李進(jìn)偉,王 敏,張婷婷,劉元法,范柳萍※,丁紹東
(1. 江南大學(xué)食品學(xué)院,無(wú)錫214122;2. 上海熱麗科技集團(tuán)有限公司,上海200125;3. 江南大學(xué)食品科學(xué)與技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,無(wú)錫214122)
不同油炸時(shí)間的馬鈴薯片油脂吸收規(guī)律
李進(jìn)偉1,王 敏2,張婷婷1,劉元法1,范柳萍1※,丁紹東3
(1. 江南大學(xué)食品學(xué)院,無(wú)錫214122;2. 上海熱麗科技集團(tuán)有限公司,上海200125;3. 江南大學(xué)食品科學(xué)與技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,無(wú)錫214122)
為了表征不同油炸時(shí)間下馬鈴薯片的油脂吸收規(guī)律,該文結(jié)合索氏抽提、染色法、激光共聚焦掃描鏡觀察、低場(chǎng)核磁共振成像技術(shù)等方法對(duì)馬鈴薯片的油脂吸收規(guī)律進(jìn)行描述和解釋,獲得了油炸溫度180 ℃、油料比10:1時(shí)不同油炸時(shí)間下馬鈴薯片油脂含量、油脂類型以及油脂分布的變化規(guī)律,并結(jié)合其孔隙特征解釋油脂的吸收行為。結(jié)果表明:油炸時(shí)間(0~12 min)顯著影響馬鈴薯片的總油脂質(zhì)量分?jǐn)?shù)、表面油脂、結(jié)構(gòu)油脂和表面滲透油脂質(zhì)量分?jǐn)?shù)(P<0.05);隨著油炸時(shí)間的延長(zhǎng),馬鈴薯片的總油脂質(zhì)量分?jǐn)?shù)逐漸上升,當(dāng)油炸10 min后,總油脂質(zhì)量分?jǐn)?shù)達(dá)到47.09%,之后逐漸趨于穩(wěn)定;馬鈴薯片的表面油脂質(zhì)量分?jǐn)?shù)最低,約1.30%~2.06%;隨油炸時(shí)間的延長(zhǎng),結(jié)構(gòu)油脂質(zhì)量分?jǐn)?shù)逐漸上升,而油炸6 min后馬鈴薯片的表面滲透油脂質(zhì)量分?jǐn)?shù)呈下降趨勢(shì);激光共聚焦掃描鏡觀察顯示,油炸過(guò)程中,隨著油炸時(shí)間的延長(zhǎng),馬鈴薯片紅色區(qū)域面積增大,表明油脂質(zhì)量分?jǐn)?shù)增加,且油脂從表面逐漸向中心滲透,黏附于細(xì)胞壁上,充盈細(xì)胞間質(zhì);當(dāng)油炸時(shí)間為0~8 min時(shí),馬鈴薯片的孔體積和孔隙率隨油炸時(shí)間而增大,對(duì)應(yīng)的油脂質(zhì)量分?jǐn)?shù)也逐漸提高,研究結(jié)果可為油脂吸收的表征,以及低油馬鈴薯片的開(kāi)發(fā)提供參考。
油脂;食品加工;微觀結(jié)構(gòu);油炸;油脂含量;孔隙特征
李進(jìn)偉,王 敏,張婷婷,劉元法,范柳萍,丁紹東. 不同油炸時(shí)間的馬鈴薯片油脂吸收規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(10):310-314. doi:10.11975/j.issn.1002-6819.2017.10.041 http://www.tcsae.org
Li Jinwei, Wang Min, Zhang Tingting, Liu Yuanfa, Fan Liuping, Ding Shaodong. Oil absorption rule of fried potato chips during different frying time[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8):310-314. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.10.041 http://www.tcsae.org
由于油炸過(guò)程的復(fù)雜性,油炸食品油脂吸收規(guī)律的研究幾乎僅涉及油脂含量這個(gè)指標(biāo),但油脂吸收不僅僅是宏觀上油脂含量的差異,還包括油脂進(jìn)入樣品內(nèi)部的途徑以及內(nèi)部的分布等。有研究采用染色油法表征油炸食品中表面油脂、表面滲透油脂、結(jié)構(gòu)油脂等油脂的不同吸收類型[1-3];隨著顯微鏡技術(shù)的發(fā)展,激光共聚焦掃描顯微鏡(confocal laser scanning microscopy,CLSM)可用來(lái)分析油炸樣品中微觀油脂分布[4-8],以及細(xì)胞結(jié)構(gòu)和孔隙結(jié)構(gòu),但其觀察的范圍有限;低場(chǎng)核磁共振(low field nuclear magnetic resonance,LF-NMR)成像技術(shù)可表征整個(gè)油炸樣品油脂的宏觀分布[9-12],該技術(shù)不僅可以反映油脂分布位置,也能夠表征不同位置的油脂含量的差異,但僅局限于定性表征,只有聯(lián)合油脂含量、油脂類型、油脂分布才可以較好地表征油炸過(guò)程中油脂的吸收行為。
油炸過(guò)程中,油炸時(shí)間、溫度、壓力、料液比等油炸條件影響果蔬脆片中油脂的含量與油脂吸收行為[13-16],目前研究油炸時(shí)間對(duì)油脂吸收影響的文獻(xiàn)很多,何定兵等研究了土豆條油炸和冷卻過(guò)程中組織結(jié)構(gòu)含油量的變化,發(fā)現(xiàn)吸油過(guò)程主要是發(fā)生在冷卻早期階段[17];Su等發(fā)現(xiàn),在土豆片微波輔助真空油炸過(guò)程中,較高的油炸溫度和真空度會(huì)降低產(chǎn)品的含油率[18];但目前的結(jié)果僅僅是基于果蔬脆片中的總油脂含量,缺乏油脂分布、油脂類型的相關(guān)研究,導(dǎo)致油脂吸收行為的認(rèn)識(shí)受到很大的局限。針對(duì)上述現(xiàn)狀,本文利用染色法闡明了油炸過(guò)程中不同類型油脂的吸收規(guī)律,采用激光共聚焦掃描顯微鏡表征了油炸過(guò)程中油脂的吸收與分布特征,在此基礎(chǔ)上,通過(guò)研究物料孔隙的變化規(guī)律,分析了油脂吸收與孔隙的相關(guān)性,研究結(jié)果對(duì)于油脂吸收規(guī)律的認(rèn)識(shí)提供了較好的思路和方法。
1.1 材料與儀器
馬鈴薯,購(gòu)于當(dāng)?shù)爻校蛔貦坝停ㄆ鹚钟停?,益海(廣州)糧油工業(yè)有限公司;石油醚(30~60 ℃)、蘇丹I、蘇丹黑為分析純?cè)噭?,?guó)藥集團(tuán)化學(xué)試劑有限公司;尼羅紅為分析純?cè)噭?,日本東京化成工業(yè)株式會(huì)社。HH-S油炸鍋,金壇市精達(dá)儀器制造廠;OX406脂肪測(cè)定儀,濟(jì)南海能儀器股份有限公司;UV-2600紫外可見(jiàn)分光光度計(jì),上海天美科學(xué)儀器有限公司;Quanta-200掃描電子顯微鏡,荷蘭FEI公司;LSM710激光共聚焦顯微鏡,德國(guó)蔡司公司;MesoMR23-060H-I核磁共振成像分析儀,上海紐邁電子科技有限公司;Poremaster GT-60壓汞儀,美國(guó)康塔儀器公司。
1.2 試驗(yàn)方法
1.2.1 馬鈴薯預(yù)處理
按前期預(yù)處理方法,馬鈴薯經(jīng)挑選、清洗、去皮后,切成3 mm厚的薄片,然后用模具制成直徑為22 mm的圓片,清洗后于沸水中漂燙3 min,冷卻,得到新鮮馬鈴薯片[1]。
1.2.2 油炸過(guò)程
設(shè)置油炸鍋油炸溫度為 180 ℃下進(jìn)行常壓油炸,將制備好的新鮮馬鈴薯片于 1 000 mL棕櫚油中(油料比10∶1)油炸 2、4、6、8、10、12 min。
按前期試驗(yàn)的方法制備與添加染色油[1-2],將 10.2 g蘇丹I溶于1 L的起酥油中,在50 ℃下磁力攪拌直到其完全溶解,分裝,冷藏,備用。在油炸過(guò)程結(jié)束前 20 s加入25 mL已預(yù)熱到相同溫度的染色油,攪拌均勻(在10 s內(nèi)完成),取出樣品。所有油炸樣品從煎炸油中取出后,置于鐵絲網(wǎng)上,于室溫(25 ℃)下靜態(tài)瀝油10 min后,進(jìn)行后續(xù)測(cè)定。
1.2.3 分析方法
總油脂和不同類型油脂含量的測(cè)定:總油脂(TO,total oil)含量根據(jù)索氏提取法測(cè)定;油炸樣品的不同類型油脂即表面油脂(SO, surface oil)、表面滲透油脂(PSO,penetrated surface oil)和結(jié)構(gòu)油脂(STO, structural oil)含量按前期[1-2]的方法測(cè)定。
宏觀油脂分布的表征[19]:將不同樣品于0.6 g/L的蘇丹 I染色油中油炸不同時(shí)間,油炸前 20 s向其中加入10.2 g/L的蘇丹黑染色油,攪拌均勻。油炸結(jié)束后取出樣品,室溫冷卻10 min,用解剖刀于薯片中心橫切或直接用數(shù)碼相機(jī)拍照觀察。
激光共聚焦掃描顯微鏡表征油脂分布[1]:將樣品于0.019 2 g/L的尼羅紅染色油中油炸,取出,如圖1所示對(duì)樣品不同部位進(jìn)行橫切或縱切,a表示薯片中心橫切面的圓心處,b表示中心橫切面的1/2半徑圓周處,c表示中心橫切面的圓周處,d表示中心縱切面的1/2半徑處,用激光共聚焦掃描顯微鏡拍照觀察。激發(fā)波長(zhǎng)為514 nm,發(fā)射波長(zhǎng)為598 nm;掃描深度180μm;在三維重建時(shí),步長(zhǎng)為0.45μm;圖像處理使用Carl Zeiss LSM軟件(ZEN 2012)。
圖1 取樣示意圖Fig.1 Schematic diagram of sampling
核磁法表征油脂分布[19]:將油炸后的馬鈴薯片放入核磁共振成像分析儀的線圈中成像。線圈直徑為25 mm,共振頻率23.312 MHz,磁體強(qiáng)度0.5 T,磁體溫度為32.00 ℃。
樣品微觀結(jié)構(gòu)的觀察[1]:采用掃描電鏡分析馬鈴薯油炸樣品的微觀結(jié)構(gòu)。將樣品脫油去水后,固定于掃描電鏡的專用樣品套件上,在真空條件下進(jìn)行表面鍍金。將樣品放于掃描電鏡下觀察,操作電壓為5 kV。
樣品孔隙結(jié)構(gòu)的分析[19]:采用壓汞儀測(cè)定樣品微觀孔隙結(jié)構(gòu),將脫油去水的樣品切成長(zhǎng)和寬均小于10 mm的小塊,取7~8塊樣品置于壓汞儀的樣品腔中,其直徑為10 mm,高度為20 mm。壓力范圍為0.006~69.431 MPa。壓汞儀測(cè)試及數(shù)據(jù)處理使用Porowin軟件。汞對(duì)大多數(shù)固體材料具有非潤(rùn)濕性,需外加壓力才能進(jìn)入固體孔中,汞能進(jìn)入的孔的大小與壓力符合Washburn方程,使用汞侵入法可以測(cè)定多孔物料的孔體積、堆積密度、孔隙率等物理特性。
1.3 數(shù)據(jù)分析
所有測(cè)定均重復(fù)3次,用SPSS17.0數(shù)據(jù)處理軟件進(jìn)行單因素方差分析(ANOVA),利用Duncan法分析差異顯著性,顯著性水平P=0.05。
2.1 不同油炸時(shí)間下馬鈴薯片油脂含量和油脂類型的變化
表面油脂指經(jīng)冷卻后黏附在樣品表面的油脂;表面滲透油脂是指冷卻過(guò)程中從表面吸入的油脂;結(jié)構(gòu)油脂是指油炸過(guò)程中滲入油炸樣品內(nèi)部的油脂,它們共同構(gòu)成了油炸樣品的總油脂。圖2顯示了在180 ℃下油炸不同時(shí)間的油炸馬鈴薯片的總油脂含量和不同類型油脂含量變化曲線??梢钥闯?,油炸時(shí)間顯著影響總油脂含量、表面油脂、結(jié)構(gòu)油脂和表面滲透油脂含量(P<0.05)。在油炸2 min時(shí),總油脂質(zhì)量分?jǐn)?shù)上升至40.44%,油炸10 min時(shí),總油脂質(zhì)量分?jǐn)?shù)達(dá)到47.09%,且在前10 min,總油脂含量隨著油炸時(shí)間的增加而增加。在3種類型油脂中,表面油脂質(zhì)量分?jǐn)?shù)最低,約1.30%~2.06%,其含量隨著油炸時(shí)間的增加而降低。結(jié)構(gòu)油脂質(zhì)量分?jǐn)?shù)在2~10 min時(shí)顯著上升,從6.44%上升到25.13%。而B(niǎo)ouchon等[20]報(bào)道的結(jié)構(gòu)油脂含量卻很低,約 0.4%。這可能是因?yàn)樵谒麄冄芯恐惺且暂^大尺寸的馬鈴薯?xiàng)l(長(zhǎng) 5.1 cm,直徑1.075 cm)為試驗(yàn)對(duì)象,且油炸時(shí)間較短(5 min)。表面滲透油脂含量在2 min時(shí)最大,隨后降低。這可能是因?yàn)殡S著油炸過(guò)程的繼續(xù),油炸樣品水分含量減少,水蒸汽壓對(duì)結(jié)構(gòu)油脂的阻滯作用減弱,導(dǎo)致越來(lái)越多的結(jié)構(gòu)油脂占據(jù)了樣品內(nèi)部的孔洞結(jié)構(gòu),結(jié)構(gòu)油脂含量增加,在冷卻過(guò)程中,由表面滲入內(nèi)部的表面滲透油脂反而減少[1]。在油炸后期(10~12 min),總油脂和其組成油脂(表面油脂、結(jié)構(gòu)油脂和表面滲透油脂)含量保持恒定。
馬鈴薯片在不同油炸時(shí)間下蘇丹 I+蘇丹黑雙染色效果從圖 3中可以看出,隨著油炸時(shí)間的延長(zhǎng),樣品表面和橫截面越來(lái)越紅,這說(shuō)明在總油脂中結(jié)構(gòu)油脂所占比例越來(lái)越大;在最初的6 min,樣品表面較黑,而橫截面黑色較少,油脂滲入較少,說(shuō)明油炸前期,表面滲透油脂含量較大,結(jié)構(gòu)油脂含量較少。
圖2 油炸時(shí)間對(duì)油炸馬鈴薯片油脂質(zhì)量分?jǐn)?shù)的影響Fig.2 Effect of frying time on oil contents of fried potato chips
圖3 不同油炸時(shí)間的馬鈴薯片蘇丹I+蘇丹黑染色油脂分布Fig.3 Oil distribution of fried potato chips dyed with Sudan I and Sudan black at different frying times
2.2 不同油炸時(shí)間下馬鈴薯片油脂分布的變化
用激光共聚焦掃描與低場(chǎng)核磁共振成像分析技術(shù)研究不同油炸時(shí)間下馬鈴薯片的油脂分布。圖 4為油炸馬鈴薯片激光共聚焦掃描顯微鏡的三維圖,圖中紅色代表油脂分布區(qū)。當(dāng)油炸時(shí)間為2 min時(shí),a列中幾乎觀察不到油脂,這說(shuō)明此時(shí)煎炸油還未進(jìn)入樣品中心。比較前6 min的a、b、c列圖片,在同一油炸時(shí)間點(diǎn)下,c列油脂分布最多,b列其次,a列最少,這說(shuō)明油脂為從外向內(nèi)的滲入順序。由單層圖可以看出,油炸4 min時(shí),b列上的馬鈴薯片內(nèi)部細(xì)胞較為完整,因?yàn)榇藭r(shí)的馬鈴薯片內(nèi)部水分含量仍然較高。另從該圖像中可以觀察到油脂沿著細(xì)胞的形態(tài)輪廓進(jìn)行分布,黏附于細(xì)胞壁上,充盈細(xì)胞間質(zhì),Pedreschi等[21]和Bouchon等[22]觀察到了類似的現(xiàn)象。對(duì)油炸前8 min的樣品圖片進(jìn)行縱向比較,可以看出,隨著油炸時(shí)間的增加,油脂滲入樣品內(nèi)部越來(lái)越多,在10~12 min時(shí),滲入內(nèi)部的油脂增加不明顯,這與圖 2顯示的定量結(jié)果相吻合。從縱切圖片中也可以看出,隨著油炸時(shí)間的增加,滲入樣品內(nèi)部的油脂越來(lái)越多,且樣品內(nèi)部孔洞逐漸形成,該微觀結(jié)構(gòu)的形成可能是由于油炸過(guò)程中水蒸汽壓的急劇增大,從而導(dǎo)致細(xì)胞的變形和坍塌[23-25]。
低場(chǎng)核磁共振成像分析技術(shù)可以宏觀表征油脂的分布狀況。但由于核磁法測(cè)樣品的油脂分布只適用于含水率低于 15%的樣品。由于低含水率的薯片樣品中水分含有結(jié)合水,衰減很快,弛豫時(shí)間很短,儀器成像時(shí)只采集到油脂的信號(hào),得到的圖像只顯示油脂的分布。對(duì)于2 min和4 min樣品,由于含水率大于15%(初始含水率86.46%,油炸2min時(shí)為44.52%, 4min為15.14%),所以圖5只展示了6~12 min的油炸馬鈴薯片的核磁圖像,其對(duì)應(yīng)的含水率為4.41%~1.24%。核磁圖像不僅可以用顏色的差異來(lái)反映油脂信號(hào)的強(qiáng)弱,即紅色表示油脂含量高,藍(lán)色表示油脂含量低,而且可以直觀地表征油炸馬鈴薯片的整體油脂分布情況。從圖 5可以看出,隨著油炸時(shí)間的增加,油脂信號(hào)越來(lái)越強(qiáng),這表明隨著油炸時(shí)間的增加,樣品油脂含量越來(lái)越高。所以利用核磁法測(cè)定的薯片樣品的油脂吸收情況,其變化趨勢(shì)與圖 2的定量結(jié)果基本一致。Hickey等[26]也發(fā)現(xiàn)核磁法得到的結(jié)果與已知的樣品油脂含量一致性較好。隨著油炸過(guò)程的繼續(xù),油脂不僅僅分布在外表殼層,樣品內(nèi)部的信號(hào)逐漸增強(qiáng),油脂逐漸滲入油炸樣品內(nèi)部,這與結(jié)構(gòu)油脂變化趨勢(shì)一致。而Macmillan等[9]發(fā)現(xiàn)油脂只分布在殼層里,這是因?yàn)樗麄冞x擇的油炸樣品中心仍存在水分,而本文 10~12 min的油炸樣品已達(dá)到水分的平衡點(diǎn)(1.24%)。在油炸過(guò)程中,分布在邊緣殼層的油脂含量始終高于其他位置,這是因?yàn)檫吘墯拥目左w積較大,且與油脂直接接觸,從而較多的油脂分布其中[5,27]。
圖4 不同油炸時(shí)間的馬鈴薯片油脂分布激光共聚焦掃描顯微鏡三維圖Fig.4 CLSM 3D images of oil distribution of fried potato chips of different frying times
圖5 不同油炸時(shí)間的油炸馬鈴薯片油脂分布低場(chǎng)核磁圖Fig.5 LF-NMR images of oil distribution of fried potato chips of different frying times
2.3 不同油炸時(shí)間下馬鈴薯片微觀結(jié)構(gòu)的變化
油炸馬鈴薯片掃描電鏡如圖6顯示,在油炸4 min時(shí),樣品表面皺縮;8 min時(shí),油炸馬鈴薯片表面有輕微凸起現(xiàn)象。這可能是由于隨著油炸過(guò)程的繼續(xù),水分蒸發(fā)層由外向內(nèi)遷移,4 min時(shí)表面水分尚未蒸發(fā)完全,8 min時(shí),內(nèi)部水分的劇烈蒸發(fā)而產(chǎn)生了巨大的蒸汽壓使表面輕微膨脹。在8 min和10 min時(shí),油炸樣品表面仍可以觀察到連續(xù)、完整、緊繃的細(xì)胞結(jié)構(gòu)。Kalogianni等的研究中[23]也觀察到類似的現(xiàn)象。
圖6 不同油炸時(shí)間馬鈴薯片表面掃描電鏡圖(放大倍數(shù)100倍)Fig.6 SEM images of fried potato chips surface of different frying times (×100 times)
2.4 不同油炸時(shí)間下馬鈴薯片孔隙結(jié)構(gòu)的變化
表 1顯示了不同油炸時(shí)間的馬鈴薯片中孔隙的宏觀參數(shù),包括孔體積、堆積密度和孔隙率。在油炸前8 min,隨著油炸時(shí)間的增加,馬鈴薯片的孔體積和孔隙率逐漸升高,堆積密度逐漸降低。Adedeji和Ngadi[28]也同樣發(fā)現(xiàn)油炸樣品的堆積密度隨著油炸時(shí)間的增加而降低。油炸8 min以后,油炸樣品的孔體積、堆積密度和孔隙率逐漸趨于穩(wěn)定。在油炸前期(0~6 min),水分蒸發(fā)劇烈,形成的壓力較大,導(dǎo)致此階段樣品內(nèi)部孔隙結(jié)構(gòu)變化較大,但由于水分含量較高,油脂難以進(jìn)入樣品內(nèi)部,結(jié)構(gòu)油脂含量增加緩慢;在8 min時(shí),此時(shí)的水分蒸發(fā)速率很小,樣品內(nèi)部孔隙結(jié)構(gòu)基本形成,結(jié)構(gòu)油脂和總油脂達(dá)到較高值;在10 min時(shí),內(nèi)部吸油達(dá)到平衡,此時(shí)樣品可容納油脂的空間基本飽和,油脂含量趨于穩(wěn)定;孔隙參數(shù)反映的孔結(jié)構(gòu)的變化,其隨時(shí)間的變化規(guī)律與油脂吸收規(guī)律相一致,孔體積、孔隙率越大,對(duì)應(yīng)的油脂含量越高[7,29]。
表1 油炸時(shí)間對(duì)油炸馬鈴薯片孔隙宏觀參數(shù)的影響Table 1 Effect of frying time on macroscopic pore structure parameters of fried potato chips
1)當(dāng)油炸溫度180℃,油料比10∶1時(shí),油炸時(shí)間(0~2min)顯著影響馬鈴薯片的總油脂質(zhì)量分?jǐn)?shù)、表面油脂、結(jié)構(gòu)油脂和表面滲透油脂質(zhì)量分?jǐn)?shù)(P<0.05)。在 3種類型油脂中,表面油脂質(zhì)量分?jǐn)?shù)最低,約 1.30%~2.06%,其質(zhì)量分?jǐn)?shù)隨著油炸時(shí)間的增加而降低;結(jié)構(gòu)油脂質(zhì)量分?jǐn)?shù)在 2~10 min時(shí)顯著上升,從 6.44%上升到25.13%;表面滲透油脂質(zhì)量分?jǐn)?shù)在2 min時(shí)最大,隨后降低。
2)馬鈴薯片油炸過(guò)程中,油脂呈現(xiàn)從外向內(nèi)的滲入順序,從樣品的外表殼層逐漸向內(nèi)部滲入,且油脂沿著細(xì)胞的形態(tài)輪廓進(jìn)行分布,黏附于細(xì)胞壁上,充盈細(xì)胞間質(zhì);樣品中心的油脂含量低于外部邊緣殼層。
3)不同油炸時(shí)間下油脂的吸收過(guò)程,孔體積和孔隙率越大,對(duì)應(yīng)的油脂含量越高。
[1]Zhang T T, Li, J W, Ding, Z S, et al. Effects of initial moisture content on the oil absorption behavior of potato chips during frying process[J]. Food Bioprocess Technology,2016, 9(2): 331-340.
[2]張婷婷,俞琳,丁占生,等. 油炸時(shí)間和溫度對(duì)模擬馬鈴薯片油脂吸收的影響[J]. 食品工業(yè)科技,2015,36(13):49-52.Zhang Tingting, Yu Lin, Ding Zhansheng, et al. Effect of frying temperature and time on oil absorption of simulated potato flakes[J]. Science and Technology of Food Industry,2015, 36(13): 49-52. (in Chinese with English abstract)
[3]Rahman M S, Sablani S S. Structural characteristics of freeze-dried abalone: porosimetry and puncture test[J]. Food and Bioproducts Processing, 2003, 81(C4): 309-315.
[4]Dueik V, Moreno M C, Bouchon P. Microstructural approach to understand oil absorption during vacuum and atmospheric frying[J]. Journal of Food Engineering, 2012, 111(3): 528-536.
[5]朱瑤迪,鄒小波,申婷婷,等. 油炸藕片含油量快速預(yù)測(cè)及微觀結(jié)構(gòu)的三維重建[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(5):302-306.Zhu Yaodi, Zou Xiaobo, Shen Tingting, et al. Rapid detection of oil content and 3-dimensional reconstruction of microstructure of fried lotus root[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016,32(5): 302-306. (in Chinese with English abstract)
[6]朱瑤迪,鄒小波,趙杰文,等. 油炸方式對(duì)油炸藕片吸油率與微觀結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(6):201-211.Zhu Yaodi, Zou Xiaobo, Zhao Jiewen, et al. Research of oil uptake and distribution of fried lotus root slices based on confocal laser scanning microscopy[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(6):201-211. (in Chinese with English abstract)
[7]Moreno M C, Bouchon P. Microstructural characterization of deep-fat fried formulated products using confocal scanning laser microscopy and a non-invasive double staining procedure[J]. Journal of Food Engineering, 2013, 118(2):238-246.
[8]Gibis M, Schuh V, Weiss J. Effects of carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC) as fat replacers on the microstructure and sensory characteristics of fried beef patties[J]. Food Hydrocolloids, 2015, 45(3): 236-246.
[9]Macmillan B, Hickey H, Newling B, et al. Magnetic resonance measurements of French fries to determine spatially resolved oil and water content[J]. Food Research International, 2008, 41(6): 676-681.
[10]Martínez-Yusta A, Guillén M D. Deep-frying. A study of the influence of the frying medium and the food nature, on the lipidic composition of the fried food, using 1H nuclear magnetic resonance[J]. Food Research International, 2014,62(11): 998-1007.
[11]Oztop M H, Bansal H, Takhar P, et al. Using multi-slicemulti-echo images with NMR relaxometry to assess water and fat distribution in coated chicken nuggets[J]. LWT-Food Science and Technology, 2014, 55(2): 690-694.
[12]張晨芳,門玲,譚思敏,等. 油炸時(shí)間和溫度對(duì)椰味面包羅非魚(yú)品質(zhì)的影響[J]. 食品工業(yè)科技,2016,37(16):264-268.Zhang Chenfang, Men Ling, Tan Simin, et al. Effect of frying times and temperatures on the quality of coconut breaded tilapia fillets[J]. Science and Technology of Food Industry,2016, 37(16): 264-268. (in Chinese with English abstract)
[13]Zeng H, Chen J, Zhai J, et al. Reduction of the fat content of battered and breaded fish balls during deep-fat frying using fermented bamboo shoot dietary fiber[J]. LWT-Food Science and Technology, 2016, 73(11): 425-431.
[14]Albertos A B, Martin-Diana I, Jaime A M, et al. Protective role of vacuum vs. atmospheric frying on PUFA balance and lipid oxidation[J]. Innovative Food Science & Emerging Technologies, 2016, 36(8): 336-342.
[15]Cortés P, Segura L, Kawaji M, et al. The effect of gravity on moisture loss and oil absorption profiles during a simulated frying process using glass micromodels[J]. Food and Bioproducts Processing, 2015, 95(7): 133-145.
[16]Teruel M R, García-Segovia P, Martínez-Monzó J, et al. Use of vacuum-frying in chicken nugget processing[J]. Innovative Food Science & Emerging Technologies, 2014, 26(12):482-489.
[17]何定兵,徐斐,華澤釗,等. 降低油炸土豆制品吸油率方法與機(jī)理研究[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2012,28(3):278-281.He Dingbing, Xu Fei, Hua Zezhao, et al. Oil absorption reducing method and mechanism of fried potatoes[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(3): 278-281. (in Chinese with English abstract)
[18]Su Y, Zhang M, Zhang W, et al. Application of novel microwave-assisted vacuum frying to reduce the oil uptake and improve the quality of potato chip[J]. LWT-Food Science and Technology, 2016, 73(11): 490-497.
[19]張婷婷. 基于水分和孔隙的馬鈴薯脆片油脂吸收行為分析[D]. 無(wú)錫:江南大學(xué),2016.Zhang Tingting. Effects of Moisture and Pore on the Oil Absorption Behavior of Potato Chips[D]. Wuxi: Jiangnan University, 2016. (in Chinese with English abstract)
[20]Bouchon P, Aguilera J M, Pyle D L. Structure oil-absorption relationships during deep-fat frying[J]. Journal of Food Science, 2003, 68(9): 2711-2716.
[21]Pedreschi F, Aguilera J M, Arbildua J J. CLSM study of oil location in fried potato slices[J]. Microscopy and Analysis,1999, 37: 21-22.
[22]Bouchon P, Hollins P, Pearson M, et al. Oil distribution in fried potatoes monitored by infrared microspectroscopy[J].Journal of Food Science, 2001, 66(7): 918-923.
[23]Kalogianni E P, Papastergiadis E. Crust pore characteristics and their development during frying of French-fries[J].Journal of Food Engineering, 2014, 120(1): 175-182.
[24]Kassama L S, Ngadi M O. Pore development and moisture transfer in chicken meat during deep-fat frying[J]. Drying Technology, 2005, 23(4): 907-923.
[25]Dana D, Saguy I S. Mechanism of oil uptake during deep-fat frying and the surfactant effect-theory and myth[J]. Advances in Colloid and Interface Science, 2006, 128(12): 267-272.
[26]Hickey H, Macmillan B, Newling B, et al. Magnetic resonance relaxation measurements to determine oil and water content in fried foods[J]. Food Research International,2006, 39(5): 612-618.
[27]Lisińska G, Go?ubowska G. Structural changes of potato tissue during French fries production[J]. Food Chemistry,2005, 93(4): 681-687.
[28]Adedeji A A, Ngadi M. Characterisation of pore properties of deep-fat-fried chicken nuggets breading coating using mercury intrusion porosimetry technique[J]. International Journal of Food Science and Technology, 2010, 45(11):2219-2226.
[29]Ziaiifar A M, Courtois F, Trystram G. Porosity development and its effect on oil uptake during frying process[J]. Journal of Food Process Engineering, 2010, 33(2): 191-212.
Oil absorption rule of fried potato chips during different frying time
Li Jinwei1, Wang Min2, Zhang Tingting1, Liu Yuanfa1, Fan Liuping1※, Ding Shaodong3
(1.Food Science and Technology, Jiangnan University, Wuxi214122,China; 2.Shanghai Reli Technology Group Co., Ltd.,Shanghai200125,China; 3.State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi214122,China)
In order to characterize the oil absorption behavior of potato chips during the different frying time, the soxhlet extraction, dye method, confocal laser scanning microscopy and low field nuclear magnetic resonance imaging were combined to analyze and explain the oil absorption behavior of potato chips in this paper. When the frying temperature was 180 ℃ and the ratio of oil to material was 10:1, the changing rules of oil content, oil type and oil distribution of potato chips during the different frying time were obtained. In addition, the porosity characteristics of potato chips were also used to explain the oil absorption behavior during frying. The results showed that frying time (0-12 min) significantly affected the content of total oil,surface oil, structural oil and surface penetrated oil of potato chips at the frying temperature of 180 ℃ and the ratio of oil to material of 10:1 (P<0.05). The total oil content of potato chips increased with the increase of frying time. When the frying time reached 10 min, the total oil content of potato chips was 47.09%, and then it gradually tended to be stable. The surface oil content of potato chips was the lowest, which was about 1.30%-2.06%. The structural oil content of potato chips increased with the increase of frying time, however the PSO content of potato chips decreased when the frying time exceeded 6 min. The confocal laser scanning microscopy showed that during the frying process, the red region of potato chips enlarged with the increase of frying time, which meant the increase of the oil content of potato chips. The oil was permeated from the surface of the potato slice to the interior and located on cell walls, which followed the cell shapes and filled the intercellular spaces.When the frying time was 0-8 min, the pore volume and porosity increased with the increase of frying time, and the oil content of potato chips was also increased. Overall, this study has an important significance for the characterization of oil absorption behavior of potato chips during the frying process. Besides, it provides reliable data and effective means for the development of potato chips with the lower oil content.
oils and fats; food processing; microstructure; frying; oil content; pore character
10.11975/j.issn.1002-6819.2017.10.041
TS255
A
1002-6819(2017)-10-0310-05
2016-10-25
2017-04-09
“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0401404)、國(guó)家自然科學(xué)基金(31371812)江蘇省重大科技示范項(xiàng)目(BE2016635)聯(lián)合資助
李進(jìn)偉,男,山西朔州人,副教授,博士,主要從事食品科學(xué)研究。無(wú)錫 江南大學(xué)食品學(xué)院,214122。Email:jwli@jiangnan.edu.cn;
※通信作者:范柳萍,女,山西祁縣人,教授,博士,博士生導(dǎo)師,主要從事食品科學(xué)研究。無(wú)錫 江南大學(xué)食品學(xué)院,214122。
Email:fanliuping@jiangnan.edu.cn