楊超 肖曠 宋丹 童仕倫 綜述 鄭勇斌 審校
腹腔微環(huán)境與結(jié)直腸癌腹膜轉(zhuǎn)移關(guān)系的研究進(jìn)展
楊超 肖曠 宋丹 童仕倫 綜述 鄭勇斌 審校
腹膜轉(zhuǎn)移是結(jié)直腸癌(colorectal cancer,CRC)常見的轉(zhuǎn)移方式之一,通常預(yù)示著患者不良的預(yù)后。腹膜襯貼于腹盆壁內(nèi)面和腹盆腔各臟器的表面,具有豐富的血液供應(yīng)和大量常駐和遷移到此處的特定類型的細(xì)胞。腹腔中的多種細(xì)胞成分,細(xì)胞外基質(zhì)以及局部特殊的理化性質(zhì)共同構(gòu)成了一個復(fù)雜和相對穩(wěn)定的腹腔微環(huán)境;多種細(xì)胞在此環(huán)境中可以被結(jié)直腸癌細(xì)胞所誘導(dǎo),參與并為腫瘤的生長、侵襲和腹膜轉(zhuǎn)移提供適宜的“土壤”。本文就這些腹腔中參與構(gòu)成腹腔微環(huán)境的主要細(xì)胞成分進(jìn)行綜述。
結(jié)直腸癌 腹膜轉(zhuǎn)移 腹腔微環(huán)境 細(xì)胞
AbstractPeritoneal metastasis is very common in colorectal cancer and often indicates bad prognosis.The peritoneum,which contains an abundant supply of blood and specific types of resident and migrating cells,lines the surface of the abdominal wall and covers the abdominal organs.The combination of cells,extracellular matrix,and local unique physicochemical composition of the abdominal cavity provide a complex and relatively stable peritoneal microenvironment.The cells in this environment can be induced by cancer cells to be involved in tumor growth,invasion,and peritoneal metastasis.This review summarizes the major cellular components involved in the peritoneal microenvironment.
Keywords:colorectal cancer,peritoneal metastasis,peritoneal microenvironment,cells
腹膜是覆蓋于腹盆器官和腹盆壁表面的漿膜,由間皮細(xì)胞層、結(jié)締組織以及血管和淋巴組織構(gòu)成。腹膜是結(jié)直腸癌(colorectal cancer,CRC)的常見轉(zhuǎn)移部位之一,據(jù)報道,CRC同時合并腹膜轉(zhuǎn)移的概率為13%,5年生存率僅為20%~25%[1];伴有腹膜轉(zhuǎn)移的CRC患者接受全身治療的中位生存期顯著低于無腹膜累及的患者(P<0.001)。CRC的腹膜轉(zhuǎn)移是一個連續(xù)的過程,腹腔中的多種細(xì)胞成分共同構(gòu)成的腹腔微環(huán)境為CRC的腹腔轉(zhuǎn)移創(chuàng)建了適宜的“土壤”。本文就這些腹腔中參與構(gòu)成腹腔微環(huán)境的主要細(xì)胞成分進(jìn)行綜述。
腹腔中含有豐富的人腹膜間皮細(xì)胞(human peri?toneal mesothelial cells,HPMCs),研究者已經(jīng)普遍認(rèn)同CRC的腹腔轉(zhuǎn)移與其有關(guān)。培養(yǎng)提取自網(wǎng)膜組織的HPMCs具有增強(qiáng)體外和體內(nèi)腫瘤進(jìn)展的作用[2]。電鏡下的HPMCs是直徑約為9~15 μm,表面被直徑約1.0 μm的細(xì)微絨毛所覆蓋的鵝卵石樣細(xì)胞,緊密地單層排列于腹腔表面,可以通過細(xì)胞表面的微絨毛運(yùn)動,糖氨基-聚糖和表面活性劑促進(jìn)內(nèi)臟的運(yùn)動,保護(hù)組織免受磨損。HPMCs具有吞噬微生物和異常細(xì)胞的生物活性,當(dāng)機(jī)體受到外來微生物侵襲或暴露于腫瘤細(xì)胞時,作為阻止微生物和腫瘤細(xì)胞入侵的第一道防線,參與機(jī)體非特異性免疫[3]。Hwang等[4]的研究表明,β干擾素TIR結(jié)構(gòu)域銜接蛋白對于在HPMCs中由Toll樣受體3和Toll樣受體4介導(dǎo)激活的先天免疫應(yīng)答過程中十分必要。此外,HPMCs可被誘導(dǎo)產(chǎn)生MHC-Ⅱ,并在沒有IFN-β作用的情況下,有效地加工抗原并呈遞給輔助T細(xì)胞,參與機(jī)體的特異性免疫[5]。
腫瘤細(xì)胞侵襲和轉(zhuǎn)移是腫瘤細(xì)胞在多步發(fā)展過程中由自身和局部微環(huán)境共同誘導(dǎo)所獲得的一種能力。CRC細(xì)胞因細(xì)胞-細(xì)胞間黏附分子(主要為E-鈣黏蛋白)的表達(dá)或功能水平下調(diào),從而促進(jìn)癌細(xì)胞自動脫離進(jìn)入腹腔,成為腹腔游離癌細(xì)胞(intraperitone?al free cancer cells,IFCCs),其受重力和胃腸道蠕動及膈肌運(yùn)動等產(chǎn)生的壓力而播散到腹腔各處。HPMCs上廣泛表達(dá)細(xì)胞間黏附分子(intercellular adhesion molecule,ICAM),血小板內(nèi)皮細(xì)胞黏附分子(platelet endothelial cell adhesion molecule,PECAM)和血管黏附分子(vascular cell adhesion molecule,VCAM)等免疫球蛋白超家族黏附分子,CRC細(xì)胞通過癌細(xì)胞表面CD43與HPMCs衍生的黏附分子特異性結(jié)合介導(dǎo)腫瘤細(xì)胞快速黏附[6]。一旦腫瘤細(xì)胞黏附于間皮表面,HPMCs既產(chǎn)生溶血磷脂酸,又能進(jìn)一步促進(jìn)癌細(xì)胞的黏附;溶血磷脂酸能夠通過HPMCs刺激血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)生成,這可能在腫瘤血管形成過程中起重要作用。大多數(shù)黏附在間皮表面上的腫瘤細(xì)胞表現(xiàn)出單純的增殖而缺乏侵襲性,僅少數(shù)腫瘤細(xì)胞侵入間皮層,誘導(dǎo)HPMCs凋亡,其表現(xiàn)為細(xì)胞體積變小、核質(zhì)濃縮、核膜破碎。
作者單位:武漢大學(xué)人民醫(yī)院胃腸外科(武漢市430060)
有研究表明CRC細(xì)胞誘導(dǎo)HPMCs凋亡的過程是由FasL/Fas介導(dǎo)的[7]。IFCCs能夠分泌多種促炎細(xì)胞因子如TNF-α、IL-1β、IL-6和IFN-γ,這些細(xì)胞因子促進(jìn)ICAM-1和PECAM-1在HPMCs上的表達(dá)上調(diào),從而增加了IFCCs黏附HPMCs的機(jī)會;同時還能夠誘導(dǎo)間皮層的收縮,使腹膜連續(xù)性中斷,從而暴露出間皮層下的基底膜。已經(jīng)觀察到腹膜中的HPMCs誘導(dǎo)多種基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)的產(chǎn)生,如MMP-1、MMP-2、MMP-7、MMP-9、MMP-13和MMP-14,從而參與細(xì)胞外基質(zhì)(extracel?lular matrix,ECM)降解。有研究表明宿主特異性基質(zhì)來源的MMP在CRC向腹膜轉(zhuǎn)移的生長和進(jìn)展中起重要作用[8],如:MMP-2可以通過切割與HPMCs相關(guān)的纖維連接蛋白和黏連蛋白來加強(qiáng)由整合素介導(dǎo)的腫瘤細(xì)胞-間皮附著;MMP-2還可通過對ECM的降解,促進(jìn)新生淋巴管、微血管形成,而參與腫瘤淋巴道轉(zhuǎn)移和癌性腹水形成。
HPMCs的上皮間質(zhì)轉(zhuǎn)化(epithelial-mesenchy?mal transition,EMT)是導(dǎo)致腫瘤細(xì)胞的侵襲和轉(zhuǎn)移的重要機(jī)制之一。在EMT后HPMCs的形狀從上皮狀態(tài)轉(zhuǎn)變?yōu)殚g充質(zhì)狀態(tài),導(dǎo)致HPMCs失去細(xì)胞間黏附并獲得遷移間充質(zhì)表型,其細(xì)胞表面的E-鈣黏蛋白表達(dá)水平顯著降低,α平滑肌肌動蛋白(α-SMA)水平增加,同時細(xì)胞骨架也發(fā)生重構(gòu),這些改變導(dǎo)致腫瘤細(xì)胞穿越基底膜向鄰近組織游走的能力相應(yīng)增強(qiáng)[9]。HPMCs的EMT由在IFCCs產(chǎn)生的多種分子信號誘導(dǎo),這些信號包括炎癥細(xì)胞因子和生長因子,其中轉(zhuǎn)化生長因子(transforming growth factor,TGF)-β是參與誘導(dǎo)的主要分子[10]。
HPMCs被認(rèn)為能夠從多個方面促進(jìn)腫瘤細(xì)胞的進(jìn)展過程,這一現(xiàn)象在相對衰老的HPMCs更為常見,與正常的HPMCs相比,衰老的HPMCs對CRC細(xì)胞的黏附能力和促血管生成能力都有顯著增強(qiáng)[11];Mikula-Pietrasik等[12]發(fā)現(xiàn)衰老的HPMCs能夠表達(dá)出更高含量的透明質(zhì)酸、尿激酶型纖溶酶原激活物、單核細(xì)胞趨化蛋白-1(monocyte chemoattractant protein,MCP)-1、VEGF和IL-8,其體外實驗發(fā)現(xiàn)衰老的HPMCs具有更強(qiáng)促進(jìn)SW480細(xì)胞增殖、遷移、侵襲和EMT的能力[13]。
腫瘤相關(guān)成纖維細(xì)胞(cancer associated fibro?blasts,CAFs)是腫瘤基質(zhì)中最重要的細(xì)胞成分之一,主要由位于局部間葉組織中正常的成纖維細(xì)胞分化產(chǎn)生,誘導(dǎo)其分化的細(xì)胞因子包括:TGF-β、血小板衍生因子(platelet derived growth factor,PDGF)、IL-4、IL-6、胰島素樣生長因子(insulin-like growth factors,IGF)-2和前列腺素(prostaglandin,PG)E,值得注意的是,HPMCs的EMT也是CAFs的重要來源之一[14]。不同的細(xì)胞起源和局部微環(huán)境都會塑造不同表型的CAFs,CAFs的特征性表型是CD34(-)和廣泛表達(dá)的α-SMA、波形蛋白。由CAFs大量分泌的多種信號分子如表皮細(xì)胞生長因子(epidermal growth factor,EGF)、IGF-1/2、PGE-2、PDGF,成纖維細(xì)胞生長因子(fibroblast growth factor,F(xiàn)GF)和 VEGF 主要通過PI3KCA/AKT和JAK/STAT途徑激活信號級聯(lián)參與CRC細(xì)胞周期調(diào)節(jié)和DNA的修復(fù),介導(dǎo)CRC細(xì)胞的增殖轉(zhuǎn)移[15]。其中FGF-1和FGF-3通過成纖維細(xì)胞生長因子受體4磷酸化,上調(diào)CRC細(xì)胞中Mek/Erk表達(dá)[16]。另外,肝細(xì)胞生長因子還通過誘導(dǎo)CRC細(xì)胞中AKT和Erk 1/2的磷酸化促進(jìn)腫瘤細(xì)胞蛋白質(zhì)合成和細(xì)胞骨架重排[17]。
在CRC中,顯著的纖維結(jié)締組織增生與減弱的免疫應(yīng)答相關(guān),提示CAFs可能在CRC腫瘤免疫逃避中發(fā)揮作用[18],此外,由于腹膜轉(zhuǎn)移灶局部纖維結(jié)締組織增生、腹膜包裹等因素導(dǎo)致淋巴管廣泛受損,影響腹腔淋巴回流,促進(jìn)癌性腹水產(chǎn)生,有利于IFCCs的腹膜種植。對于同一患者,腫瘤組織中表達(dá)有黏附分子(adhesion molecules,AM)-1的CAFs數(shù)量相較于周圍正常結(jié)直腸組織明顯增多,這種增加的細(xì)胞間黏附除了能夠增加腫瘤細(xì)胞的侵襲能力,還可能有助于延長CRC局部病灶中單核細(xì)胞的存活時間[19];已知M2型巨噬細(xì)胞能夠分泌免疫抑制細(xì)胞因子(IL-10和TGF-β),并通過刺激ECM的血管生成和降解來促進(jìn)腫瘤進(jìn)展[20]。此外,CAFs通過分泌趨化因子CCL2和CXCL12促進(jìn)免疫抑制細(xì)胞的募集,并通過TGF-β的分泌來抑制效應(yīng)T細(xì)胞,從而發(fā)揮其免疫抑制作用。在共同培養(yǎng)的條件下,來自CRC組織中的CAFs能夠顯著抑制NK細(xì)胞表面受體、穿孔素和端粒酶的表達(dá),除此之外,CFAs還能夠抑制NK細(xì)胞分泌細(xì)胞因子TNF-α和IFN-γ[21]。
在體外與單一培養(yǎng)相比,CRC細(xì)胞和CAFs共培養(yǎng)時CAFs中VEGF mRNA的表達(dá)水平明顯增加,表明其參與腫瘤轉(zhuǎn)移過程中血管的生成。添加有CAFs的CRC體外培養(yǎng)基中,與調(diào)節(jié)CRC侵襲、轉(zhuǎn)移密切相關(guān)的PI3K-AKT和JAK-STAT通路存在著明顯高表達(dá),即使在五氟尿嘧啶或奧沙利鉑給藥的情況下依然存在,提示CAFs影響CRC對化療的敏感性[22]。
在腫瘤周圍環(huán)境中,巨噬細(xì)胞代表了基質(zhì)的主要炎性成分。巨噬細(xì)胞的功能受局部微環(huán)境的影響,當(dāng)巨噬細(xì)胞暴露于脂多糖和IFN-γ時,被極化為M1表型,表現(xiàn)出抗腫瘤的作用;當(dāng)它們暴露于IL-4、IL-13和IL-10等H2細(xì)胞因子時,被極化為M2表型并表現(xiàn)出促進(jìn)細(xì)胞增殖和腫瘤生長的作用[23]。腫瘤相關(guān)吞噬細(xì)胞(tumor-associated macrophage cells,TAMs)在CRC進(jìn)展的多個方面中起到了重要作用,一般認(rèn)為TAMs主要為M2型巨噬細(xì)胞,表達(dá)有甘露糖受體和清道夫A類受體[24]。TAMs一般來源于循環(huán)系統(tǒng)中的單核細(xì)胞,并被單核趨化因子CCL2/MCP-1募集于腫瘤細(xì)胞周圍[25]。
TAMs被認(rèn)為在腫瘤組織血管生成過程中起到了重要的支持作用,CRC細(xì)胞能夠募集巨噬細(xì)胞并能誘導(dǎo)其向TAMs或M2巨噬細(xì)胞分化,使其作為血管生成因子的主要來源;TAMs作為血管生成的首要發(fā)起者通過分泌多種細(xì)胞因子和參與ECM的重塑促進(jìn)血管生成,同時也充當(dāng)橋接細(xì)胞的作用,使鄰近的血管內(nèi)皮細(xì)胞緊密連接[26]。TAMs分泌的促血管生成的細(xì)胞因子包括:VEGF、PDGF、EGF和FGF以及一氧化氮合酶(nitric oxide synthase,NOS),其中NOS能夠加快內(nèi)皮細(xì)胞的增殖和遷移,促進(jìn)腫瘤血管擴(kuò)張,加速局部血液循環(huán),增加腫瘤組織氧供[27],同時血管通透性增加,血漿蛋白和液體大量外滲從而使腹腔液體生成增加。
研究發(fā)現(xiàn)在添加有抗程序性細(xì)胞死亡因子配體(program cell death ligand,PDL)-1抗體的CRC鼠模型中,CRC細(xì)胞腹膜內(nèi)轉(zhuǎn)移明顯減少[28]??赡艿臋C(jī)制為TAMs通過其PDL-1特異性識別位于T細(xì)胞表面的PDL-1受體來負(fù)性調(diào)控具有抑制CRC進(jìn)展功能的效應(yīng)T淋巴細(xì)胞活性;此外TAMs釋放生長因子,如TGF-β和FGF家族成員,已經(jīng)證實TGF-β促進(jìn)CRC細(xì)胞黏附于ECM和誘導(dǎo)腹膜纖維化,并且可通過Smad2信號傳導(dǎo)途徑顯著刺激HPMCs中的Ⅲ型膠原和纖連蛋白的表達(dá),為CRC的種植提供有利的腹膜微環(huán)境。與此同時,在CRC上表達(dá)的CD47分子與TAMs上表達(dá)的信號調(diào)節(jié)蛋白α之間相互作用,抑制了TAMs的吞噬功能[29]。
髓源性抑制細(xì)胞(myeloid-derived suppressor cells,MDSCs)是來源于髓系祖細(xì)胞,表現(xiàn)為一類異質(zhì)群體的幼稚髓樣細(xì)胞,包括處于不同分化階段的未成熟粒細(xì)胞、巨噬細(xì)胞、樹突狀細(xì)胞。在嚙齒動物中,MDSCs有兩種類型:由粒細(xì)胞-巨噬細(xì)胞集落刺激因子(granulocytemacrophage colony stimulating factor,GM-CSF)誘導(dǎo)產(chǎn)生單核細(xì)胞型(MO-MDSCs),表達(dá)CD11b+Ly6G-Ly6C+;由粒細(xì)胞集落刺激因子(granulocyte colony stimulating factor,G-CSF)誘導(dǎo)產(chǎn)生粒細(xì)胞型(PMN-MDSCs),表達(dá)CD11b+Ly6G+Ly6C-。MDSCs擁有強(qiáng)大的免疫抑制能力,能夠以特異性或非特異性方式抑制由多種機(jī)制介導(dǎo)的T細(xì)胞和NK細(xì)胞的抗腫瘤活性。
脾臟已經(jīng)被確認(rèn)為是調(diào)節(jié)MDSCs功能的主要器官,在腫瘤進(jìn)展期MDSCs依賴的針對腫瘤細(xì)胞的免疫耐受多發(fā)生在脾臟的邊緣竇區(qū)域[30]。在荷瘤宿主中,CRC細(xì)胞誘導(dǎo)CD11b+Gr1+表型的MDSCs在外周淋巴器官和腫瘤部位積累,MDSCs遷移到腹腔中的腫瘤細(xì)胞周圍被誘導(dǎo)激活表達(dá)精氨酸酶(arginase,ARG)-1和NOS,活化的ARG-1增加L-精氨酸代謝,影響T細(xì)胞的蛋白質(zhì)合成,導(dǎo)致T細(xì)胞增殖受抑;NOS原位誘導(dǎo)T細(xì)胞受體發(fā)生硝化,以及通過多種信號通路抑制T細(xì)胞活化所必須的細(xì)胞因子產(chǎn)生,介導(dǎo)T細(xì)胞的凋亡[31]。MDSCs還可以通過下調(diào)巨噬細(xì)胞誘導(dǎo)因子的分泌和下調(diào)NK細(xì)胞表面NKG2D的表達(dá)水平,抑制NK細(xì)胞的細(xì)胞毒性作用,阻斷毒性T細(xì)胞活化來抑制機(jī)體先天和后天的抗腫瘤免疫能力[32]。
調(diào)節(jié)性T細(xì)胞(regulatory T cells,Tregs)可以定義為一類通過影響其他免疫細(xì)胞的活性來抑制機(jī)體免疫應(yīng)答的T細(xì)胞群體,它是維持免疫內(nèi)環(huán)境穩(wěn)定所必需的。轉(zhuǎn)錄因子RORγt在維持Tregs抗CRC和促CRC作用之間的平衡中起關(guān)鍵作用,具有RORγt表型的Tregs表現(xiàn)出更強(qiáng)的免疫抑制作用[33]。Tregs被認(rèn)為是參與對腫瘤特異性抗原的自身耐受最重要的細(xì)胞群體,特別是FOXP3+Tregs能夠遷移到炎癥部位并抑制許多炎癥細(xì)胞的活化,Tregs的一些亞種如Th17+Tregs具有很強(qiáng)的抗炎作用,浸潤在CRC組織中的IL-17 Foxp3+Tregs細(xì)胞通過分泌如IL-17、TGF-β、IL-6促炎細(xì)胞因子在體外顯著抑制CD8+T細(xì)胞介導(dǎo)的免疫應(yīng)答,從而有利于CRC的進(jìn)展[34]。據(jù)報道,Tregs細(xì)胞可以通過穿孔素、FasL和顆粒酶B等發(fā)揮自身的細(xì)胞毒性作用誘導(dǎo)包括CD8+T細(xì)胞在內(nèi)的效應(yīng)T細(xì)胞的凋亡[35]。利用熒光激活細(xì)胞分選儀對浸潤在CRC腹腔轉(zhuǎn)移病灶周圍的CD4+T細(xì)胞亞群表型和功能進(jìn)行分析,發(fā)現(xiàn)Tregs表達(dá)更高水平的與抑制相關(guān)的標(biāo)志物,如CD39和細(xì)胞毒性T淋巴細(xì)胞抗原(cytotoxic T-lymphocyte associated antigen,CTLA)-4。
在瘦素被發(fā)現(xiàn)后,脂肪細(xì)胞(adipocytes)已被認(rèn)為同時具有重要的免疫活性。人腹腔中富含內(nèi)臟脂肪組織(visceral adipose tissue,VAT),在CRC腹膜種植并不斷增殖的同時,一些脂肪組織細(xì)胞被擠壓而遠(yuǎn)離組織血管,導(dǎo)致局部脂肪細(xì)胞缺氧;激活缺氧誘導(dǎo)因子-1a,其繼而誘導(dǎo)巨噬細(xì)胞和單核細(xì)胞浸潤到VAT中,并由此上調(diào)TNF-α的分泌;TNF-α可以激活核轉(zhuǎn)錄因子NF-κB而促進(jìn)CRC增殖和局部血管生成[36]。此外,VAT周圍富集的這些炎癥細(xì)胞能夠產(chǎn)生活性氧(reactive oxygen species,ROS),已經(jīng)證實ROS在低濃度下促進(jìn)有絲分裂活性,抑制凋亡,長期較高水平的ROS還可促進(jìn)腫瘤發(fā)生[37]。
有研究發(fā)現(xiàn)脂肪細(xì)胞分泌的細(xì)胞因子可以作為免疫細(xì)胞功能調(diào)節(jié)劑和上皮細(xì)胞破壞、腫瘤細(xì)胞增殖、遷移的啟動因子,而促進(jìn)CRC的進(jìn)展[38]。Del等[39]體外培養(yǎng)分別提取自肥胖者和相對瘦弱者的腹腔內(nèi)脂肪細(xì)胞與CRC細(xì)胞共培養(yǎng),分析這種含脂肪細(xì)胞培養(yǎng)基(adipocyte-conditioned media,ACM)的成分,發(fā)現(xiàn)在肥胖者ACM中高表達(dá)PDL-1和PDL-2表型的樹突狀細(xì)胞。值得注意的是,PDL-1和PDL-2分子參與腫瘤免疫抑制,被認(rèn)為是腫瘤免疫治療很有前景的靶點。
腹腔微環(huán)境具有豐富細(xì)胞成分并處于大量動靜脈網(wǎng)絡(luò)包繞之中,隨著CRC從原位脫落進(jìn)入腹腔形成IFCCs并在腹腔種植,腹腔微環(huán)境就向著利于CRC進(jìn)展的方向發(fā)展。由于腹腔中的多種細(xì)胞成分構(gòu)成了適宜CRC進(jìn)展的局部微環(huán)境,從而參與了CRC的腹膜轉(zhuǎn)移過程,因此從這些細(xì)胞中可能會發(fā)現(xiàn)CRC腹膜轉(zhuǎn)移新的診斷和治療手段。
[1]Van Gestel YR,de Hingh IH,van Herk-Sukel MP,et al.Patterns of metachronousmetastasesaftercurativetreatment of colorectal cancer[J].Cancer Epidemiol,2014,38(4):448-454.
[2]Lv ZD,Wang HB,Dong Q,et al.Mesothelial cells differentiate into fibroblast-like cells under the scirrhous gastric cancer microenvironment and promote peritoneal carcinomatosis in vitro and in vivo[J].Mol Cell Biochem,2013,377(1-2):177-185.
[3]Mutsaers SE,Prêle MA,Pengelly S,et al.Mesothelial cells and peritoneal homeostasis[J].Fertil Steril,2016,106(5):1018-1024.
[4]Hwang EH,Kim TH,Oh SM,et al.Toll/IL-1 domain-containing adaptor inducing IFN-beta(TRIF)mediates innate immune responses in murine peritoneal mesothelial cells through TLR3 and TLR4 stimulation[J].Cytokine,2016,77(1):127-134.
[5]Shaw TJ,Zhang XY,Huo Z,et al.Human peritoneal mesothelial cells display phagocytic and antigen-presenting functions to contribute to intraperitoneal immunity[J].Int J Gynecol Cancer,2016,26(5):833-838.
[6]Mikula-Pietrasik J,Sosinska P,Maksin K,et al.Colorectal cancerpromoting activity of the senescent peritoneal mesothelium[J].Oncotarget,2015,6(30):29178-29195.
[7]Heath RM,Jayne DG,O'Leary R,et al.Tumour-induced apoptosis in human mesothelial cells:a mechanism of peritoneal invasion by Fas Ligand/Fas interaction[J].Br J Cancer,2004,90(7):1437-1442.
[8]Lee IK,Vansaun MN,Shim JH,et al.Increased metastases are associated with inflammation and matrix metalloproteinase-9 activity at incision sites in a murine model of peritoneal dissemination of colorectal cancer[J].J Surg Res,2013,180(2):252-259.
[9]Shen H,Ma JL,Zhang Y,et al.Integrin-linked kinase overexpression promotes epithelial-mesenchymal transition via nuclear factor-kB signaling in colorectal cancer cells[J].World J Gastroenterol,2016,21,22(15):3969-3977.
[10]Sandoval P,Jimenez-Heffernan JA,Rynne-Vidal A,et al.Carcinomaassociated fibroblasts derive from mesothelial cells via mesothelialto-mesenchymal transition in peritoneal metastasis[J].J Pathol,2013,231(4):517-531.
[11]Ranieri D,Raffa S,Parente A,et al.High adhesion of tumor cells to mesothelial monolayers derived from peritoneal wash of disseminated gastrointestinal cancers[J].PLoS One,2013,8(2):e57659.
[12]Mikula-Pietrasik J,Uruski P,Matuszkiewicz K,et al.Ovarian cancerderived ascitic fluids induce a senescence-dependent pro-cancerogenic phenotype in normal peritoneal mesothelial cells[J].Cell Oncol(Dordr),2016,39(5):473-481.
[13]Ksiazek K,Mikula-Pietrasik J,Catar R,et al.Oxidative stress-dependent increase in ICAM-1 expression promotes adhesion of colorectal and pancreatic cancers to the senescent peritoneal mesothelium[J].Int J Cancer,2010,127(2):293-303.
[14]Rynne-Vidal A,Jimenez-Heffernan JA,Fernandez-Chacon C,et al.The mesothelial origin of carcinoma associated-fibroblasts in peritoneal metastasis[J].Cancers(Basel),2015,7(4):1994-2011.
[15]Lin L,Liu A,Peng Z,et al.STAT3 is necessary for proliferation and survival in colon cancer-initiating cells[J].Cancer Res,2011,71(23):7226-7237.
[16]Bai YP,Shang K,Chen H,et al.FGF-1/-3/FGFR4 signaling in cancerassociated fibroblasts promotes tumor progression in colon cancer through Erk and MMP-7[J].Cancer Sci,2015,106(10):1278-1287.
[17]Valenciano A,Henriquez-Hernandez LA,Moreno M,et al.Role of IGF-1 receptor in radiation response[J].Transl Oncol,2012,5(1):1-9.
[18]Conti J,Thomas G.The role of tumourstroma in colorectal cancer invasion and metastasis[J].Cancers(Basel),2011,3(2):2160-2168
[19]Schellerer VS,Langheinrich M,Hohenberger W,et al.Tumor-associated fibroblasts isolated from colorectal cancer tissues exhibit increased ICAM-1 expression and affinity for monocytes[J].Oncol Rep,2014,31(1):255-261.
[20]Pernot S,Terme M,Voron T,et al.Colorectal cancer and immunity:what we know and perspectives[J].World J Gastroenterol,2014,20(14):3738-3750.
[21]Li T,Yi S,Liu W,et al.Colorectal carcinoma-derived fibroblasts modulate natural killer cell phenotype and antitumor cytotoxicity[J].Med Oncol,2013,30(3):663.
[22]Goncalves-Ribeiro S,Guillen DN,Berdiel-Acer M,et al.Carcinomaassociated fibroblasts affect sensitivity to oxaliplatin and 5FU in colorectal cancer cells[J].Oncotarget,2016,7(37):59766-59780
[23]Nakanishi Y,Nakatsuji M,Seno H,et al.COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+mouse polyps[J].Carcinogenesis,2011,32(9):1333-1339.
[24]Gosselin D,Link VM,Romanoski CE,et al.Environment drives selection and function of enhancers controlling tissue-specific macrophage identitiess[J].Cell,2014,159(6):1327-1340.
[25]Marech I,Ammendola M,Sacco R,et al.Tumour-associated macrophages correlate with microvascular bed extension in colorectal cancer patients[J].J Cell Mol Med,2016,20(7):1373-1380.
[26]Barnett FH,Rosenfeld M,Wood M,et al.Macrophages form functional vascular mimicry channels in vivo[J].Sci Rep,2016,6:36659.
[27]Weber CE,Kuo PC,The tumor microenvironment[J].Surg Oncol,2012,21(3):172-177.
[28]Yu M,Niu ZM,Wei Y Q.Effective response of the peritoneum microenvironment to peritoneal and systemic metastasis from colorectal carcinoma[J].Asian Pac J Cancer Prev,2013,14(12):7289-7294.
[29]Zhang Y,Sime W,Juhas M,et al.Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration[J].Eur J Cancer,2013,49(15):3320-3334.
[30]Ugel S,Peranzoni E,Desantis G,et al.Immune tolerance to tumor antigens occurs in a specialized environment of the spleen[J].Cell Rep,2012,2(3):628-639.
[31]Umansky V,Blattner C,Gebhardt C,et al.The role of myeloid-derived suppressor cells(MDSCs)in cancer progression[J].Vaccines(Basel),2016,4(4):10-13.
[32]Parker KH,Beury DW,Ostrand-Rosenberg S.Myeloid-derived suppressor cells:critical cells driving immune suppression in the tumor microenvi-ronment[J].Adv Cancer Res,2015,128(1):95-139.
[33]Blatner NR,Mulcahy MF,Dennis KL,et al.Expression of RORγt marks a pathogenic regulatory T cell subset in human colon cancer[J].SciTransl Med,2012,4(164):159-164.
[34]Kryczek I,Wu K,Zhao E,et al.IL-17+regulatory T cells in the microenvironments of chronic inflammation and cancer[J].Immunol,2011,186(7):4388-4395.
[35]Jang TJ.Progressive increase of regulatory T cells and decrease of CD8+T cells and CD8+T cells/regulatory T cells ratio during colorectal cancer development[J].Korean J Pathol,2013,47(5):443-451.
[36]Gregor MF,Hotamsisligil GS.Inflammatory mechanisms in obesity[J].Annu Rev Immunol,2011,29(1):415-445.
[37]Vurusaner B,Poli G,Basaga H.Tumor suppressor genes and ROS:complex networks of interactions[J].Free RadicBiol Med,2012,52(1):7-18.
[38]Coelho P,Almeida J,Prudencio C,et al.Effect of Adipocyte Secretome in Melanoma Progression and VasculogenicMimicry[J].J Cell Biochem,2016,117(7):1697-1706.
[39]Del CM,D'Archivio M,Conti L,et al.Visceral fat adipocytes from obese and colorectal cancer subjects exhibit distinct secretory and ω6 polyunsaturated fatty acid profiles and deliver immunosuppressive signals to innate immunity cells[J].Oncotarget,2016,7(39):63093-63105.
(2017-01-13收稿)
(2017-08-15修回)
(編輯:武斌 校對:鄭莉)
Advances in the relationship between peritoneal microenvironment and peritoneal metastasis in colorectal cancer
Chao YANG,Kuang XIAO,Dan SONG,Shilun TONG,Yongbin ZHENG
10.3969/j.issn.1000-8179.2017.17.054
Correspondence to:Yongbin ZHENG;E-mail:wqandzyb@163.com
Department of Gastrointestinal Surgery,Renmin Hospital of Wuhan University,Wuhan 430060,China
鄭勇斌 wqandzyb@163.com
楊超 專業(yè)方向為胃腸道腫瘤的基礎(chǔ)與臨床研究。
E-mail:whdxyangchao@163.com