A modified algorithm for the improvement of composite interval mapping[J].Genetics,2007,175(2):361-374.

      [17]WORLANDA J,KORZUN V,RODER M S,et al.Genetic analysis of the dwarfing gene Rht8 in wheat.Part II.The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening.Theoretical Applied Genetics,1998,96(8):1110-1120.

      [18]SINGH A,KNOX R E,DEPAUW R M,et al.Genetic mapping of common bunt resistance and plant height QTL in wheat[J].Theoretical and Applied Genetics,2016,129(2),243-256.

      [19]GRIFFITHS S,SIMMONDS J,LEVERINGTON M,et al.Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm[J].Molecular Breeding,2012,29(1):159-171.

      [20]MA Z Q,ZHAO D M,ZHANG C Q,et al.Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations[J].Molecular Gene and Genomics,2007,277(1):31-42.

      [21]XU Y,WANG R,TONG Y,et al.Mapping QTLs for yield and nitrogen-related traits in wheat,influence of nitrogen and phosphorus fertilization on QTL expression[J].Theoretical and Applied Genetics,2014,127(1):59-72.

      [22]ZHAI H,F(xiàn)ENG Z,LI J,et al.QTL analysis of spike morphological traits and plant height in winter wheat(Triticum aestivum L.)using a high-density SNP and SSR-based linkage map[J].Frontiers in Plant Science,2016(7):16-17.

      [23]逯臘虎,魏強(qiáng),王飛,等.普通小麥農(nóng)大3338×京冬6號(hào)DH系群體株高及節(jié)間長(zhǎng)度的QTL分析[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,19(1):1-8.

      [24]YU M,MAO S L,CHEN G Y,et al.QTLs for uppermost internode and spike length in two wheat RIL populations and their affect upon plant height at an individual QTL leve[lJ].Euphytica,2014,200(1):95-108.

      QTL Mapping for Plant Height and Its Components in Recombinant Intercross Lines Population of Wheat

      YU Ma1,2,ZHANG Hong1,ZUO Wen-song3,LI Ming4,HOU Da-bin1*
      (1.College of Life Science and Engineering,Southwest University of Science and Technology,Mianyang 621010,Sichuan,China;2.Triticeae Research Institute,Sichuan Agricultural University,Chengdu 611130,China;3.Agriculture Bureau of Gulin County,Luzhou 646500,Sichuan,China;4.Lixin Town Government of Santai Country in Sichuan,Santai 621101,Sichuan,China)

      【Objective】To system dissect genetic basic of plant height,spike length,and internode length.【Method】An ITMI recombinant intercross lines population contain 110 lines were used to perform QTL analysis based on a high density genetic map.【Results】A total of 125 QTLs for objective traits were identified.For these loci,10 of them were identified for plant height,14 were identified for spike length,19 were identified for the first internode length from the top (IL1),15 were identified for the second internode length from the top(IL2),17 were identified for the third internode length from the top(IL3),14 were identified for the fourth internode length from the top(IL4),22 were identified for the fifth internode length from the top (IL5),14 were identified for internode number.In addition,2 plant height related loci,4 spike length related loci,2 IL1 related loci,1 IL2 related locus,2 IL3 related loci,4 IL4 related loci,4 IL5 related loci,and 2 internode number related loci were expressed in both investigated environments. 【Conclusion】Taken together,all of the 125 QTLs can help to breed out commercial variety with suitable plant height.

      wheat;plant height;spike length;internode length;QTL

      S512.1

      A

      1000-2650(2017)04-0465-11

      10.16036/j.issn.1000-2650.2017.04.002

      2017-02-15

      西南科技大學(xué)博士基金項(xiàng)目(13ZX7155);國(guó)家自然科學(xué)基金項(xiàng)目(31601582)。

      余馬,講師,博士。*責(zé)任作者:侯大斌,教授,博士,主要從事藥用植物學(xué)研究,E-mail:dbhou@126.com。

      (本文審稿:武 晶;責(zé)任編輯:劉詩(shī)航;英文編輯:劉詩(shī)航)

      猜你喜歡
      穗長(zhǎng)株高區(qū)段
      南疆阿拉爾墾區(qū)密植棉花株高模擬研究
      四倍體小麥株高和穗長(zhǎng)性狀的QTL定位及其遺傳效應(yīng)分析
      中老鐵路雙線區(qū)段送電成功
      介紹四個(gè)優(yōu)良小麥品種
      站內(nèi)特殊區(qū)段電碼化設(shè)計(jì)
      站內(nèi)軌道區(qū)段最小長(zhǎng)度的探討
      不同栽培密度對(duì)柴胡生長(zhǎng)的影響
      玉米骨干親本及其衍生系中基因的序列變異及與株高等性狀的關(guān)聯(lián)分析
      水稻株高、穗長(zhǎng)和每穗穎花數(shù)的遺傳研究
      水稻穗長(zhǎng)和有效穗數(shù)的QTL定位分析
      安岳县| 房山区| 开平市| 武城县| 梅州市| 桂林市| 浑源县| 拜泉县| 冀州市| 西和县| 宁南县| 中牟县| 孝昌县| 理塘县| 灵武市| 灌云县| 西华县| 栾川县| 馆陶县| 内黄县| 策勒县| 和平县| 阜新市| 竹山县| 定州市| 将乐县| 云安县| 宜兰县| 高邑县| 海门市| 洪泽县| 阿克| 西藏| 秦皇岛市| 罗源县| 汽车| 礼泉县| 东丽区| 阳原县| 北碚区| 准格尔旗|