劉陽龍,鄭玉嬰,曹寧寧,王 翔
(1 福州大學(xué) 石油化工學(xué)院,福州 350108;2 福州大學(xué) 材料科學(xué)與工程學(xué)院,福州 350108)
水熱法合成鐵摻雜的硫化鎘及光催化性能
劉陽龍1,鄭玉嬰2,曹寧寧2,王 翔2
(1 福州大學(xué) 石油化工學(xué)院,福州 350108;2 福州大學(xué) 材料科學(xué)與工程學(xué)院,福州 350108)
以硝酸鎘、硝酸鐵和硫脲為原料,水為溶劑,通過水熱法一步合成鐵摻雜的硫化鎘。產(chǎn)物經(jīng)SEM,XRD,EDS和XPS等技術(shù)進(jìn)行表征,以亞甲基藍(lán)的光催化降解為目標(biāo)反應(yīng),評價(jià)其光催化活性。結(jié)果表明:水熱溫度對硫化鎘的形貌影響較大,不同反應(yīng)溫度可分別得到球狀、花狀、簇狀和棒狀的硫化鎘,其中花狀硫化鎘的光催化性能最高。XRD分析表明,160℃反應(yīng)時(shí),所得摻鐵的硫化鎘均為六方晶體結(jié)構(gòu)。光催化實(shí)驗(yàn)表明,鐵摻雜能進(jìn)一步提高硫化鎘的催化活性,當(dāng)Fe和Cd的摻雜比為1∶10時(shí),催化效果最佳。
硫化鎘;水熱法;形貌;鐵摻雜;光催化
Abstract: Fe-doped cadmium sulfide was prepared by hydrothermal method in aqueous solution using cadmium nitrate, ferric nitrate and thiourea as raw materials. The samples were characterized by SEM, XRD, EDS and XPS. The photocatalytic degradation of methylene blue (MB) in aqueous solution was used as a target reaction to evaluate their photocatalytic activity. The experimental results show that the reaction temperature has a great effect on the morphology of cadmium sulfide, and spherical, flowerlike, clustered and rodlike cadmium sulfide are obtained in various reaction temperatures. Among them, the photocatalytic activity of flowerlike CdS is observed to be better than other CdS materials. The XRD indicates that Fe-doped cadmium sulfide is hexagonal crystal structure when the reaction temperature is 160℃. The experimental results also indicate that Fe-doped can obviously improve the photocatalytic activity of cadmium sulfide and when the doping ratio of Fe to Cd is 1∶10, the photocatalytic effect is the best of all.
Keywords:CdS;hydrothermal method;morphology;iron doping;photocatalytic
隨著人類社會的快速發(fā)展,環(huán)境污染問題的日益嚴(yán)重,半導(dǎo)體光催化技術(shù)越來越受到人們的重視[1,2]。半導(dǎo)體光催化技術(shù)是利用太陽能,在常溫常壓下深度降解空氣和水中多種揮發(fā)性有機(jī)物質(zhì),在此過程中極少產(chǎn)生二次污染[3,4]。其中硫化鎘(CdS)作為一種典型的Ⅱ-Ⅵ族n型半導(dǎo)體材料,其禁帶寬度為2.42eV,能吸收波長小于520nm的紫外光和可見光,具有介電常數(shù)小,激子效應(yīng)大等特點(diǎn),在太陽能轉(zhuǎn)化、非線性光學(xué)、光電調(diào)節(jié)器、光敏電阻、傳感器、光電子、光催化、生物檢測等領(lǐng)域具有廣泛的應(yīng)用前景[5-9],因而備受人們的關(guān)注。但CdS的光催化效率低、易發(fā)生光腐蝕,明顯限制了CdS的使用。
研究表明,通過沉積貴金屬、嵌入層狀化合物、與寬禁帶半導(dǎo)體復(fù)合、離子摻雜等[10-14]方法,對純CdS進(jìn)行改性,能極大地改善材料的光催化活性。其中采用過渡金屬離子摻雜[15]的方法可以抑制光生電子和空穴的復(fù)合,從而有效地提高光生載流子的分離效率,增大光的利用效率,減緩光腐蝕的發(fā)生,有助于延長CdS的使用壽命。
近年來,各種形貌的CdS,如樹枝狀、棒狀、花狀、球狀等[16-19]均被合成出來,合成方法主要有溶劑共熱法、沉淀法、溶膠-凝膠法、水熱法等[20-23]。其中水熱法更為簡單,成本較低,而且反應(yīng)是在密閉的高壓釜中進(jìn)行,更易控制。如趙榮祥等[24]利用離子液輔助水熱法合成了樹枝狀硫化鎘,錢留琴等[25]通過添加表面活性劑PVP,水熱法制得了玉米棒狀和花狀硫化鎘。但以水為溶劑,通過一步水熱合成的方法,制備鐵摻雜的硫化鎘晶體,至今鮮見報(bào)道。
本工作以硝酸鎘為鎘源、硝酸鐵為鐵源、硫脲為硫源,采用水熱法制得鐵摻雜的硫化鎘晶體。與以往很多文獻(xiàn)[26-28]不同的是,重點(diǎn)研究了不同溫度對硫化鎘
晶體形貌的影響,不同形貌的硫化鎘晶體的光催化性能以及鐵的摻雜量對催化活性的影響。
1.1 試劑
硫脲((NH2)2CS);無水乙醇(CH3CH2OH);硝酸鎘(Cd(NO3)2);九水合硝酸鐵(H18FeN3O18),國藥集團(tuán)化學(xué)試劑有限公司,AR;去離子水。
1.2 水熱法制備CdS
稱取3.2g的硫脲、2.5g的硝酸鎘、不同量的硝酸鐵與70mL去離子水混合,磁力攪拌使其完全溶解后,轉(zhuǎn)移至內(nèi)襯聚四氟乙烯的高壓反應(yīng)釜中,放入烘箱中在不同溫度下恒溫反應(yīng)12h后取出,經(jīng)自然冷卻,將反應(yīng)后的溶液,經(jīng)去離子水和乙醇交替洗滌、離心,在60℃下干燥12h后,即可得硫化鎘晶體。
圖1 制備摻鐵硫化鎘的流程圖Fig.1 Flow diagram showing the preparation process of iron doped CdS
1.3 樣品表征
采用FE-SEM,Supra-55型場發(fā)射掃描電子顯微鏡觀察樣品的微觀形貌。X射線衍射源為銅靶,狹縫為0.3nm,工作管電壓40kV,工作管電流100mA,掃描速率為4(°)/min,掃描范圍2θ為10°~80°。X射線光電子能譜(XPS)測試在ESCALAB250型能譜儀上完成。光催化降解亞甲基藍(lán)實(shí)驗(yàn)在光催化反應(yīng)儀上進(jìn)行,以500W的氙燈為光源,吸光度測試采用UV-1800型紫外可見分光光度計(jì)。
1.4 光催化實(shí)驗(yàn)
以500W的氙燈為光源,稱取0.1g自制樣品分散于濃度為1.8×10-5mol/L的100mL亞甲基藍(lán)溶液中,置于光催化反應(yīng)儀內(nèi),在打開氙燈之前,電磁攪拌0.5h以達(dá)到吸附平衡,再在氙燈冷光源模擬太陽光照射下,每隔0.5h取5mL的亞甲基藍(lán),離心分離取上層清液測定亞甲基藍(lán)溶液的吸光度。在實(shí)驗(yàn)濃度范圍內(nèi),亞甲基藍(lán)溶液的吸光度與濃度成正比,以吸光度代替濃度計(jì)算催化效率,即公式η=C/C0=A/A0,式中C,C0,A和A0分別表示為降解后濃度、初始濃度、降解后的吸光度和初始吸光濃度。
2.1 形貌分析及光催化活性比較
圖2為140,160,180℃和200℃下反應(yīng)12h得到CdS的SEM圖。從圖2可知,反應(yīng)溫度對晶體的形貌影響較大,隨著水熱溫度的升高,硫化鎘晶體的形狀依次為球狀、花狀、簇狀和棒狀。圖3是不同形貌硫化鎘樣品對亞甲基藍(lán)的光催化降解曲線。從圖3可以看出,催化活性順序?yàn)榛?簇狀>球狀>棒狀。因?yàn)橄啾扔谄渌蚊?,花狀硫化鎘具有更大的比表面積,催化活性更高,與文獻(xiàn)[29,30]報(bào)道相符。所以可知水熱反應(yīng)的最佳溫度為160℃。
2.2 鐵摻雜的花狀硫化鎘的XRD表征
圖4是水熱溫度為160℃時(shí)不同摻鐵量的硫化鎘XRD圖。從圖4可以看出,摻鐵的硫化鎘,與未摻雜的硫化鎘相比,結(jié)構(gòu)沒有發(fā)生明顯的變化,這與文獻(xiàn)[31]報(bào)道一致。其中不同摻鐵量的樣品的衍射峰分別出現(xiàn)在2θ=24.7°,26.4°,28°,36.5°,43.6°,47.6°和51.8°的附近,與六方相CdS(JCPDS crad NO.41-1049)對應(yīng)的(100),(002),(101),(102),(110),(103),(112)特征峰一致,沒有出現(xiàn)Cd,CdO或其他鎘化合物的雜質(zhì)峰,且衍射峰尖銳,說明所得的樣品均為純凈的六方纖鋅礦,結(jié)晶程度較高。
圖4 不同摻鐵量的CdS的XRD圖Fig.4 XRD patterns of CdS with different Fe doping concentrations
2.3 鐵摻雜的花狀硫化鎘的EDS表征
為了確定合成樣品的化學(xué)元素成分,特對其進(jìn)行了EDS分析。圖5為樣品(Fe∶Cd=1∶10)的EDS譜圖。從能譜中可以看出,Cd和S的吸收峰強(qiáng)度很大,說明Cd和S是樣品中的主要元素,經(jīng)圖譜積分計(jì)算,其化學(xué)計(jì)量比接近1∶1,說明所制備的硫化鎘純度較高。圖譜中除了Cd和S兩種元素的主要特征峰以外,還有Fe,C和O的峰位,其相對百分比含量較小,說明鐵離子已經(jīng)成功摻雜到硫化鎘樣品中,其中C和O元素可能是用去離子水和無水乙醇對樣品進(jìn)行洗滌過程中引入的。
圖5 硫化鎘樣品(Fe∶Cd=1∶10)的EDS譜圖Fig.5 EDS spectrum of CdS sample(Fe∶Cd=1∶10)
2.4 鐵摻雜的花狀硫化鎘的XPS表征
圖6為樣品(Fe∶Cd=1∶10)的XPS譜圖。由圖6(a)可見,除C,O,S,Cd,F(xiàn)e等元素特征能譜峰外,無其他元素能譜峰,表明樣品有較高的純度。其中C的1s和O的1s軌道結(jié)合能分別為284.64eV和531.58eV,略大于標(biāo)準(zhǔn)數(shù)據(jù)中的C1s(285.0eV)和O1s(531.8eV)的電子結(jié)合能。圖6(b)為Cd的3d軌道結(jié)合能,Cd的3d5/2和3d3/2結(jié)合能分別為404.95eV和411.65eV,圖6(c)為S的2p軌道結(jié)合能,結(jié)合能為161.41eV,其結(jié)果與文獻(xiàn)[32]基本一致。圖6(d)為Fe的2p軌道結(jié)合能,結(jié)合能為710.68eV,大于標(biāo)準(zhǔn)數(shù)據(jù)中的Fe2p(706.7eV)的電子結(jié)合能,說明Fe3+的微區(qū)環(huán)境發(fā)生了變化,可能是由于部分鐵離子進(jìn)入硫化鎘晶體內(nèi)部,導(dǎo)致Fe3+周圍的電子云密度發(fā)生變化所致。同時(shí)根據(jù)XPS的定量分析結(jié)果可得,F(xiàn)e,Cd和S元素的原子個(gè)數(shù)比近似為1∶10∶10,說明樣品的純度較高,摻雜效果較好。
圖6 硫化鎘樣品(Fe∶Cd=1∶10)的XPS譜圖Fig.6 XPS spectra of CdS sample(Fe∶Cd=1∶10)
2.5 鐵摻雜的花狀硫化鎘的光催化活性表征
圖7是不同摻鐵量的花狀硫化鎘對亞甲基藍(lán)的降解活性比較。從圖7可以看出,催化活性順序?yàn)?CdS(Fe∶Cd=1∶10)> CdS(Fe∶Cd=1∶5)> CdS(Fe∶Cd=1∶25)> CdS(Fe∶Cd=1∶1)> CdS(Fe∶Cd=0∶1),說明摻雜適量的Fe3+,可以顯著地提高材料的光催化活性。當(dāng)Fe和Cd的摻雜比為1∶10時(shí),CdS的催化活性最高,進(jìn)一步增加摻雜量,催化活性反而降低,導(dǎo)致上述現(xiàn)象的原因主要是由于過渡金屬鐵離子的引入能有效地提高電子和空穴的分離效率,從而提高其催化活性,但當(dāng)摻雜的Fe3+過量時(shí),就會成為光致電子和空穴的復(fù)合中心,反而使其催化活性降低。
圖7 不同摻鐵量的樣品對亞甲基藍(lán)的光催化降解曲線Fig.7 Photocatalytic degradation curves of MB to different Fe doping concentrations samples
(1)采用硝酸鎘,硝酸鐵和硫脲為原料,以水為溶劑,通過水熱法一步合成鐵摻雜的硫化鎘,在不同的水熱反應(yīng)溫度下,可分別得到球狀、花狀、簇狀和棒狀硫化鎘。
(2)不同形貌硫化鎘的催化活性順序?yàn)榛?簇狀>球狀>棒狀,主要是因?yàn)榛盍蚧k具有更大的比表面積,其光催化性能明顯高于其他形貌的硫化鎘,因此最佳水熱溫度為160℃。
(3)適量的鐵摻雜能進(jìn)一步提高花狀硫化鎘的催化活性,當(dāng)Fe和Cd的摻雜比為1∶10時(shí),光催化效果最佳,進(jìn)一步增加摻雜量,催化活性反而降低。
[1] TANG H X,YAN M,ZHANG H,et al, Preparation and characterization of water-soluble CdS nanocrystals by surface modification of ethylene diamine[J]. Materials Letters,2005,59(8/9):1024-1027.
[2] ALLINSON G, STAGNITTI F, COLVILLE S, et al. Growth of floating aquatic macrophytes in alkaline industrial wastewaters[J]. Journal of Environmental Engineering, 2000, 126(12):1103-1107.
[3] HODOS M,HORVATH E,HASPEL H,et al. Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles[J]. Chem Phy Lett,2004,399(4/6):512-515.
[4] LIU Y B. Highly stable CdS-modified short TiO2nanotube array electrode for efficient visible-light hydrogen generation[J]. International Journal of Hydrogen Energy,2011,36(1):167-174.
[5] TANG H X,YAH M,ZHANG H,et al. Preparation and characterization of water-souble CdS nanocrystals by surface modification of ethylene diamine[J]. Mater Lett,2005,59(8/9):1024-1027.
[6] DLAZJ G,PLANELLES J. Theoretical characterization of triangular CdS nanocrystals: a tight-binding approach[J]. Langmuir,2004,20(25):11278-11284.
[7] TAKAYUKI H,YOKO B,KOMASAWA I. Immobilization of CdS nanoparticles formed in reverse micelles onto aluminosilicate supports and their photocatalytic properties[J]. J Colloid Interface Sci,2005,288(2):513-516.
[8] SHARKEY J J,DHANASEKARAN V,LEE C W,et al. Microstructural parameters and optical constants of CdS thin films synthesized with various bath temperature[J]. Chem Phys Lett,2011,503(1/3):86-90.
[9] 陳昱,王京鈺,李維尊,等. 新型二氧化鈦基光催化材料的研究進(jìn)展[J]. 材料工程, 2016, 44(3):103-113.
CHEN Y,WANG J Y,LI W Z,et al. Research process in TiO2-based photocatalysis material [J]. Journal of Materials Engineering,2016, 44(3):103-113.
[10] XING C J,ZHANG Y J,YAN W,et al. Band structure-controlled solid solution of Cd1-xZnxS photocatalyst for hydrogen production by water splitting[J]. International Journal of Hydrogen Energy,2006,31(14):2018-2024.
[11] JANG J S,LI W,LEE J S.Fabrication of CdS/TiO2nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light[J].Chem Phys Lett,2006,425(4/6):278-282.
[12] HIRAI T,BANDO Y,KOMASAWA I.Immobilization of CdS nanoparticles formed in reverse micelles onto alumina particles and their photocatalytic properties[J].J Phys Chem B,2002,106(35):8967-8970.
[13] 張平, 莫尊理, 張春,等. 磁響應(yīng)性TiO2/石墨烯納米復(fù)合材料的合成及光催化性能[J]. 材料工程, 2015, 43(3):72-77.
ZHANG P,MO Z L,ZHANG C,et al. Preparation and photocatalytic properties of magnetic responsive TiO2/graphene nanocomposites[J]. Journal of Materials Engineering,2015, 43(3):72-77.
[14] CAO Y C,WANG J. One-pot synthesis of high-quality zinc-blende CdS nanocrystals[J]. J Am Chem Soc,2004,126(44):14336-14337.
[15] LI J X,XU J H,DAI W L,et al. Direct hydro-alcohol thermal synthesis of special core-shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity[J]. Appl Catal B:Environ,2009,85(3/4):162-170.
[16] YANG X H,WU Q S,LI L,et al. Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants[J]. Colloids and Surfaces A:Physicochem Eng Aspects,2005,264(264):172-178.
[17] 張言波,邵華峰,錢雪峰,等. 單分散球形硫化鎘粒子的制備及其形貌控制[J]. 無機(jī)材料學(xué)報(bào),2005,20(3):575-579.
ZHANG Y B,SHAO H F,QIAN X F,et al.Preparation of uniform cadmium sulfide spheres and their controllable morphology[J].Inorg Mater,2005,20(3):575-579.
[18] GAUTAM U K,SESHADRI R S,RAO C N R. A solvothermal route to CdS nanocrystals[J]. Chem Phys Lett,2003,375(5):560-564.
[19] XU D,LIU Z,LIANG J,et al. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol[J]. J Phys Chem B,2005,109(30):14344-14349.
[20] CAO H Q,WANG G Z,ZHANG S C,et al. Growth and optical properties of wurtzite-type CdS nanocrystals[J]. Inorg Chem,2006,45(13):5103-5108.
[21] YANG J,ZENG J H,YU S H,et al.Formation process of CdS nanorodsviasolvothermal route[J]. Chem Mater,2000,12(11):3295-3263.
[22] JING D W,GUO L J. A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure[J]. J Phys Chem B,2006,110(23):11139-11145.
[23] SO W,KIM K,MOON S. Photo-production of hydrogen over the CdS-TiO2nano-composite particulate films treated with TiCl4[J]. Int J Hydrogen Energy,2004,29(3):229-234.
[24] 趙榮祥,李秀萍,徐鑄德. 離子液輔助水熱法合成樹枝狀硫化鎘及光催化性能[J]. 材料工程,2014(2):7-12.
ZHAO R X,LI X P,XU Z D. Synthesis and photocatalytic performance of dendritic CdS nanostructures by an ionic liquid-assisted hydrothermal route[J]. Journal of Materials Engineering,2014(2):7-12.
[25] 錢留琴,唐為華. 水熱法制備CdS納米結(jié)構(gòu)[J]. 功能材料,2009,40(5):861-862.
QIAN L Q,TANG W H. Preparation of CdS nanostructures by hydrothermal method[J]. Journal of Functional Materials,2009,40(5):861-862.
[26] REN X X,ZHAO G L,LI H,et al. The effect of different pH modifier on formation of CdS nanoparticles[J]. Journal of Alloys and Compounds,2008,465(1-2):534-539.
[27] ZHAI Y G,LIU F Q,ZHANG Q,et al. Synthesis of magnetite nanoparticle aqueous dispersions in an ionic liquid containing acrylic acid anion[J]. Colloids Surf A: Physicochem Eng Aspects,2009,332(2/3):98-102.
[28] HU B Y,JING Z Z,HUANG J F,et al. Synthesis of hierarchical hollow spherical CdS nanostructures by microwave hydrothermal process[J]. Transactions of Nonferrous Metals Society of China,2012,22(1):89-94.
[29] XU D,CAO A M,DENG W L. Self-assembly and photocatalytic properties of clustered and flowerlike CdS nanostructures[J]. Acta Phys-Chim Sin,2008,24(7):1219-1224.
[30] YANG F,YAN N N,HUANG S,et al. Zn-doped CdS nanoarchitectures prepared by hydrothermal synthesis: mechanism for enhanced photocatalytic activity and stability under visible light[J]. Journal of Physical Chemistry,2012,116(16):9078-9084.
[31] BALRAM T,SINGH F,AVASTHI D K,et al. Structural,optical,electrical and position annihilation studies of CdS:Fe system[J]. Journal of Alloys and Compounds,2008,454(1/2):97-101.
[32] NAKANISHI T,OHTANI B,UOSAKI K. Fabrication and characterization of CdS-nanoparticle mono- and multilayers on a self-assembled monolayer of alkanedithiols on gold[J]. J Phys Chem B,1998,102(9):1571-1577.
(本文責(zé)編:楊 雪)
Synthesis and Photocatalytic Activity of Iron Doped CdS by Hydrothermal Method
LIU Yang-long1,ZHENG Yu-ying2,CAO Ning-ning2,WANG xiang2
(1 School of Chemical Engineering,Fuzhou University,Fuzhou 350108,China;2 College of Materials Science and Engineering,Fuzhou University,Fuzhou 350108,China)
10.11868/j.issn.1001-4381.2015.000498
O644
A
1001-4381(2017)10-0012-06
福建省高校產(chǎn)學(xué)合作科技重大關(guān)鍵資助項(xiàng)目(2012H6008);福州市科技計(jì)劃資助項(xiàng)目(2013-G-92)
2015-04-27;
2016-10-13
鄭玉嬰(1959-),女,博士,教授,博士生導(dǎo)師,研究方向:功能高分子復(fù)合材料,聯(lián)系地址:福建省福州市閩侯縣上街鎮(zhèn)大學(xué)城學(xué)園路2號福州大學(xué)新校區(qū)材料科學(xué)與工程學(xué)院 (350108),E-mail: yyzheng@fzu.edu.cn