李 翠, 吳永琴, 陳藝升, 高 晶, 應(yīng)春妹
白念珠菌臨床分離株吡咯類耐藥機(jī)制研究
李 翠, 吳永琴, 陳藝升, 高 晶, 應(yīng)春妹
目的 分析女性生殖道感染白念珠菌臨床分離株對(duì)5種抗真菌藥物的耐藥率,探討白念珠菌對(duì)吡咯類藥物的耐藥機(jī)制。方法 ① 收集2015年1-12月自復(fù)旦大學(xué)附屬婦產(chǎn)科醫(yī)院女性生殖道感染患者中分離的白念珠菌1 646株,統(tǒng)計(jì)菌株對(duì)5種抗真菌藥物的耐藥情況。② 收集包括該院和上海市另2所婦產(chǎn)科??漆t(yī)院微生物室臨床分離白念珠菌氟康唑耐藥菌株30株、劑量依賴性敏感(S-DD)菌株13株、敏感菌株10株。采用實(shí)時(shí)熒光定量PCR技術(shù)分析吡咯類耐藥組、S-DD組和敏感組之間藥物外排泵相關(guān)基因CDR1、CDR2、MDR1和藥物靶酶基因ERG11表達(dá)水平的差異。同時(shí),PCR擴(kuò)增ERG11和ERG3基因并測(cè)序,分析ERG11和ERG3基因與耐藥相關(guān)的突變位點(diǎn)。結(jié)果 ① 1 646株白念珠菌對(duì)伊曲康唑耐藥率最高,為5.2%,對(duì)伏立康唑、氟康唑和5-氟胞嘧啶的耐藥率分別為3.2%、2.5%和2.1%,所有菌株對(duì)兩性霉素B均敏感。② S-DD組和耐藥組ERG11基因表達(dá)較敏感組均顯著升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);而藥物外排泵基因CDR1、CDR2和MDR1表達(dá)量在敏感組、S-DD組和耐藥組間差異無統(tǒng)計(jì)學(xué)意義。③ 檢測(cè)到ERG11基因存在13個(gè)錯(cuò)義突變位點(diǎn),其中T123I、P98S和Y286D為新發(fā)現(xiàn)的3個(gè)氨基酸置換位點(diǎn);且T123I和Y132H同時(shí)出現(xiàn)在26株耐藥株中,其中16株為吡咯類藥物全耐藥;此外,2株吡咯類全耐藥菌株中檢測(cè)到ERG3基因雜合突變。 結(jié)論 外陰陰道念珠菌病患者中分離的白念珠菌對(duì)吡咯類藥物的耐藥率比5-氟胞嘧啶和兩性霉素高;ERG11基因突變及其過表達(dá)是該病白念珠菌吡咯類耐藥的主要分子機(jī)制之一。
外陰陰道念珠菌?。?白念珠菌; 吡咯類耐藥
外陰陰道念珠菌?。╲ulvovaginal candidiasis,VVC)是一種由念珠菌引起的婦科常見外陰陰道炎。約75 %育齡婦女一生中至少患過1次VVC,約45 %患者經(jīng)歷過2次或以上發(fā)病,其中5 %左右的患者反復(fù)發(fā)作成為復(fù)發(fā)性VVC(RVVC)[1]。VVC 80 %~90 %的病原體為白念珠菌。氟康唑因其廣譜、高效、良好的生物利用度及安全性等優(yōu)點(diǎn),成為臨床治療該病應(yīng)用最廣泛的抗真菌藥物,但由于氟康唑僅具有抑菌作用,在預(yù)防、經(jīng)驗(yàn)用藥、不規(guī)則治療及長(zhǎng)療程給藥過程中易產(chǎn)生耐藥性。白念珠菌對(duì)氟康唑的耐藥率由20世紀(jì)90年代初期的不到1 %上升至目前的5 %左右[2]。白念珠菌對(duì)吡咯類藥物耐藥機(jī)制的研究也成為當(dāng)今臨床和基礎(chǔ)醫(yī)學(xué)研究的熱點(diǎn)之一。由于生殖道用藥有其獨(dú)特的特點(diǎn),所以分析VVC患者臨床分離白念珠菌耐藥率,從基因水平研究白念珠菌對(duì)氟康唑的耐藥機(jī)制,對(duì)指導(dǎo)VVC治療有重要意義。
1.1 材料
1.1.2 儀器和試劑 API / ATB半自動(dòng)微生物鑒定系統(tǒng)(法國(guó)生物梅里埃公司),HF safe 1 200 / c超凈工作臺(tái)(上海力申科學(xué)儀器有限公司),CO2恒溫培養(yǎng)箱(Heraeus),Nanodrop 2000核酸定量分析儀,ABI 7900 HT Fast 熒光定量PCR儀,Yeast RNAiso Kit(TaKaRa)試劑盒、PrimeScript RTPCR Kit(TaKaRa,Perfect Real Time)試劑盒、SYBR? Premix Ex TaqTM II(TaKaRa,Perfect Real Time)試劑盒購(gòu)自于大連寶生物工程有限公司。1 % DEPC-H2O購(gòu)自于碧云天公司。
1.2 方法
1.2.1 菌株培養(yǎng)鑒定 標(biāo)本收集后立即接種科瑪嘉念珠菌顯色平皿(上??片敿挝⑸锛夹g(shù)有限公司),置于35?℃孵育箱中培養(yǎng)24~48 h,平皿上菌落呈翠綠色。并用API 20C AUX酵母鑒定系統(tǒng)進(jìn)一步加以鑒定。所有鑒定好的菌株保存于25 %甘油YPD保存液中,-80?℃冷凍保存。
1.2.2 抗真菌藥物敏感試驗(yàn) 挑取生長(zhǎng)良好的單個(gè)菌落,采用ATB FUNGUS 3試劑盒進(jìn)行體外抗真菌藥物敏感試驗(yàn)。該試劑盒包括5種抗真菌藥物:5-氟胞嘧啶、兩性霉素B、氟康唑、伊曲康唑和伏立康唑。藥敏結(jié)果按照CLSI M27-A3折點(diǎn)判斷。
1.2.3 ERG3、ERG11基因擴(kuò)增與測(cè)序 將活化的菌種接種于YPD平皿30?℃培養(yǎng)24 h,挑取單個(gè)克隆接種至YPD 培養(yǎng)液5 mL中30?℃恒溫?fù)u床中搖菌24 h,菌液離心并棄上清液,用無菌PBS洗2次,棄上清液。使用玻璃珠振蕩法破壁后,采用酚氯仿法抽提基因組DNA,使用Nanodrop 2000核酸定量分析儀檢測(cè)基因組DNA濃度,用無菌雙蒸水稀釋至100 ng / μL。ERG3及ERG11基因擴(kuò)增引物見表1。所有PCR反應(yīng)條件參照PrimeSTAR?HS DNAPolymerase試劑盒(大連寶生物工程有限公司)說明書。PCR產(chǎn)物雙向測(cè)序由北京六合華大基因科技股份有限公司上海分公司完成。
1.2.4 RNA抽提和cDNA合成 挑取單個(gè)菌落接種于YPD培養(yǎng)液5 mL中,于30?℃振蕩孵育24 h,取10 μL菌液接種于YPD培養(yǎng)液5 mL中再振蕩4~6 h至對(duì)數(shù)生長(zhǎng)期。離心,棄上清液,用無菌PBS洗滌2次, 經(jīng)玻璃珠振蕩法破除真菌細(xì)胞壁后,采用pH 4.5的酚氯仿抽提總RNA,然后溶于DEPC水50 μL中。檢測(cè)總RNA的濃度,參照PrimeScript? RT reagent Kit with gDNA Eraser試劑盒(大連寶生物工程有限公司)說明書合成cDNA。合成cDNA產(chǎn)物用無菌雙蒸水稀釋至5 ng / μL,于-20?℃保存。
1.2.5 ERG11及外排泵基因(CDR1, CDR2,MDR1)mRNA表達(dá)水平測(cè)定 引物設(shè)計(jì)參照已有文獻(xiàn)[3],其中18S為內(nèi)參基因,見表1。 熒光定量PCR檢測(cè)條件參考 SYBR?Premix Ex Taq? II(TliRNaseH Plus) 試劑盒(大連寶生物工程有限公司)說明書,每個(gè)標(biāo)本做3個(gè)復(fù)孔檢測(cè)。所有定量反應(yīng)都在ABI 7900 HT Fast 熒光定量PCR儀上進(jìn)行并自動(dòng)檢測(cè)和計(jì)算得出Ct值。ΔCt=目的基因Ct值-18S的Ct值(加樣量250倍稀釋),再通過與15株敏感株平均值相比獲得 ΔΔCt,以 2-ΔΔCt為目的基因的相對(duì)表達(dá)量,觀察ERG11及外排泵基因 mRNA在白念珠菌耐藥株中的表達(dá)水平。而白念珠菌耐藥株基因過表達(dá)的判讀以小于ΔCt(敏感株平均值)-3SD作為過表達(dá)值[4]。
1.2.6 統(tǒng)計(jì)學(xué)分析 采用SPSS 13.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,選用post-hoc Dunn's multiple comparison test,Kruskal-Wallis test檢驗(yàn)及Mann-Whitney U test非參數(shù)分析,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
表1 基因測(cè)序及熒光定量PCR所用引物Table 1 PCR primers for gene sequencing and f l uorescence quantif i cation
2.1 VVC白念珠菌耐藥率分析
我呢,也是太忙了,根本顧不上媽。別說媽了,連孩子也顧不上。當(dāng)時(shí),正趕上第三屆加油員技能比武大賽,公司讓我?guī)ш?duì)去參加比賽,賽前有半個(gè)月封閉式集訓(xùn),連家都回不了。媽說:“你去吧,要比出好成績(jī)!”我不知道她說這話的時(shí)候,已經(jīng)病了。我沒有在意媽。有時(shí)候孩子接不上吃(沒明白),她給我打電話,我還埋怨她,就沒想想她一個(gè)人抱著孩子,手都騰不開,怎么給孩子做吃的?更沒有想到,她已經(jīng)病了,病得很重,還強(qiáng)忍著。
1 646株白念珠菌對(duì)5種抗真菌藥物敏感性分析結(jié)果見表2。53株來自于3所醫(yī)院臨床分離白念珠菌中氟康唑耐藥30株、劑量依賴性敏感(S-DD)13株、敏感10株。
表2 1 646株白念珠菌對(duì)5種抗真菌藥物的耐藥率和敏感率Table 2 Susceptibility of 1 646 Candida albicans isolates to if ve antifungal agents(%)
2.2 白念珠菌ERG11基因和ERG3基因與耐藥相
2.3 白念珠菌外排泵相關(guān)耐藥基因檢測(cè)
本研究以白念珠菌18S rRNA為內(nèi)參,對(duì)吡咯類藥物相關(guān)耐藥基因進(jìn)行實(shí)時(shí)熒光定量PCR檢測(cè),吡咯類敏感株、S-DD株和耐藥菌株的ERG11、CDR1、CDR2和MDR1基因表達(dá)水平見圖1。3組菌株耐藥基因ERG11表達(dá)水平有顯著性差異,耐藥株與敏感株相比差異有統(tǒng)計(jì)學(xué)意義(P <0.01),S-DD株與敏感株相比差異也有統(tǒng)計(jì)學(xué)意義(P <0.05)。CDR1基因在耐藥組中僅1株高表達(dá),S-DD組中無高表達(dá),CDR1基因在耐藥組、S-DD組和敏感組間表達(dá)差異無統(tǒng)計(jì)學(xué)意義。CDR2基因在S-DD和耐藥株中分別有1株和3株高表達(dá),MDR1基因僅在耐藥株中有2株高表達(dá),CDR2和MDR1基因在3組菌株間表達(dá)差異均無統(tǒng)計(jì)學(xué)意義。關(guān)的突變分析
VVC患者吡咯類白念珠菌耐藥株中共檢測(cè)出靶酶氨基酸置換(錯(cuò)義突變)有T123I、Y132H、A114S、G465S、G448E、D116E、K128T、Y257H、P98S、Y286D,其中T123I、P98S和Y286D為國(guó)內(nèi)外首先報(bào)道的3個(gè)氨基酸置換位點(diǎn);且T123I和Y132H同時(shí)出現(xiàn)在26株耐藥株中,其中16株為吡咯類藥物全耐藥;此外,2株吡咯類全耐藥菌株中檢測(cè)到ERG3基因雜合錯(cuò)義突變,分別為R365G、A18P。白念珠菌敏感株靶酶共檢測(cè)到D116E、V437I、K128T、E266D、V488I等5個(gè)不同的氨基酸置換位點(diǎn)。而敏感株中未檢測(cè)到ERG3基因的錯(cuò)義突變。結(jié)果見表3。
近年來,白念珠菌仍然是陰道炎患者中感染率最高的菌株。何蘭娟等[5]對(duì)婦科門診陰道炎678例患者分析,真菌感染最為常見,共237例,占
34.96 %,以白念珠菌感染為主,檢出218例,占32.15 %。本研究顯示,2015年我院VVC患者陰道分泌物標(biāo)本中共分離出1 807株念珠菌,其中白念珠菌1 646株(占91.1 %),光滑念珠菌161株(占8.9 %),這與國(guó)內(nèi)外的報(bào)道基本一致[6-7]。
表3 53株白念珠菌藥敏及ERG11基因和ERG3基因氨基酸置換位點(diǎn)Table 3 Susceptibility of 53 Candida albicans isolates and amino acid substitutions in Erg11p and Erg3p
ERG11基因編碼的靶酶14α-去甲基化酶是真菌細(xì)胞膜麥角固醇合成通路上的關(guān)鍵酶,吡咯類藥物通過與該酶的活性位點(diǎn)結(jié)合,影響真菌麥角固醇的合成,從而抑制真菌的生長(zhǎng)。大量研究證實(shí),靶酶基因ERG11的錯(cuò)義突變,改變了靶酶的空間構(gòu)象,影響了藥物對(duì)靶酶的親和力,從而導(dǎo)致白念珠菌對(duì)吡咯類藥物的耐藥[8-10]。ERG11基因易發(fā)生突變,Marichal等[11]通過對(duì)靶酶一級(jí)結(jié)構(gòu)統(tǒng)計(jì)分析發(fā)現(xiàn),與吡咯類藥物耐藥有關(guān)的錯(cuò)義突變主要集中在3個(gè)熱點(diǎn)區(qū)域(氨基酸105-165 266-287和405-488)。而本次發(fā)現(xiàn)的T123I、P98S和Y286D為國(guó)內(nèi)外首先報(bào)道的3個(gè)氨基酸置換位點(diǎn),其中T123I位于氨基酸105-165熱點(diǎn)區(qū)域,Y286D位于氨基酸266-287熱點(diǎn)區(qū)域,因此這2個(gè)新發(fā)現(xiàn)的氨基酸置換位點(diǎn)很可能與吡咯類藥物耐藥有關(guān)。本研究對(duì)VVC患者分離的吡咯類耐藥的白念珠菌ERG11基因測(cè)序發(fā)現(xiàn)了13個(gè)錯(cuò)義突變,其中氨基酸置換Y132H、A114S、Y257H和G448E已經(jīng)通過生物學(xué)驗(yàn)證與耐藥有關(guān)[12]。本研究發(fā)現(xiàn)Y132H和新發(fā)現(xiàn)的氨基酸置換T123I存在于16株吡咯類藥物全耐藥菌株中,且均屬于第一熱點(diǎn)區(qū)域,所以T123I很可能與吡咯類藥物耐藥有關(guān),這有待進(jìn)一步的生物學(xué)驗(yàn)證。氨基酸置換D116E、K128T、E266D、V437I和V488I由于在耐藥株和敏感株中都存在,所以這些位點(diǎn)的改變并沒有引起對(duì)吡咯類藥物耐藥,這與文獻(xiàn)報(bào)道一致[13]。此外,ERG3基因是麥角固醇生物合成通路的另一個(gè)重要酶,有研究報(bào)道ERG3基因的錯(cuò)義突變與白念珠菌吡咯類耐藥有關(guān),甚至?xí)?dǎo)致兩性霉素B耐藥[14]。而本研究并未發(fā)現(xiàn)ERG3基因的純合錯(cuò)義突變。
表3(續(xù))Table 3(continued)
圖1 白念珠菌耐藥基因ERG11、CDR1、CDR2、MDR1表達(dá)水平圖Figure 1 Expression levels of ERG11, CDR1, CDR2 and MDR1 in Candida albicans isolates
有大量研究表明,靶酶ERG11基因表達(dá)升高與吡咯類藥物耐藥有關(guān),靶酶的過度表達(dá)導(dǎo)致吡咯類藥物抑菌效果降低[15-17],這與本研究結(jié)論一致,S-DD和耐藥菌株都存在不同程度的ERG11基因過表達(dá)。吡咯類藥物耐藥的另一個(gè)重要原因是外排泵基因CDR1、CDR2及MDR1過表達(dá),外排泵活力增加,使得藥物攝入減少,外排增加,藥物不能在細(xì)胞內(nèi)集聚,進(jìn)而產(chǎn)生耐藥。雖然有大量文獻(xiàn)證實(shí)外排泵基因過表達(dá)與吡咯類藥物耐藥有關(guān)[18-20],但在本研究中并沒有發(fā)現(xiàn)CDR1、CDR2和MDR1基因在敏感株、S-DD株和耐藥株之間的顯著性差異。本研究中耐藥基因ERG11是吡咯類藥物耐藥的主要原因之一,對(duì)白念珠菌耐藥機(jī)制的研究對(duì)耐藥導(dǎo)致的RVVC治療有重要意義。
VVC念珠菌感染及耐藥有其獨(dú)特的特點(diǎn),本研究對(duì)VVC病原菌的探討對(duì)其治療有重要意義。2015年美國(guó)CDC陰道感染診斷和治療指南中,對(duì)VVC治療方案依然推薦局部用藥、全身用藥或兩者聯(lián)合用藥,并且延長(zhǎng)療程、鞏固治療,這種用藥方式是否會(huì)引起基因突變而導(dǎo)致耐藥,也有待觀察。本研究發(fā)現(xiàn)該病患者中分離的耐藥白念珠菌耐藥機(jī)制以ERG11基因突變和過表達(dá)為主,這與以往報(bào)道白念珠菌的耐藥機(jī)制以外排泵為主并不一致。所以,對(duì)VVC耐藥白念珠菌耐藥機(jī)制的探討對(duì)指導(dǎo)臨床用藥和治療有重要意義。
[1] 朱曉芳, 王家俊. 外陰陰道念珠菌病的病原學(xué)研究進(jìn)展[J].國(guó)外醫(yī)學(xué)(微生物學(xué)分冊(cè)), 2002,25(2):33-36.
[2] 徐英春, 李若瑜, 倪語(yǔ)星, 等. 如何正確理解抗真菌藥物體外敏感試驗(yàn)結(jié)果對(duì)臨床用藥的指導(dǎo)價(jià)值[J]. 中華檢驗(yàn)醫(yī)學(xué)雜志,2008,31(2):128-132.
[3] LIU JY, SHI C, WANG Y, et al. Mechanisms of azole resistance in Candida albicans clinical isolates from Shanghai,China[J]. Res Microbiol, 2015,166(3):153-161.
[4] CHAU AS, MENDRICK CA, SABATELLI FJ, et al. Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles[J]. Antimicrob Agents Chemother, 2004,48(6):2124-2131.
[5] 何蘭娟, 吳麗燕, 滕美君. 婦科門診陰道分泌物感染病原學(xué)及耐藥性分析[J]. 中國(guó)性科學(xué), 2015,24(2):3-6.
[6] RICHTER SS, GALASK RP, MESSER SA, et al. Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases[J]. J Clin Microbiol, 2005,43(5):2155-2162.
[7] FAN SR, LIU XP, LI JW. Clinical characteristics of vulvovaginal candidiasis and antifungal susceptibilities of Candida species isolates among patients in southern China from 2003 to 2006[J]. J Obstet Gynaecol Res, 2008,34(4):561-566.
[8] SANGLARD D, ISCHER F, KOYMANS L, et al. Amino acid substitutions in the cytochrome P-450 lanosterol 14alphademethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents[J]. Antimicrob Agents Chemother, 1998,42(2):241-253.
[9] XIANG MJ, LIU JY, NI PH, et al. Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans[J]. FEMS Yeast Res, 2013,13(4):386-393.
[10] FLOWERS SA, COLON B, WHALEY SG, et al. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans[J]. Antimicrob Agents Chemother, 2015,59(1):450-460.
[11] MARICHAL P, KOYMANS L, WILLEMSENS S, et al. Contribution of mutations in the cytochrome P450 14alphademethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans[J]. Microbiology, 1999,145 ( Pt 10):2701-2713.
[12] KUDO M, OHI M, AOYAMA Y. Effects of Y132H and F145L Substitutions on the activity, azole resistance and spectral properties of Candida albicans Sterol 14-demethylase P450(CYP51): a live example showing the selection of altered P450 through interaction with environmental compounds[J]. J Biochem, 2005,137(5):625-632.
[13] YING Y, ZHAO Y, HU X, et al. In vitro fluconazole susceptibility of 1,903 clinical isolates of Candida albicans and the identif i cation of ERG11 mutations[J]. Microb Drug Resist,2013,19(4):266-273.
[14] MORIO F, PAGNIEZ F, LACROIX C, et al. Amino acid substitutions in the Candida albicans sterol Delta5,6-desaturase(Erg3p) confer azole resistance: characterization of two novel mutants with impaired virulence[J]. J Antimicrob Chemother,2012,67(9):2131-2138.
[15] HEILMANN CJ, SCHNEIDER S, BARKER KS, et al. An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans[J]. Antimicrob Agents Chemother, 2010,54(1):353-359.
[16] FLOWERS SA, BARKER KS, BERKOW EL, et al. Gainof-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans[J]. Eukaryot Cell, 2012,11(10):1289-1299.
[17] XU Y, SHENG F, ZHAO J, et al. ERG11 mutations and expression of resistance genes in f l uconazole-resistant Candida albicans isolates[J]. Arch Microbiol, 2015,197(9):1087-1093.
[18] CHEN LM, XU YH, ZHOU CL, et al. Overexpression of CDR1 and CDR2 genes plays an important role in f l uconazole resistance in Candida albicans with G487T and T916C mutations[J]. J Int Med Res, 2010,38(2):536-545.
[19] PRASAD R, BANERJEE A, KHANDELWAL NK, et al. The ABCs of Candida albicans multidrug transporter cdr1[J]. Eukaryotic Cell, 2015,14(12):1154-1164.
[20] LO HJ, TSENG KY, KAO YY, et al. Cph1p negatively regulates MDR1 involved in drug resistance in Candida albicans[J]. Int J Antimicrob Agents, 2015,45(6):617-621.
Mechanism of azole resistance in the Candida albicans strains isolated from vulvovaginal candidiasis
LI Cui, WU Yongqin, CHEN Yisheng, GAO Jing, YING Chunmei. (Department of Clinical Laboratory, Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200011, China)
Objective To investigate the resistance rates of the Candida albicans strains isolated from patients with vulvovaginal candidiasis to 5 antifungal agents and examine the mechanism of azole resistance in these strains. Methods A total of 1 646 C. albicans strains were collected in Obstetrics and Gynecology Hospital of Fudan University from January to December 2015. The resistance rates of these isolates to f i ve antifungal agents were analyzed. Azole-resistant (n=30), dose dependent sensitive (S-DD) (n=13), and susceptible isolates (n=10) were randomly selected from the microbiology laboratories of three obstetrics and gynecology hospitals in Shanghai. The expression levels of drug eff l ux pump related gene CDR1, CDR2, MDR1 and drug target enzyme gene ERG11 were analyzed by real-time f l uorescence quantitative polymerase chain reaction (PCR). At the same time, the ERG11 and ERG3 genes were amplif i ed by PCR and sequenced, and analyzed for resistance-related mutations. Results Of the 1 646 C. albicans strains, 5.2%, 3.2%, 2.5% and 2.1% were resistant to itraconazole, voriconazole, f l uconazole and 5-f l uorocytosine, respectively. All isolates were sensitive to amphotericin B. The expression of ERG11 gene was signif i cantly higher in S-DD group and azole-resistant group than in azole-sensitive group (P<0.05). The expression of CDR1, CDR2 and MDR1 did not show significant difference among the three groups. There were 13 missense mutations in the ERG11 gene, of which T123I, P98S and Y286D amino acid substitutions were newly discovered. Both T123I and Y132H were identified in 26 resistant isolates, of which 16 were pan-azole-resistant. In addition, the ERG3 heterozygousgene mutation was detected in two pan-azole-resistant isolates. Conclusions The C. albicans strains isolated from vulvovaginal candidiasis showed higher resistance rates to azole antifungal agents than that to 5-f l uorocytosine and amphotericin B. Mutation and over-expression of ERG11 gene may be one of the prevalent molecular mechanisms underlying azole resistance in C. albicans.
vulvovaginal candidiasis; Candida albicans; azole resistance
R379.4
A
1009-7708 ( 2017 ) 04-0397-07
10.16718/j.1009-7708.2017.04.010
2016-12-08
2017-01-11
復(fù)旦大學(xué)附屬婦產(chǎn)科醫(yī)院檢驗(yàn)科,上海 200011。
李翠(1984—),女,碩士,主管技師,主要從事病原微生物的致病機(jī)制研究。
應(yīng)春妹,E-mail:ycmzh2012@163.com。