• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Similarity measurement method of high-dimensional data based on normalized net lattice subspace①

    2017-06-27 08:09:22LiWenfa李文法WangGongmingLiKeHuangSu
    High Technology Letters 2017年2期
    關鍵詞:文法

    Li Wenfa (李文法), Wang Gongming, Li Ke, Huang Su

    (*Beijing Key Laboratory of Information Service Engineering,Beijing Union University, Beijing 100101, P.R.China) (**National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R.China)

    Similarity measurement method of high-dimensional data based on normalized net lattice subspace①

    Li Wenfa (李文法)②*, Wang Gongming**, Li Ke*, Huang Su*

    (*Beijing Key Laboratory of Information Service Engineering,Beijing Union University, Beijing 100101, P.R.China) (**National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R.China)

    The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data. The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity, leading to the dissimilarities between any results. A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed. The data range of each dimension is divided into several intervals, and the components in different dimensions are mapped onto the corresponding interval. Only the component in the same or adjacent interval is used to calculate the similarity. To validate this method, three data types are used, and seven common similarity measurement methods are compared. The experimental result indicates that the relative difference of the method is increasing with the dimensionality and is approximately two or three orders of magnitude higher than the conventional method. In addition, the similarity range of this method in different dimensions is [0, 1], which is fit for similarity analysis after dimensionality reduction.

    high-dimensional data, the curse of dimensionality, similarity, normalization, subspace, NPsim

    0 Introduction

    A similarity measurement can determine similarity degree between two data, or distance between two points, which is the basis of data-mining methods such as clustering, classification, nearest neighbor search, and association analysis. Conventional similarity measurement methods include Euclidean distance, Jaccard coefficient[1], and Pearson coefficient[2]. These methods can satisfy the similarity measurement requirement in low-dimensional space (less than 16)[3]. However, with the increasing spatial dimensionalities, the distance between a query point and its nearest neighbor point tends to be equal to the distance from the query point to its farthest neighbor point. When the distance between any two points is equal everywhere, the similarity is pointless; this is called the isometrics in high-dimensional space[4]. The root cause of this phenomenon is the curse of dimensionality that is derived from properties of sparsity and empty space in a high-dimensional space. Thus, the performances of many similarity measurements are positively affected in the low-dimensional space, yet decrease sharply in the high-dimensional space.

    In recent years, a series of methods have been proposed for similarity measurement of high-dimensional data; these includeHsim(X,Y)[5],HDsim(X,Y)[6],Gsim(X,Y)[7],Close(X,Y)[8],andEsim(X,Y)[9].However,thesemethodsignoretherelativedifferenceinproperty,noisedistribution,weight,andareonlyvalidforcertaindatatypes[10].ThePsim(X,Y)functionconsiderstheabove-mentionedfactors[10]andisapplicabletoavarietyofdatatypes;however,itisunabletocomparesimilarityunderdifferentdimensionsbecauseitsrangedependsonthespatialdimensionality.

    Tosolvethisproblem,asimilaritymeasurementmethodofhigh-dimensionaldatabasedonnormalizednetlatticesubspaceisproposed.Thesimilarityrangeisnolongerlimitedbythespatialdimensionality.

    1 Relatedwork

    1.1 Curse of dimensionality

    This is a ubiquitous phenomenon in the application field of high-dimensional data, and occurs because of the sparsity and empty space in high-dimensional space.

    1.1.1 Sparsity

    There is ad-dimensional data setDinahypercubeunitΨ=[0,1]d,anddataelementsaredistributeduniformly.Theprobabilityofapointfallingintoonehypercubewithlengthsissd,whichdecreaseswiththeincreaseofsbecauses<1.Thatis,itisverylikelythatthereisnopointinalargerange[11].Forexample,approximatelyonly0.59%dataexistsinahypercubewithlength0.95whendimensions=100.

    1.1.2Emptyspacephenomenon

    Anormaldistributiondatasetcanbeexpressedbyitscenterpointandstandarddeviation.ThedistancesbetweenthedatapointsandthecenterpointobeytheGaussdistribution;however,theirrelativeorientationcanbeselectedrandomly.Inaddition,thenumberofpossibledirectionsrelativetoacenterpointisincreasedexponentiallyandthedistancebetweenthemisincreasedwiththeincreaseofdimensionality.Fromtheviewpointofthedensityofadataset,amaximumvalueexistsatthecenterpoint,althoughtheremaynotbeapointclosetothecenterpoint.Thisphenomenonofahigh-dimensionalspaceiscalled“emptyspace.”

    1.1.3 Isometry

    The volume of unit sphere in ad-dimensional space is described as follows.

    (1)

    V(d)decreasesgraduallywiththeincreaseofdimensionalityd.Fig.1showsthatV(d)→0ifd>16.

    Fig.1 Variation trend of unit sphere volume with

    With the increase in dimensionality, the number of corners increases and the volume of unit sphere gradually decreases because the volume of the unit hyperspace does not change. Thus, most of the data will be distributed in the hyperspace corner. This phenomenon is shown in Fig.2 from left to right; the three subgraphs show the distributions of super-space data with dimensionality of 2, 3, and 8, respectively. In eight-dimensional space, 98% data is distributed in 2^8 = 256 corners. Moreover, the maximum and minimum Euclidean distances between the data and center point are both the same. When the dimensionality tends to infinity, the difference between the maximum and minimum Euclidean distance of the sample points to the center point tends toward 0.

    Fig.2 Data distribution in different dimensions

    Therefore, with the increase in dimensionality, the Euclidean distance between any data tends to remain the same, and no longer has the measurement function. The corresponding data-mining methods, such as clustering, classification, and nearest neighbor, would lose their effect.

    1.2 Conventional high-dimensional data similarity measurement methods

    In recent years, a similarity measurement problem in high-dimensional space has been studied to a certain extent but the research is insufficient. TheHsim(X,Y)functionwasproposedbyYang[5],whichisbetterthantheconventionalmethodbutneglectstherelativedifferenceandnoisedistribution.Inaddition,itisnotsuitableformeasuringthesimilarityofcategorical-attributedata.Next,theGsim(X,Y)function[7]wasproposedaccordingtotherelativedifferenceofpropertiesindifferentdimensions;however,itignorestheweightdiscrepancy.Zhaointroducedthepiecewisefunctionδ(X,Y)intoHsim(X,Y)andproposedtheHsimc(X,Y)function[12],whichcomprisesafunctionofmeasuringcategorical-attributedata.However,similaritybetweenapairofpointswhosecomponentsarecomplementaryineverydimensionisinconsistentwiththeactualresult.Thepiecewisefunctionδ(X,Y)offunctionXiemodifiedHsimc(X,Y)andproposedtheHDsim(X,Y)function[6],whichcansolvetheproblemderivedfromacomplementarypropertyineverydimension.However,theattributedifferenceandnoisedistributionproblemareneglected.TheClose(X,Y)function[8]basedonthemonotonousdecreaseofe-xcanovercometheinfluencefromcomponentsinsomedimensionswithlargevariancebutdoesnotconsidertherelativedifference,whichwouldbeaffectedbynoise.TheEsim(X,Y)[9]functionwasproposedbyimprovingHsim(X,Y)andClose(X,Y)functionsandcombiningtheinfluenceofpropertyonsimilarity.Ineverydimension,theEsim(X,Y)componentshowsapositivecorrelationtothevalueinthisdimension.Alldimensionsaredividedintotwoparts:normalandnoisydimensions.Inanoisydimension,thenoiseoccupiesmajority.Whennoiseissimilarorlargerthantheoneinanormaldimension,thismethodisinvalid.Thesecondarymeasurementmethod[13]isusedtocalculatethesimilaritybyvirtueofpropertydistribution,spacedistance,etc.;however,itneglectsthenoisedistributionandweight.Inaddition,itistime-consuming.TheconceptofnearestneighborprojectionwasproposedbyHinneburg[14],whichwascombinedwithdimensionalityreductiontosolvetheprobleminhigh-dimensionalspace.However,thismethodcomplicatesthedeterminationofasuitablequalitycriterionfunction.Thus,anextensiontheorywasintroducedintosimilaritycalculation[15],inwhich,thehigh-dimensionaldataisexpressedasanorderedthreetuplebyvirtueofmatterelement,andthedeviation(theintervallengthofattributevalueineverydimension)isaddedintofunctionA. However, this method is too complicated, and the result validation of the high-dimensional data was not described in the corresponding paper. Yi[10]determined that in a high-dimensional space, the difference in a noisy dimension is larger than in a sparse dimension, no matter how similar the data is. This difference occupies a large amount of the similarity calculation, leading to the calculation results of any objects being similar. Therefore, thePsim(X,Y)function[12]wasproposedtoeliminatethenoisyinfluencebyanalyzingthedifferenceamongalldimensions.Theexperimentalresultsindicatethatthismethodissuitableforavarietyofdata.However,itsrangeis[0,n],wherenisthedimensionality.Thus,thesimilaritiesindifferentdimensionscannotbecompared.

    2 Similaritymeasurementmethodbasedonnormalizednetlatticesubspace

    2.1 Sparse and noisy dimensions

    With increasing dimensionality, the similarities based on theLdnormbetweenanydatabecomethesame.TherootcauseisthattheLdnormdependsonthedimensiontoomuchwhichhaslargelydifferentcomponents.Inotherwords,whencalculatingsimilaritybetweenXandY,thelargerthevalueofXi-Yionthei-th dimension, the greater the contribution of thei-th dimension toXandY.AlthoughbothXandYareverysimilarinotherdimensionsexceptthei-th dimension, the overall similarity ofXandYisverysmall.Thisi-th dimension is called sparse or noisy dimension.

    Owing to the existence of sparsity and noise in the high-dimensional space, no matter how similar the two records are there will always be a different dimension. The difference in these dimensions occupies a large proportion of the whole similarity, leading to any record in the high-dimensional space being dissimilar[16].

    To solve this problem, the data range in every dimension can be divided into several intervals, and the components can be mapped onto corresponding intervals. When calculating the similarity between two points, only the dimensions that fall into the same interval are used. The other dimensions are regarded as sparse or noisy dimensions, and are not included in the calculation.

    2.2 Meshing of high-dimensional data space

    Let the dimension of dataset bed,andthenumberofdataobjectbeM.Then,everydataobjectisexpressedasxk(1≤k≤M).Inaddition,everydimensionisdividedinton=[θd]continuousintervals,andθistherealnumberbetween0and1.Thus,thenumberofpointsineveryintervalisG=[M/n].

    Inthei-th dimension, all components are sorted in an ascending order. Thek-th sorted value isVal[k](1≤k≤M).Rijisthej-th interval in thei-th dimension, whose lower and upper bounds areLRijandURij,respectively.ItcanbeseenthatLRij=Val[(j-1)G+1]andURij=Val[jG].

    (2)

    (3)

    Forxkandyl,thesetofdimensionsinwhichcomponentsfallintothesameintervalis

    (4)

    Ifthei-th components ofxkandylfallintotheadjacentintervals,andthedistancebetweenthemislessthantheaveragelengthofthetwoadjacentintervals,thetwopointsareregardedasclosetoeachother,andincludedinthesimilaritycalculation.Thesetofthesedimensionsisshownas

    (5)

    ThesetofdimensionsincludedinthesimilaritycalculationistheunionofS1andS2:

    S=S1US2

    (6)

    2.3Similaritymeasurement

    ThePsim(X,Y)functionproposedbyYiissuitableforavarietyofdatatypes[10];however,itsrangeisdependentonthespatialdimensionality,andthusthecomparisonofsimilarityindifferentdimensionsisnotpossible.Underthecircumstanceofmaintainingeffects,Psim(X,Y)iscorrectedas

    (7)

    whereXandYareanytwopointsinthed-dimensional space, andXjandYjarecomponentsinthei-th dimension. Moreover,δ(Xj,Yj)isthediscriminantfunction.IfXjandYjareinthesameinterval[LRj,URj],δ(Xj,Yj)=1,otherwiseδ(Xj,Yj)=0.E(X,Y)representsthenumberofintervalsinwhichcomponentsofXandYareallthesame.TherangeofNPsim(X,Y)isobservedtobein[0, 1].TheaboveistheoutlineofNPsim,andthedetailedintroductioncanbefoundinRef.[10].

    3 Experiment

    Tovalidatethismethod,threedatatypeswithdifferentdistributionsweregeneratedthroughMatlab.Next,thesimilaritiesindifferentdimensionswerecalculatedusingtheproposedmethod,andwerecomparedwiththeresultobtainedfromcalculatingManhattandistance,Euclideandistance,Hsim(X,Y),Gsim(X,Y),Close(X,Y),Esim(X,Y),andPsim(X,Y).

    3.1Datadescription

    Thefollowingthreedatatypeswereusedintheexperiment[10].

    (1)Independentandidenticallydistributed(IID):Here,allvariablesobeythesamedatadistributionfunctionbutareindependentofeachother.TheIIDdataZisgeneratedbyZ=(Z1,…,ZM),andZifollowsthedistributionofZi~F(0,1).

    (3)Dependentandidenticallydistributed(DID):Allvariablesobeythesamedatadistributionbutarenotindependent.Inaddition,twodimensionsareindependentofeachothercalled“freedimensions”;theotherdimensionsarerelatedtothem.TheDIDdataZisgeneratedasfollows.First,twod×1randomvariablesAandBobeyingthedistributionofF(0,1)aregenerated.Second,two1×MrandomvariablesUandVobeyingthedistributionofF(-1, 1)areproduced.Third,Z1(2≤i≤M)isgeneratedthroughZi=A×Ui+B×Vi.Atlast,theDIDdataZisproducedasZ=(Z1,…,ZM).

    3.2Relativedifference

    Tovalidatethismethod,IID,RID,andDIDdataaregeneratedusinganormrnd()functionofMatlab[10].Thedimensionofeverydatatypeisasfollows: 10, 60, 110, 160, 210, 260, 310, 360,and410.Thenumberofdataineverydimensionis1000.Inaddition,therelativedifferencebetweenthefarthestandnearestneighborsiscalculatedasfollows[17]:

    (8)

    whereDmaxn,Dminn,andDavgnaremaximal,minimal,andaveragesimilaritiesinthed-dimensional space, respectively. The relative difference results are shown in Figs 3~5.

    According to the characteristics of the results, similarity measurement methods are divided into two types: the first includes Manhattan distance, Euclidean distance,Hsim(X,Y),Gsim(X,Y),Close(X,Y),andEsim(X,Y);andtheothersincludePsim(X,Y)andNPsim(X,Y).Therelativedifferenceofthesecondtypeofmethodsistwoorthreemagnitudeslargerthanthatofthefirsttypeofmethods.Therefore,theperformanceadvantageofthesecondmethodtypeisobvious.

    TherelativedifferenceofPsim(X,Y)andNPsim(X,Y)hasnodifferentiationdegree.Thus,thestatisticalanalysisneedstobestudiedfurther.

    Fig.3 Relative difference of various similarity measurement methods for IID data

    Fig.4 Relative difference of various similarity measurement methods for RID data

    3.3 Statistical analysis

    To compare the effect ofPsim(X,Y)andNPsim(X,Y),themaximum,minimum,andaverageofDIDdataindifferentdimensionsarecalculated,asshowninFig.6.TheexperimentalresultsindicatethatthesimilarityrangeofPsim(X,Y)increaseswiththedimension.Thus,thefunctionisnotsuitableforthesimilaritycomparisonindifferentdimensions.However,theproblemdoesnotexistinNPsim(X,Y).Table1liststhenumbersofPsim(X,Y)whosevalueisgreaterthan1indifferentdimensions.Thenumberof

    Fig.5 Relative difference of various similarity measurement methods for DID data

    Fig.6 Statistical value of various similarity measurement methods for DID data

    Dimension1060110160210Number1686041203731132481045284672Dimension260310360410260Number9842963024720155885198429

    Psim(X,Y)ineverydimensionis1000×1000=1,000,000.Inaddition,the5%~17%resultismorethan1,andthusthecomparisonofsimilarityindifferentdimensionsisnotpossible.Therefore,NPsim(X,Y)cansatisfytherequirementofsimilaritycomparisonindifferentdimensions.

    4 Conclusion

    Thesimilaritymeasurementisthebasisofdata-miningalgorithms,suchasclustering,classification,andnearestneighbor.However,owingtothecurseofdimensionality,themeasurementalwaysfailsinhigh-dimensionalspace.Asimilaritymeasurementmethodofhigh-dimensionaldatabasedonanormalizednetlatticesubspaceisproposed.Inthismethod,datarangeofeachdimensionisdividedintoseveralintervals,andthecomponentsaremappedontothecorrespondingintervals.Duringsimilaritycalculation,onlythecomponentinthesameoradjacentintervalisused.Thismethodcanavoidthesimilarityeffectthatgeneratedfromthesparseornoisydimension.Tovalidatetheproposedalgorithm,threetypesofdistributiondataareusedintheexperiment,andanothersevenmethodtypesarecompared.Theexperimentalresultsshowthattheproposedmethodissuitableforsimilaritymeasurementinhigh-dimensiondata.

    Inthefuture,theweightcalculationindifferentdimensions,andtheautomaticupdatingstrategyofaspatialgridwillbestudied.Inaddition,theproposedmethodwillapplyarelateddata-miningalgorithm,suchasclusteringorcorrelationanalysis.

    [ 1] Tan P N, Michael S, Vipin K. Introduction to Data Mining. Boston: Addison-Wesley Publishing Company, 2005. 25-36

    [ 2] Chen J N. The Research and Application of Key Technologies in Knowledge Discovery of High-dimensional Clustering. Beijing: Publishing House of Electronics Industry, 2011. 120-128(In Chinese)

    [ 3] Aggarwal C C. Re-designing distance functions and distance based applications for high dimensional data.ACMSIGMODRecord, 2001, 33(1):117-128

    [ 4] Warren B P. Approximate Dynamic Programming: Solving the Curses of Dimensionality (2nd Edition). Hoboken, New Jersey: John Wiley & Sons Press, 2011. 124-161

    [ 5] Yang F Z, Zhu Y Y. An efficient method for similarity search on quantitative transaction data.JournalofComputerResearchandDevelopment, 2004, 41(2):361-368

    [ 6] Xie M X, Guo J Z, Zhang H B, et al. Research on the similarity measurement of high dimensional data.ComputerEngineeringandScience, 2010, 32(5):92-96(In Chinese)

    [ 7] Huang S D, Chen Q M. On clustering algorithm of high dimensional data based on similarity measurement.ComputerApplicationsandSoftware, 2009, 26(9):102-105(In Chinese)

    [ 8] Shao C S, Lou W, Yan L M. Optimization of algorithm of similarity measurement in high-dimensional data.ComputerTechnologyandDevelopment, 2011, 21(2):1-4(In Chinese)

    [ 9] Wang X Y, Zhang H Y, Shen L Z, et al. Re-search on high dimensional clustering algorithm based on similarity measurement.ComputerTechnologyandDevelopment, 2013, 23(5):30-33(In Chinese)

    [10] Yi L H. Research on clustering algorithm for high dimensional data:[Ph.D dissertation]. Qinhuangdao: Institute of Information Science and Engineering, Yanshan University, 2011. 28-30(In Chinese)

    [11] Ericson K, Pallickara S. On the performance of high dimensional data clustering and classification algorithms.FutureGenerationComputerSystems, 2013, 29(4):1024-1034

    [12] Zhao H. Study on Some Issues of Data Clustering in Data Mining:[Ph.D dissertation]. Xi’an: School of Electronic Engineering, Xidian University, 2005. 35-42(In Chinese)

    [13] Jia X Y. A high dimensional data clustering algorithm based on twice similarity.JournalofComputerApplications, 2005, 25(B12):176-177

    [14] Alexander H, Charu A C, Keim D A. What is the nearest neighbor in high dimensional spaces? In: Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, Egypt, 2000. 506-515

    [15] Yuan R P, Shi M R. Research on the similarity of high dimensional big data based on extenics.OperationsResearchandManagementScience, 2015, 24(5):184-188

    [16] Kriegel H P, Kr?ger P, Zimek A. Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering.ACMTransactionsonKnowledgeDiscoveryfromData, 2009, 3(1):1-58

    [17] Charu C, Aggarwal, Yu P S. The IGrid index: reversing the dimensionality curse for similarity indexing in high dimensional space. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, USA, 2000. 119-129

    10.3772/j.issn.1006-6748.2017.02.009

    ①Supported by the National Natural Science Foundation of China (No. 61502475) and the Importation and Development of High-Caliber Talents Project of the Beijing Municipal Institutions (No. CIT & TCD201504039).

    ②To whom correspondence should be addressed. E-mail: liwenfa@buu.edu.cn

    on Dec. 10, 2016

    ?? born in 1974. He received his Ph.D. degree in Graduate University of Chinese Academy of Sciences in 2009. He also received his B.S. and M.S. degrees from PLA Information Engineering University in 1998 and 2003 respectively. His research interests include information security, data analysis and mining, etc.

    猜你喜歡
    文法
    從絕響到轉型:近現(xiàn)代“文法”概念與“文法學”
    關于1940 年尼瑪抄寫的《托忒文文法》手抄本
    中國石油大學勝利學院文法與經(jīng)濟管理學院簡介
    西夏文銅鏡的真言文法與四臂觀音像研究
    西夏學(2018年2期)2018-05-15 11:24:00
    LL(1)文法分析器的研究與分析
    科技風(2017年25期)2017-05-30 15:40:44
    A nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix①
    25年呵護患病妻子不離不棄
    兵團工運(2016年9期)2016-11-09 05:46:13
    基于領域文法的微博輿情分析方法及其應用
    基于單向點格自動機的UPG文法識別并行算法
    文法有道,為作文注入音樂美
    學生天地(2016年26期)2016-06-15 20:29:39
    免费看日本二区| 中国美白少妇内射xxxbb| 亚洲色图综合在线观看| 97超视频在线观看视频| 精品久久久久久久久亚洲| 在线看a的网站| 男女啪啪激烈高潮av片| 国产午夜福利久久久久久| 日本免费在线观看一区| 国产老妇女一区| 十八禁网站网址无遮挡 | 亚洲在久久综合| 青春草视频在线免费观看| 黄色欧美视频在线观看| 在线观看人妻少妇| 国产久久久一区二区三区| 亚洲天堂国产精品一区在线| 欧美高清性xxxxhd video| 特大巨黑吊av在线直播| 晚上一个人看的免费电影| 极品教师在线视频| 亚洲久久久久久中文字幕| 亚洲精品国产av蜜桃| 国产精品久久久久久久久免| 春色校园在线视频观看| 婷婷色综合www| 国产免费一区二区三区四区乱码| 欧美成人a在线观看| 亚洲婷婷狠狠爱综合网| 丰满少妇做爰视频| 一区二区三区免费毛片| 国产成人免费无遮挡视频| 在线观看美女被高潮喷水网站| 日本av手机在线免费观看| 91在线精品国自产拍蜜月| 国产精品爽爽va在线观看网站| 日韩强制内射视频| 舔av片在线| 欧美日韩视频高清一区二区三区二| 国产亚洲最大av| 噜噜噜噜噜久久久久久91| 男女国产视频网站| 国产一区二区亚洲精品在线观看| 黑人高潮一二区| 99热网站在线观看| 国产高清国产精品国产三级 | 国内少妇人妻偷人精品xxx网站| 亚洲精品aⅴ在线观看| 国产精品偷伦视频观看了| 亚洲欧美日韩无卡精品| 亚洲天堂av无毛| 哪个播放器可以免费观看大片| 精品人妻视频免费看| 亚洲熟女精品中文字幕| 亚洲最大成人中文| 午夜免费男女啪啪视频观看| 女的被弄到高潮叫床怎么办| 亚洲欧美日韩另类电影网站 | 啦啦啦在线观看免费高清www| 亚洲国产精品专区欧美| 久久久久久伊人网av| 久久久久久伊人网av| 中文精品一卡2卡3卡4更新| 亚洲国产欧美在线一区| 国产亚洲91精品色在线| 国产成人福利小说| 男女国产视频网站| 欧美一区二区亚洲| 色视频在线一区二区三区| 91在线精品国自产拍蜜月| 18禁在线无遮挡免费观看视频| 大香蕉97超碰在线| 国产亚洲精品久久久com| 亚洲最大成人手机在线| 国内精品宾馆在线| 国产片特级美女逼逼视频| 青春草国产在线视频| 高清毛片免费看| 男女无遮挡免费网站观看| 亚洲人成网站在线观看播放| 尾随美女入室| 国产精品一区二区三区四区免费观看| 亚洲成色77777| 亚洲av日韩在线播放| 日本色播在线视频| 一级毛片 在线播放| 18禁在线播放成人免费| 欧美xxxx黑人xx丫x性爽| 最近的中文字幕免费完整| 国产人妻一区二区三区在| 少妇熟女欧美另类| 国产精品久久久久久久久免| 亚洲不卡免费看| videos熟女内射| 免费人成在线观看视频色| 国产成人午夜福利电影在线观看| 精品久久久久久久人妻蜜臀av| 色5月婷婷丁香| 国产成人精品福利久久| 欧美最新免费一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 狂野欧美激情性bbbbbb| 麻豆乱淫一区二区| 女的被弄到高潮叫床怎么办| 高清在线视频一区二区三区| 男人添女人高潮全过程视频| 欧美日本视频| 国产老妇女一区| 精品熟女少妇av免费看| 身体一侧抽搐| 中文欧美无线码| 一边亲一边摸免费视频| 久久影院123| 91在线精品国自产拍蜜月| 日韩免费高清中文字幕av| 亚洲四区av| 国产人妻一区二区三区在| 中文字幕亚洲精品专区| 观看免费一级毛片| 国产日韩欧美在线精品| 看黄色毛片网站| 国产精品.久久久| 男人舔奶头视频| 一区二区三区精品91| 国产一区二区在线观看日韩| 一本色道久久久久久精品综合| 亚洲精品国产成人久久av| 69人妻影院| 日本一二三区视频观看| 简卡轻食公司| 啦啦啦啦在线视频资源| 老师上课跳d突然被开到最大视频| 人妻 亚洲 视频| 看十八女毛片水多多多| 亚洲一区二区三区欧美精品 | 毛片女人毛片| 国产亚洲一区二区精品| 特大巨黑吊av在线直播| 国产高清三级在线| 美女被艹到高潮喷水动态| 看免费成人av毛片| 日本免费在线观看一区| 亚洲欧美精品专区久久| 日韩伦理黄色片| 精品午夜福利在线看| 综合色av麻豆| 久久久精品免费免费高清| 伦精品一区二区三区| 制服丝袜香蕉在线| 国产真实伦视频高清在线观看| 日韩制服骚丝袜av| 成人特级av手机在线观看| 欧美成人a在线观看| 国产成人aa在线观看| 91精品国产九色| 国产成人a区在线观看| 久久亚洲国产成人精品v| 国产熟女欧美一区二区| 一区二区三区精品91| 一级毛片 在线播放| 69av精品久久久久久| 在线 av 中文字幕| 99热这里只有精品一区| 午夜免费男女啪啪视频观看| 日韩欧美 国产精品| 国产一区二区在线观看日韩| 99九九线精品视频在线观看视频| 亚洲四区av| 嫩草影院入口| 亚洲av中文av极速乱| 一级毛片我不卡| 色5月婷婷丁香| 亚洲欧美精品自产自拍| 午夜爱爱视频在线播放| 欧美精品国产亚洲| 91久久精品国产一区二区三区| 18禁裸乳无遮挡免费网站照片| 久久精品夜色国产| 观看免费一级毛片| 老司机影院毛片| 少妇人妻 视频| 蜜臀久久99精品久久宅男| 成人毛片a级毛片在线播放| 高清av免费在线| 少妇人妻精品综合一区二区| 色5月婷婷丁香| av免费观看日本| 午夜免费鲁丝| 韩国高清视频一区二区三区| 内射极品少妇av片p| 日韩欧美精品v在线| 噜噜噜噜噜久久久久久91| 久久精品国产亚洲网站| 日韩电影二区| 久久精品人妻少妇| 丰满乱子伦码专区| 午夜激情福利司机影院| 国产成人午夜福利电影在线观看| 夫妻性生交免费视频一级片| 国产精品熟女久久久久浪| 丝袜脚勾引网站| 久久精品国产鲁丝片午夜精品| 波多野结衣巨乳人妻| 欧美区成人在线视频| 婷婷色麻豆天堂久久| 亚洲国产欧美在线一区| av卡一久久| 少妇熟女欧美另类| 男人添女人高潮全过程视频| 久久久久久久久久人人人人人人| 亚洲精品视频女| 亚洲内射少妇av| 国产精品嫩草影院av在线观看| 最近最新中文字幕大全电影3| 99久久九九国产精品国产免费| 国产精品国产三级专区第一集| 久久人人爽人人爽人人片va| 精品久久久精品久久久| 如何舔出高潮| 国产伦精品一区二区三区四那| 波野结衣二区三区在线| 国产精品福利在线免费观看| 久久久精品94久久精品| 国产片特级美女逼逼视频| 中文字幕人妻熟人妻熟丝袜美| 欧美激情国产日韩精品一区| 交换朋友夫妻互换小说| 一级毛片 在线播放| 美女内射精品一级片tv| 久久久久久久大尺度免费视频| 国产成人午夜福利电影在线观看| 国产成人精品久久久久久| 国产精品av视频在线免费观看| 国产成人免费无遮挡视频| 成人二区视频| 尾随美女入室| 亚洲av国产av综合av卡| 五月玫瑰六月丁香| 大香蕉97超碰在线| av在线老鸭窝| 国产黄片美女视频| 婷婷色综合大香蕉| 日韩强制内射视频| 精品人妻熟女av久视频| 大又大粗又爽又黄少妇毛片口| 你懂的网址亚洲精品在线观看| 视频区图区小说| 午夜亚洲福利在线播放| 亚洲欧美日韩另类电影网站 | 成人毛片a级毛片在线播放| a级毛片免费高清观看在线播放| 乱系列少妇在线播放| 精品久久久久久久人妻蜜臀av| 国产精品一区二区性色av| 国产欧美另类精品又又久久亚洲欧美| videossex国产| 高清在线视频一区二区三区| 99久久九九国产精品国产免费| 最新中文字幕久久久久| 亚洲精品影视一区二区三区av| 亚洲成色77777| 午夜福利在线观看免费完整高清在| 中国三级夫妇交换| 亚洲国产色片| 尾随美女入室| 欧美日韩精品成人综合77777| av卡一久久| 在线观看人妻少妇| 精品熟女少妇av免费看| 国内揄拍国产精品人妻在线| 18禁在线无遮挡免费观看视频| 蜜桃亚洲精品一区二区三区| 亚洲性久久影院| 一区二区三区精品91| 嫩草影院精品99| 少妇熟女欧美另类| 亚洲精华国产精华液的使用体验| 我的老师免费观看完整版| www.色视频.com| 91久久精品国产一区二区成人| 女人被狂操c到高潮| 欧美人与善性xxx| 亚洲欧美日韩无卡精品| 在线观看美女被高潮喷水网站| 蜜桃亚洲精品一区二区三区| 亚洲最大成人中文| 3wmmmm亚洲av在线观看| 丝袜美腿在线中文| 亚洲av不卡在线观看| 亚洲国产日韩一区二区| 亚洲熟女精品中文字幕| 校园人妻丝袜中文字幕| 久热久热在线精品观看| 成人高潮视频无遮挡免费网站| 最新中文字幕久久久久| 久久韩国三级中文字幕| 国产精品一二三区在线看| 久久久久久久久久成人| 26uuu在线亚洲综合色| 美女cb高潮喷水在线观看| 精品视频人人做人人爽| 亚洲av欧美aⅴ国产| 一级毛片久久久久久久久女| 丝瓜视频免费看黄片| 美女脱内裤让男人舔精品视频| 免费电影在线观看免费观看| 好男人在线观看高清免费视频| 国产在线男女| 国产真实伦视频高清在线观看| 免费观看性生交大片5| 中文字幕免费在线视频6| 亚洲色图av天堂| 一本色道久久久久久精品综合| 男人和女人高潮做爰伦理| 人人妻人人看人人澡| av播播在线观看一区| 国产成人a∨麻豆精品| 国产综合懂色| 亚洲av国产av综合av卡| 在线观看美女被高潮喷水网站| 九九爱精品视频在线观看| 大陆偷拍与自拍| 久久99热这里只有精品18| 日韩亚洲欧美综合| 尾随美女入室| 视频区图区小说| 中文乱码字字幕精品一区二区三区| 国产成人午夜福利电影在线观看| 2021天堂中文幕一二区在线观| 国产男女内射视频| 韩国av在线不卡| 亚洲成色77777| 国产男人的电影天堂91| 在线免费十八禁| 麻豆成人av视频| 搡女人真爽免费视频火全软件| 久久午夜福利片| 人妻一区二区av| 99热网站在线观看| 国产美女午夜福利| 99久久九九国产精品国产免费| 777米奇影视久久| 亚洲精品456在线播放app| 三级男女做爰猛烈吃奶摸视频| 自拍欧美九色日韩亚洲蝌蚪91 | 久久99精品国语久久久| 啦啦啦中文免费视频观看日本| 又爽又黄a免费视频| 有码 亚洲区| 色哟哟·www| 午夜爱爱视频在线播放| 麻豆成人av视频| 国产精品秋霞免费鲁丝片| 精品久久久精品久久久| 国产精品人妻久久久久久| 欧美日韩精品成人综合77777| 欧美成人一区二区免费高清观看| 黄色欧美视频在线观看| 国产黄频视频在线观看| 亚洲精品国产色婷婷电影| 三级国产精品片| 看十八女毛片水多多多| 一边亲一边摸免费视频| 国产中年淑女户外野战色| 亚洲欧美成人精品一区二区| 五月伊人婷婷丁香| 日本一二三区视频观看| 日韩一区二区视频免费看| 国产精品偷伦视频观看了| 美女内射精品一级片tv| 欧美老熟妇乱子伦牲交| 七月丁香在线播放| 超碰97精品在线观看| 大陆偷拍与自拍| 成人国产麻豆网| 99久国产av精品国产电影| 免费看不卡的av| 精品国产三级普通话版| 一级毛片我不卡| 亚洲精品一二三| 久久久成人免费电影| 春色校园在线视频观看| 久热这里只有精品99| 日韩不卡一区二区三区视频在线| 亚洲av免费高清在线观看| 欧美日本视频| 久久久久久久久大av| 国产成人aa在线观看| 国产成人freesex在线| 免费电影在线观看免费观看| 欧美xxxx性猛交bbbb| 在线精品无人区一区二区三 | 免费观看a级毛片全部| 欧美成人精品欧美一级黄| 三级经典国产精品| 亚洲内射少妇av| 香蕉精品网在线| 三级国产精品欧美在线观看| 18禁在线播放成人免费| 亚洲图色成人| 日韩一本色道免费dvd| 国产精品久久久久久av不卡| 联通29元200g的流量卡| 精品人妻视频免费看| 成人无遮挡网站| 99re6热这里在线精品视频| 国产成人免费观看mmmm| 久久久久性生活片| 欧美激情久久久久久爽电影| 精品午夜福利在线看| 91精品国产九色| 欧美区成人在线视频| 中国国产av一级| 久久精品国产鲁丝片午夜精品| 亚洲一区二区三区欧美精品 | 天天一区二区日本电影三级| 亚洲av男天堂| 国产乱来视频区| 国产有黄有色有爽视频| 深爱激情五月婷婷| 国产成人a区在线观看| 蜜臀久久99精品久久宅男| 午夜老司机福利剧场| 亚洲国产精品999| 色吧在线观看| 黄色视频在线播放观看不卡| 欧美激情国产日韩精品一区| 国产欧美另类精品又又久久亚洲欧美| 天堂俺去俺来也www色官网| 亚洲国产高清在线一区二区三| 午夜免费鲁丝| a级一级毛片免费在线观看| 一区二区av电影网| 99热全是精品| 亚洲电影在线观看av| 日韩成人av中文字幕在线观看| 国产日韩欧美在线精品| 久久精品国产自在天天线| 亚洲欧美日韩另类电影网站 | 免费人成在线观看视频色| 草草在线视频免费看| 亚洲精品成人av观看孕妇| 色网站视频免费| 久久99热这里只频精品6学生| 国产精品国产av在线观看| 日韩三级伦理在线观看| 国产91av在线免费观看| freevideosex欧美| 国产精品熟女久久久久浪| 亚洲经典国产精华液单| 久久99热这里只频精品6学生| 国产午夜精品一二区理论片| 午夜激情久久久久久久| 中文在线观看免费www的网站| 欧美日韩视频精品一区| 午夜激情福利司机影院| 麻豆久久精品国产亚洲av| 丰满少妇做爰视频| 亚洲色图av天堂| 久久精品久久精品一区二区三区| 亚洲av中文字字幕乱码综合| 亚洲综合色惰| 蜜桃久久精品国产亚洲av| 亚洲精品日韩av片在线观看| 少妇人妻精品综合一区二区| .国产精品久久| 毛片一级片免费看久久久久| 国产毛片在线视频| 97超视频在线观看视频| 日韩免费高清中文字幕av| 在线a可以看的网站| 久久久久久久午夜电影| 国产亚洲午夜精品一区二区久久 | 亚洲天堂av无毛| 熟女人妻精品中文字幕| 亚洲电影在线观看av| 亚洲婷婷狠狠爱综合网| 日日摸夜夜添夜夜添av毛片| 97在线视频观看| 联通29元200g的流量卡| 一本色道久久久久久精品综合| 久久精品国产亚洲av天美| 亚洲熟女精品中文字幕| 狂野欧美白嫩少妇大欣赏| 日本黄大片高清| 亚洲va在线va天堂va国产| 色综合色国产| 亚洲精品久久午夜乱码| 小蜜桃在线观看免费完整版高清| 五月玫瑰六月丁香| 观看免费一级毛片| 亚洲美女视频黄频| 国产精品久久久久久久久免| 亚洲av国产av综合av卡| 国产精品嫩草影院av在线观看| 免费大片黄手机在线观看| 在线观看国产h片| 欧美变态另类bdsm刘玥| 国产成人福利小说| 亚洲人成网站高清观看| av免费在线看不卡| 国产欧美日韩一区二区三区在线 | 七月丁香在线播放| 国产久久久一区二区三区| 免费观看a级毛片全部| 天堂俺去俺来也www色官网| 日韩一本色道免费dvd| 国产 精品1| 国产成人精品久久久久久| 午夜老司机福利剧场| 成人免费观看视频高清| 久久6这里有精品| 内射极品少妇av片p| 久久人人爽av亚洲精品天堂 | 日本熟妇午夜| 亚洲av一区综合| 欧美变态另类bdsm刘玥| 亚洲内射少妇av| 国产淫语在线视频| 五月玫瑰六月丁香| 国产一区有黄有色的免费视频| 亚洲av男天堂| 又爽又黄a免费视频| 搡女人真爽免费视频火全软件| 女的被弄到高潮叫床怎么办| 国产亚洲av嫩草精品影院| 高清午夜精品一区二区三区| 欧美日韩国产mv在线观看视频 | 三级国产精品欧美在线观看| 一本一本综合久久| 制服丝袜香蕉在线| 成年人午夜在线观看视频| 在线看a的网站| 精品一区二区三区视频在线| 1000部很黄的大片| 亚洲国产色片| av网站免费在线观看视频| 熟女人妻精品中文字幕| 男人舔奶头视频| 人妻系列 视频| 欧美日韩在线观看h| 18禁动态无遮挡网站| 日韩不卡一区二区三区视频在线| 亚洲av在线观看美女高潮| 亚洲综合色惰| 99热这里只有是精品50| 啦啦啦在线观看免费高清www| 成年女人在线观看亚洲视频 | 日韩欧美一区视频在线观看 | 亚洲经典国产精华液单| 一区二区三区免费毛片| 免费观看在线日韩| 欧美xxxx黑人xx丫x性爽| 九草在线视频观看| 久久韩国三级中文字幕| 寂寞人妻少妇视频99o| 亚洲精品成人av观看孕妇| 欧美日韩视频精品一区| 久久精品国产鲁丝片午夜精品| 丰满人妻一区二区三区视频av| 成人午夜精彩视频在线观看| 日本猛色少妇xxxxx猛交久久| 白带黄色成豆腐渣| 少妇 在线观看| 免费av毛片视频| 亚洲国产精品999| 亚洲最大成人手机在线| 中文欧美无线码| 日韩视频在线欧美| 丝袜美腿在线中文| 男人舔奶头视频| 在线观看人妻少妇| 日本爱情动作片www.在线观看| 1000部很黄的大片| 亚洲精品乱码久久久v下载方式| 亚洲精品国产色婷婷电影| 插逼视频在线观看| 免费看av在线观看网站| 高清av免费在线| 国产精品一区二区在线观看99| 亚洲精品成人av观看孕妇| 日韩大片免费观看网站| 伊人久久精品亚洲午夜| 人妻少妇偷人精品九色| 亚洲国产精品专区欧美| 伦精品一区二区三区| 亚洲国产色片| 精品一区二区免费观看| 亚洲国产精品999| 在线 av 中文字幕| 亚洲美女视频黄频| 亚洲性久久影院| 麻豆成人午夜福利视频| www.色视频.com| 特级一级黄色大片| 国产精品久久久久久精品电影小说 | 人妻一区二区av| 成年人午夜在线观看视频| 一区二区av电影网| 人妻一区二区av| 国产精品久久久久久精品电影小说 | 国产精品久久久久久精品电影| 麻豆成人av视频| 丝袜脚勾引网站| 99热网站在线观看| 亚洲欧美日韩东京热| 免费黄色在线免费观看| av免费在线看不卡| 内射极品少妇av片p| 亚洲人与动物交配视频| 一本色道久久久久久精品综合| 免费大片黄手机在线观看| 久久人人爽人人片av| 777米奇影视久久| 波野结衣二区三区在线|