• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Closed-form interference alignment with heterogeneous degrees of freedom①

    2017-06-27 08:09:23YangXiumei楊秀梅WangJiangWangRuiZhouTing
    High Technology Letters 2017年2期

    Yang Xiumei (楊秀梅), Wang Jiang, Wang Rui, Zhou Ting

    (*Key Laboratory of Wireless Sensor Network & Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P.R.China) (**Shanghai Research Center for Wireless Communications, Shanghai 201210, P.R.China)

    Closed-form interference alignment with heterogeneous degrees of freedom①

    Yang Xiumei (楊秀梅)②***, Wang Jiang***, Wang Rui**, Zhou Ting***

    (*Key Laboratory of Wireless Sensor Network & Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P.R.China) (**Shanghai Research Center for Wireless Communications, Shanghai 201210, P.R.China)

    Interference alignment (IA) has been recognized as a promising technique for obtaining the optimal degrees of freedom (DOF) in interference networks. A closed-form interference alignment design is proposed for three-cell uplink transmissions with heterogeneous DOFs. By exploiting the heterogeneity of DOFs from different transmission links, full or partial interference alignment precoders are calculated at each base station (BS). Aided by information exchange among BSs, the precoders can be finally obtained for all transmission links. Comparing to existing IA methods, the proposed scheme has a closed-form expression. Furthermore, there is no need to go through the iterative adaptation or jointly calculate the precoder and the equalizer. Simulation results show that the proposed design is able to achieve the optimal DOF performance with the advantage of perfect alignment capabilities.

    interference alignment (IA), heterogeneous DOFs, precoder design

    0 Introduction

    Interference alignment (IA) has been developed as a promising technique for interference management in wireless networks. By aligning interference signals from different links into a subspace with reduced dimensions, the dimensions of the subspace for the desired signals can be enlarged so as to further improve network capacity[1]. Since IA is able to achieve new breakthroughs on the optimal DOF, a great deal of research activities have been inspired to investigate various aspects of IA from theoretical analysis to practical design[2,3].

    Among various design approaches, heterogeneity of network topologies has been utilized to obtain precoders for the wireless transmissions. In Ref.[4], a hierarchical interference alignment scheme was proposed for heterogeneous networks by exploiting different numbers of transmit antennas of picocells and macrocells. In Ref.[5], characteristics of the partial connectivity for downlink multiple-input multiple output (MIMO) heterogeneous networks were investigated. The work in Ref.[6] used the heterogeneous path loss and spatial correlations to design the interference alignment precoders in MIMO interference networks. To further reduce the signaling overhead, work in Ref.[7] proposed a cognitive radio (CR) based interference alignment scheme by treating the macrocell and small cells as the primary system and secondary systems, respectively. Besides the precoder design in interference networks, recently, research work focusing on network performance analysis with co-channel interference modeling and spatial spectrum analysis was presented under random cellular networks[8,9], which provide new insights for the analysis of interference networks.

    Differing from the aforementioned work, the heterogeneity of DOFs among different transmission links is exploited to design the IA precoders. The channel propagation for different links can own much disparity, resulting in different ranks of channel matrices[10]. Even for a full rank channel, the transmitter might only support a smaller number of independent data streams in order to effectively avoid crosslink interference. It also differs in transmission rates when further considering the traffic dynamics of interfering users, where each transmission link will support a different number of independent data streams in practical scenarios[11]. From the perspective of interference network capacity, the number of independent data streams or multiplexing gain can be characterized by the degrees of freedom[1]. Therefore, the interference system also inherits heterogeneity property from the perspective of the DOF per link. This work, analyzes subspace relationships induced by the DOF’s heterogeneity to present a closed-form precoder design method for two different DOF cases, which fully utilizes the DOF’s heterogeneity either to reduce signaling overhead or achieve a higher sum rate. Unlike it often does with joint calculations between transmitter and receiver[4]or iterations[12,13], proposed precoders are obtained only by requiring calculations at each BS and limited information exchange among BSs.

    The remainder of this paper is organized as follows. Section 1 introduces the system model for three-cell uplink transmission. Section 2 analyzes the relationship of the heterogeneous DOFs and highlights the closed-form IA precoder expressions. Section 3 provides the simulation results and analysis. And the final section concludes this work.

    1 System model

    (1)

    (2)

    whereρistheaveragesignal-to-noiseratio(SNR)perlinkwithρ=1/σ2undertheabovenormalizedparameterconfigurations.γikisthepostsignal-to-noise-plus-interferenceratio(SINR)ofthekthdatastreamattheithreceiver.Therefore,thetotalDOFofthesystem,alsoknownasthecapacityper-logorthemultiplexinggain[1],is

    d

    (3)

    2 IAPrecoderdesign

    2.1 Heterogeneous DOFs

    For heterogeneous DOFs among different transmission links, without loss of generality, it is assumed

    d3≤d2≤d1

    (4)

    ThereafterthemaximalnumberofdimensionsavailableforinterferingsignalsofthreelinksareN-d1,N-d2andN-d3,respectively.Wheninterferencealignmentisintroducedintotheabovethree-linksystem,itisclaimedthattheDOFperlinkshouldfurthersatisfyconstraintinthefollowingproposition.Theproofisstraightforwardandprovidedsimplyinthefollowing.

    Proposition 1 The DOFs ofd1andd2inthethree-linkinterferencenetwork,undertheassumptionsofd3≤d2≤d1

    d1+d2≤N

    (5)

    Proof With interference alignment, the number of dimensions occupied by the aligned interference signals should be no larger than the number of dimensions for the null pace of the desired signal at each receiver[1,14]. For instance, at receiver #1, there is max{d2,d3}≤(N-d1).Therefore,theDOFsetinathree-linktransmissionsystemshouldsatisfy

    (6)

    CombiningwithEq.(4),thefollowingis

    (7)

    Consideringd3≤d2,therelationshipofd1+d2≤Nbecomesamorestrictconstraintcomparedtod1+d3≤N.

    MotivatedbyProposition1,theachievablesumDOFsoftheaboveinterferencenetworkcanbeobtained.InTable1,severalparametersetsoftheachievableDOFsunderdifferentantennaconfigurationsareillustratedwhenequalmarkbeingguaranteedinEq.(5).TheDOFsetsarefurtherdividedintotwodifferentcases,withCaseB.1 satisfyingd2+d3≤d1andCaseB.2 satisfyingd2+d3>d1.Suchtwocaseswillresultindifferentclosed-formdesignproceduresaswellastherequirementsforthechannelstateinformation(CSI).

    Table 1 DOF parameters vs. antenna parameters

    2.2 Proposed design

    In this subsection, a closed-form design of the IA precoders for the mentioned two different DOF cases is presented.

    CaseB.1d2+d3≤d1

    IntheDOFregionof{d1,d2d3:d2+d3≤d1},partialorfullprecodersforallthreetransmissionlinkscanbefirstlycalculatedbasedontheestimatedCSIateachownreceiver.

    Stage 1 Firstly, the full interference signals from UE #3 and the partial interference signals from UE #2 with dimensions ofd3arealignedatthereceiveroflink#1.Thatis,

    (8)

    (9)

    here,Span(·)isthespanningsetofthecolumnsofamatrix.And(·)-1denotestheinversionofasquarematrix.FromEq.(8)toEq.(9),thefullprecoderforUE#3andpartialprecoderforUE#2areobtainedatBS#1.ThenbothprecodersarerespectivelysignaledtoBS#2andBS#3insomemanners,e.g.,throughsignalingbroadcastingorviadedicatedchannels.

    (10)

    (11)

    The interference links at BS #2 will just occupyd1dimensionsofthematrixspacesothatthedesiredsignalcanbeeasilyidentifiedwiththezero-forcing(ZF)detectionsinced2satisfiesd2≤N-d1accordingtoEq.(5).TherestpartofW2with (d2-d3)dimensions,whichisnotcalculatedcanbeflexiblydesigned,e.g.,forbetterdiversitygain.

    Similarly,anotherpartofW1can be calculated in parallel at BS #3 following the same operations as those at BS #2,

    (12)

    Remark 1 All three precoders can be obtained in closed forms after one stage of calculations at BS #1 and the parallel stage of calculations both at BS #2 and BS #3. Therefore the DOF’s heterogeneity contributes to simplify the derivation of the IA precoders.

    Remark 2 Only local CSI is needed to perform the proposed algorithm at each receiver. The local CSI consists of the channel state information from both the desired link and the interfering links arrived at the same receiver. The CSI from interfering links at the same receiver can be achieved by channel estimation under cooperative transmission systems. Without the need for global and full CSI sharing among all transmission links, the local CSI feature provides one of the most important advantages for the proposed design.

    CaseB.2d2+d3>d1

    WhentheheterogeneousDOFsfallintheregionof{d1,d2d3:d2+d3>d1},however,thedesignisalittlecomplicated.ThisisbecausetheflexibilityremainingforW1is reduced, and it is not able to be achieved by directly combining the partial vectors from the other two receivers as in Case B.1. In such case, all three precoders should satisfy according to the dimension relationships of the subspaces in Eq.(4) and Eq.(5),

    (13)

    According to (13), the following is got:

    (14)

    and it further obtains

    (15)

    It can be solved by the generalized eigen-problem as

    (16)

    whereeig(·)meanstheeigenvectorsofamatrix,withthenumberofeigenvectorsbeingd2forsolutions.Furthermore, W1can be obtained as

    (17)

    Remark 3 CSI sharing is necessary for the precoder calculations in CaseB.2. And higher sum rate performance can be expected than that in CaseB.1 due to the much stricter CSI requirement. The cooperative transmission improves the network capacity, which is also verified through the capacity analysis in Ref.[8].

    Remark 4 In principle, either uplink or downlink transmissions can use the proposed designs. According to current standard specifications, however, it seems more suitable for uplink considering the requirement for information sharing among receivers. The information exchange between BSs has already been supported through X2 interface while it is somewhat challenging for UEs to exchange control information directly[15]. That is also the reason why the uplink transmission is selected as the system model in the above descriptions.

    3 Performance results

    The performance of the ergodic sum rate is presented under a three-cell uplink model via Monte Carlo simulations. Three aspects of performance verifications are considered for 1) Case B.1; 2) Case B.2 and 3) comparison with a typical time division multiple access (TDMA) MIMO transmissions. The sum DOF as defined by Eq.(3), which is the slope of the performance curve versus log2(SNR),isalsoillustrated.Tofullyevaluatetheperformanceoftheproposeddesigns,thebiterrorrate(BER)performanceisfurtherprovidedforanalysis.

    IntwoIAcases,precodersaredesignedaccordingtotheproposedschemeswhileZFdetectorsareusedatreceivers.Notethattheprecodingmatrixisappliedwithnormalization.InTDMAbenchmarks,theantennaconfigurationsarethesameasthoseinIAschemes.However,thevalueoftheDOFperlinkequalstothenumberofantennasandeachlinkoccupiesonetimeslotfortransmissionwhiletheothertwolinkskeepsilent.

    ThesumrateperformanceforCaseB.1 is shown in Fig.1. For illustration, the number of antennas is configured asN=5,6,7.ItcanbeseenthatthesumrateaswellasthesumDOF(dsum)isincreasedwiththeincreaseofthenumberofantennas.Andtheinterferencesignalsarefinelyalignedandthusremovedfromthereceiver.WithouttheneedofsharingCSIamongBSs,thesignalingoverheadisreducedinthiscase.

    Fig.1 Ergodic sum rate performance with the number of antennasN∈{5,6,7}andtheDOFsetfallingintheregionof{d1,d2,d3:d2+d3≤d1}

    In Fig.2, performance of the sum rate under CaseB.2 is provided. Under the same antenna configurations, it can be observed that the sum DOF is a little higher than that in Fig.1 due to the benefit of fully shared CSI. For example, the sum DOF is 7 while it is 6 for the system in CaseB.1 withN=5.Withtheincreaseofthenumberofantennas,theadvantagefromtheperspectiveofthesumDOFbecomesmoreobvious.

    Fig.2 Ergodic sum rate performance with the number of antennasN∈{5,6,7}andtheDOFsetfallingintheregionof{d1,d2,d3:d2+d3>d1}

    Theproposedclosed-formIAdesignalsohassuperiorsumDOFperformancethanTDMAschemes,asshownbyFig.3.Inthissimulation,twoMIMOschemesasTDMAbenchmarksareperformed.OneisthespatialmultiplexingTDMAschemewithoutprecoding,whiletheotheroneadoptstheeigenbeam-formingbasedonsingularvaluedecomposition(SVD).SimulationresultsshowthattheproposeddesignisabletoachievehighersumDOFthanbothconventionalMIMOschemes.ItalsoachievesbettersumrateperformancecomparedtotheTDMAschemewithoutprecoding.However,inthelowSNRregion,theproposeddesignisinferiortotheSVDscheme.ThisisduetotheperfectmatchfilteringfortheprecodingandreceivingintheSVDschemewhiletheproposedschemeusestheprecoderandtheZFdetector,stillremainingfurtheroptimizationopportunitiesforbetterdiversitygain.

    Fig.3 Ergodic sum rate performance comparison between the proposed IA design and the TDMA benchmarks with and without precoding (N=3)

    To fully evaluate the performance of the IA schemes, the BER performance in Fig.4 is further presented. In this simulation, the number of antennas is set at the transmitter and receiver asN=3,5,7andthecorrespondingDOFsaredsum=4,6,8respectively.Binaryphaseshiftkeying(BPSK)isadoptedasthemodulationschemeandZFdetectorsareusedforinterferencecancellationatthereceivers.Fromthesimulationresults,itshowsthattheinterferencesignalsfromtheco-channellinkscanbeperfectlynulledandtheBERperformanceisimprovedasSNRincreases.Furthermore,fordifferentantennaconfigurations,theBERperformanceslightlydecreasesasthenumberofantennasincreases.However,thesumDOFishigherforcaseswithmoreantennaswhichisconsistentwiththeresultsfromaforementionedsimulationresults.

    Fig.4 Bit error rate performance of the proposed IA design

    4 Conclusion

    This work investigates the IA schemes with heterogeneous DOFs for a three-cell uplink transmission system. After analyzing the relationship of the subspace dimensions among the desired and interfering links, the closed-form IA design procedures are described in detail for two different DOF cases, respectively. The features of two specific design methods are further discussed. Based on the feature analysis, the proposed designs have the advantages that either local CSI requirements can reduce the signaling burden or the higher sum DOF contributes to the improvement of the sum rate performance. In essence, the proposed designs can be used in both uplink and downlink transmissions, and in this work the uplink transmission is taken as the implementation example. Although here the three-cell interference model is adopted which is more consistent to the current cellular topology, its extension to a general case with an arbitrary number of links will be more meaningful in theory but will be rather more complicated.

    [ 1] Cadambe V R, Jafar S A. Interference alignment and degrees of freedom of the K-user interference channel.IEEETransactionsonInformationTheory, 2008, 54(8): 3425-3441

    [ 2] Nauryzbayev G, Alsusa E. Interference alignment cancellation in compounded MIMO broadcast channels with general message sets.IEEETransactionsonCommunications, 2015, 63(10): 3702-3712

    [ 3] Chen X M, Yuen C. On interference alignment with imperfect CSI: characterizations of outage probability, ergodic rate and SER.IEEETransactionsonVehicularTechnology, 2016, 65(1): 47-58

    [ 4] Shin W, Noh W, Jang K, et al. Hierarchical interference alignment for downlink heterogeneous networks.IEEETransactionsonWirelessCommunications, 2012, 11(12): 4549-4559

    [ 5] Liu G Q, Sheng M S, Wang X J, et al. Interference alignment for partially connected downlink MIMO heterogeneous networks.IEEETransactionsonCommunications, 2015, 63(2): 551-564

    [ 6] Rao X B, Ruan L Z, Lau V. Limited feedback design for interference alignment on MIMO interference networks with heterogeneous path loss and spatial correlations.IEEETransactionsonSignalProcessing, 2013, 61(10): 2598-2607

    [ 7] Castanheira D, Silva A, Gameiro A. Set optimization for efficient interference alignment in heterogeneous networks.IEEETransactionsonWirelessCommunications, 2014, 13(10): 5648-5660

    [ 8] Ge X H, Huang K, Wang C X, et al. Capacity analysis of a multi-cell multi-antenna cooperative cellular network with co-channel interference.IEEETransactionsonWirelessCommunications, 2011, 10(10): 3298-3309

    [ 9] Ge X H, Yang B, Ye J L, et al. Spatial spectrum and energy efficiency of random cellular networks.IEEETransactionsonCommunications, 2015, 63(3): 1019-1030

    [10] Wang C X, Hong X M, Ge X H, et al. Cooperative MIMO channel models: a survey.IEEECommunicationsMagazine, 2010, 48(2): 80-87

    [11] Zeng Y, Xu X L, Guang Y L, et al. Degrees of freedom of the three-user rank-deficient MIMO interference channel.IEEETransactionsonWirelessCommunications, 2014, 13(8): 4179-4192

    [12] Gomadam K, Cadambe V R, Jafar S. A distributed numerical approach to interference alignment and applications to wireless interference networks.IEEETransactionsonInformationTheory, 2011, 57(6): 3309-3322

    [13] Guillaud M, Rezaee M, Matz G. Interference alignment via message-passing. In: Proceedings of IEEE International Conference on Communications, Sydney, Australia, 2014. 5752-5757

    [14] Yetis C, Gou T G, Jafar S, et al. On feasibility of interference alignment in MIMO interference networks.IEEETransactionsonSignalProcessing, 2010, 58(9): 4771-4782

    [15] 3GPP TS 36.300. Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN); overall description, v12.5.0. 2015

    Yang Xiumei, born in 1979. She received the Bachelor’s and Master’s degrees in electrical engineering from Shandong University in 2001 and 2004, respectively, and the Ph.D. degree in communications and information systems from the Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS) in 2011. Her research focuses on interference management, cooperative communications, and heterogeneous wireless networks.

    10.3772/j.issn.1006-6748.2017.02.008

    ①Supported by the National Natural Science Foundation of China (No. 61271285), the National High Technology Research and Development Programme of China (No. 2015AA01A703), STCSM Project (No. 17ZR1429200), Shanghai Sailing Program (No. 16YF1411200) and the Leadcore-WiCO Cooperative Project.

    ②To whom correspondence should be addressed. E-mail: xiumei.yang@wico.sh

    on May 12, 2016

    inally, BS #1 combines the received partial precoders and finally obtains full precoder W1. The remaining vectors with (d1-d2-d3)dimensionsofW1can be generated flexibly, similar to W2.

    国产又色又爽无遮挡免| 亚洲国产日韩欧美精品在线观看| 夜夜爽夜夜爽视频| 插逼视频在线观看| 久久久久久伊人网av| 国产免费视频播放在线视频 | 国产乱来视频区| 大又大粗又爽又黄少妇毛片口| 一个人看的www免费观看视频| 蜜臀久久99精品久久宅男| 中文精品一卡2卡3卡4更新| 丰满少妇做爰视频| 最近最新中文字幕大全电影3| 国语自产精品视频在线第100页| 欧美日本亚洲视频在线播放| 欧美一区二区国产精品久久精品| 老司机影院成人| 老女人水多毛片| av天堂中文字幕网| 国产成人免费观看mmmm| 亚洲精品影视一区二区三区av| 国产免费视频播放在线视频 | 内射极品少妇av片p| 亚洲激情五月婷婷啪啪| 最近视频中文字幕2019在线8| 国产黄色视频一区二区在线观看 | 青春草亚洲视频在线观看| 亚洲欧美一区二区三区国产| 可以在线观看毛片的网站| 精品国产露脸久久av麻豆 | 精品久久国产蜜桃| 秋霞在线观看毛片| 在线播放无遮挡| 日韩一本色道免费dvd| 高清av免费在线| 精品欧美国产一区二区三| 国产色爽女视频免费观看| 一级黄色大片毛片| 国产男人的电影天堂91| 最近2019中文字幕mv第一页| 午夜视频国产福利| 日产精品乱码卡一卡2卡三| 久久精品综合一区二区三区| 一个人观看的视频www高清免费观看| 久久综合国产亚洲精品| 亚洲中文字幕日韩| 在线天堂最新版资源| 一级黄色大片毛片| 久久精品国产鲁丝片午夜精品| 久久久久久久亚洲中文字幕| 岛国毛片在线播放| 亚洲激情五月婷婷啪啪| 久久久久精品久久久久真实原创| 国产亚洲最大av| 日韩亚洲欧美综合| 久久草成人影院| 国产乱人偷精品视频| 可以在线观看毛片的网站| 欧美人与善性xxx| 欧美最新免费一区二区三区| 日日啪夜夜撸| 久久人人爽人人爽人人片va| 国产精品久久视频播放| 免费看av在线观看网站| 免费观看精品视频网站| 国产高清不卡午夜福利| 深夜a级毛片| 麻豆国产97在线/欧美| 久久6这里有精品| 一级毛片我不卡| 好男人在线观看高清免费视频| 人妻少妇偷人精品九色| 秋霞在线观看毛片| 国产精品国产三级国产专区5o | 国产成人午夜福利电影在线观看| 国产在视频线在精品| 天堂影院成人在线观看| 乱码一卡2卡4卡精品| 一卡2卡三卡四卡精品乱码亚洲| 99热这里只有是精品50| 波多野结衣巨乳人妻| 网址你懂的国产日韩在线| 亚洲欧美精品自产自拍| 村上凉子中文字幕在线| 亚洲精品色激情综合| 中文字幕熟女人妻在线| 亚洲高清免费不卡视频| 免费黄色在线免费观看| 色尼玛亚洲综合影院| 波多野结衣巨乳人妻| 亚洲经典国产精华液单| 午夜日本视频在线| av免费在线看不卡| 最近视频中文字幕2019在线8| 久久久久九九精品影院| 久久99热6这里只有精品| 又黄又爽又刺激的免费视频.| 成年女人看的毛片在线观看| 一级毛片电影观看 | 国产午夜福利久久久久久| 亚洲av男天堂| 国产亚洲精品久久久com| 天堂网av新在线| 一区二区三区高清视频在线| 欧美性猛交╳xxx乱大交人| 干丝袜人妻中文字幕| 免费看光身美女| 九九久久精品国产亚洲av麻豆| 一个人观看的视频www高清免费观看| 亚洲精品一区蜜桃| 久久热精品热| 国产亚洲91精品色在线| 国产成人a∨麻豆精品| 91久久精品国产一区二区成人| 最后的刺客免费高清国语| 99久久精品国产国产毛片| 国产亚洲一区二区精品| 亚洲人成网站在线播| 日韩成人伦理影院| 国产爱豆传媒在线观看| 搡女人真爽免费视频火全软件| 久久久精品94久久精品| 久久久久九九精品影院| 女的被弄到高潮叫床怎么办| 午夜视频国产福利| 老司机影院毛片| 日本与韩国留学比较| 日韩大片免费观看网站 | 亚洲国产精品久久男人天堂| 寂寞人妻少妇视频99o| 国产亚洲午夜精品一区二区久久 | 亚洲国产色片| 国产午夜精品久久久久久一区二区三区| 国产精品女同一区二区软件| 一卡2卡三卡四卡精品乱码亚洲| 精品不卡国产一区二区三区| 有码 亚洲区| 三级国产精品片| 少妇高潮的动态图| 高清av免费在线| 色视频www国产| 色综合色国产| 亚洲自偷自拍三级| 欧美成人免费av一区二区三区| 国产老妇女一区| 变态另类丝袜制服| 亚洲精品456在线播放app| 国产黄片美女视频| 国产精品三级大全| 内地一区二区视频在线| 日韩人妻高清精品专区| 亚洲五月天丁香| 中文字幕久久专区| 国产不卡一卡二| 亚洲va在线va天堂va国产| 国产淫语在线视频| 久久精品久久久久久噜噜老黄 | 国产三级中文精品| 久久午夜福利片| 啦啦啦观看免费观看视频高清| 亚洲av中文av极速乱| 免费观看性生交大片5| 亚洲图色成人| 两个人的视频大全免费| 日韩av在线大香蕉| kizo精华| 亚洲自偷自拍三级| 欧美极品一区二区三区四区| 在线天堂最新版资源| 一级毛片电影观看 | 久久99精品国语久久久| 亚洲综合精品二区| 高清视频免费观看一区二区 | 性插视频无遮挡在线免费观看| 成人美女网站在线观看视频| 村上凉子中文字幕在线| 国产片特级美女逼逼视频| 色5月婷婷丁香| 久久这里只有精品中国| 国产精品国产三级国产专区5o | 18禁在线无遮挡免费观看视频| 国产老妇伦熟女老妇高清| 国产私拍福利视频在线观看| 丰满乱子伦码专区| 男人的好看免费观看在线视频| 99久久成人亚洲精品观看| 黄色日韩在线| www.色视频.com| 亚洲婷婷狠狠爱综合网| 免费黄网站久久成人精品| 日韩,欧美,国产一区二区三区 | 1024手机看黄色片| 国产日韩欧美在线精品| 全区人妻精品视频| 高清日韩中文字幕在线| 一区二区三区免费毛片| 久久精品国产亚洲av天美| 少妇高潮的动态图| 亚洲欧美成人综合另类久久久 | 国产高清不卡午夜福利| 国产精品久久久久久精品电影| videossex国产| 尤物成人国产欧美一区二区三区| 看免费成人av毛片| 男人舔女人下体高潮全视频| 国产免费视频播放在线视频 | 亚洲国产精品国产精品| 久久精品国产亚洲av涩爱| 久久99蜜桃精品久久| 久久久精品欧美日韩精品| 热99re8久久精品国产| 国产 一区 欧美 日韩| 精品国产露脸久久av麻豆 | 91aial.com中文字幕在线观看| 超碰av人人做人人爽久久| 国产亚洲一区二区精品| 搞女人的毛片| 深夜a级毛片| 两个人视频免费观看高清| 如何舔出高潮| 精品国产露脸久久av麻豆 | 免费看a级黄色片| 少妇的逼好多水| 亚洲精品影视一区二区三区av| 桃色一区二区三区在线观看| 国产伦在线观看视频一区| 日本免费一区二区三区高清不卡| 国产男人的电影天堂91| 免费观看性生交大片5| 麻豆av噜噜一区二区三区| kizo精华| 国产精品无大码| 一个人免费在线观看电影| 蜜桃亚洲精品一区二区三区| 国产精品国产高清国产av| 国内揄拍国产精品人妻在线| av卡一久久| 十八禁国产超污无遮挡网站| 我的老师免费观看完整版| 久久久久久大精品| 美女高潮的动态| www.av在线官网国产| 色噜噜av男人的天堂激情| 嫩草影院入口| 日韩国内少妇激情av| 九色成人免费人妻av| 成年av动漫网址| 午夜福利在线在线| 在线免费十八禁| 国产黄片美女视频| 两个人视频免费观看高清| 免费一级毛片在线播放高清视频| 亚洲av.av天堂| 美女高潮的动态| 边亲边吃奶的免费视频| 毛片女人毛片| 国产av码专区亚洲av| 超碰av人人做人人爽久久| 中文字幕久久专区| 丰满人妻一区二区三区视频av| 成人二区视频| 欧美又色又爽又黄视频| 亚洲成人久久爱视频| 亚洲在久久综合| 免费电影在线观看免费观看| 久久午夜福利片| 成人鲁丝片一二三区免费| 亚洲人成网站在线播| 亚洲成色77777| 国产私拍福利视频在线观看| 禁无遮挡网站| 午夜精品一区二区三区免费看| 亚洲欧美精品自产自拍| 色哟哟·www| 韩国av在线不卡| 国产伦在线观看视频一区| 免费播放大片免费观看视频在线观看 | 亚洲av男天堂| 国产老妇伦熟女老妇高清| 国产精品不卡视频一区二区| 97人妻精品一区二区三区麻豆| 美女内射精品一级片tv| 亚洲在线观看片| 国产三级中文精品| 岛国在线免费视频观看| 又爽又黄a免费视频| 国产探花极品一区二区| 身体一侧抽搐| 亚洲自偷自拍三级| 一区二区三区四区激情视频| 欧美高清性xxxxhd video| 欧美区成人在线视频| 久久人人爽人人爽人人片va| 人妻系列 视频| 欧美不卡视频在线免费观看| 亚洲一级一片aⅴ在线观看| 在线免费十八禁| 久久久久久久久久成人| 国产精品av视频在线免费观看| 国产精华一区二区三区| 少妇的逼水好多| 黄片wwwwww| 99热全是精品| 亚洲精品日韩在线中文字幕| 最近2019中文字幕mv第一页| 久久久久久九九精品二区国产| 国语对白做爰xxxⅹ性视频网站| 不卡视频在线观看欧美| 一个人免费在线观看电影| 国产成人午夜福利电影在线观看| 一级毛片电影观看 | 热99在线观看视频| 亚洲av不卡在线观看| 2021天堂中文幕一二区在线观| 精品一区二区三区视频在线| 日本-黄色视频高清免费观看| 一个人观看的视频www高清免费观看| 欧美人与善性xxx| 久久久精品欧美日韩精品| 可以在线观看毛片的网站| 亚洲自偷自拍三级| 国产免费又黄又爽又色| 国产成人精品婷婷| 久久久久久久亚洲中文字幕| 亚洲精品色激情综合| 精品人妻一区二区三区麻豆| 久久婷婷人人爽人人干人人爱| 嘟嘟电影网在线观看| 2021天堂中文幕一二区在线观| 在线免费观看不下载黄p国产| 日韩欧美 国产精品| 最近手机中文字幕大全| 成年女人看的毛片在线观看| 在现免费观看毛片| 纵有疾风起免费观看全集完整版 | 一级黄片播放器| 成人毛片a级毛片在线播放| 毛片女人毛片| 成人毛片60女人毛片免费| 18禁裸乳无遮挡免费网站照片| 波野结衣二区三区在线| 久久6这里有精品| 日韩国内少妇激情av| 深爱激情五月婷婷| 精品少妇黑人巨大在线播放 | 高清午夜精品一区二区三区| 亚洲高清免费不卡视频| 国产熟女欧美一区二区| 毛片女人毛片| 国产高潮美女av| 麻豆成人午夜福利视频| 男的添女的下面高潮视频| 亚洲国产色片| 又粗又爽又猛毛片免费看| 国产精品美女特级片免费视频播放器| av福利片在线观看| 欧美性猛交黑人性爽| 成人亚洲精品av一区二区| 成人毛片a级毛片在线播放| 中文精品一卡2卡3卡4更新| 午夜激情欧美在线| 免费av不卡在线播放| 国产视频首页在线观看| 午夜福利成人在线免费观看| 寂寞人妻少妇视频99o| 一区二区三区四区激情视频| 天堂影院成人在线观看| 久久久久久久国产电影| 国产av码专区亚洲av| 成人特级av手机在线观看| 亚洲国产成人一精品久久久| 精品国产露脸久久av麻豆 | 国内少妇人妻偷人精品xxx网站| 日日干狠狠操夜夜爽| 免费一级毛片在线播放高清视频| 最新中文字幕久久久久| 精品欧美国产一区二区三| 久久久久国产网址| 久久久久久久午夜电影| 直男gayav资源| 日日啪夜夜撸| 免费观看的影片在线观看| 日韩,欧美,国产一区二区三区 | a级一级毛片免费在线观看| 亚洲综合色惰| 观看免费一级毛片| 变态另类丝袜制服| 97超碰精品成人国产| or卡值多少钱| 日韩,欧美,国产一区二区三区 | 精品一区二区三区人妻视频| 国产真实乱freesex| ponron亚洲| 国产中年淑女户外野战色| 国产精品国产三级专区第一集| 色视频www国产| 久久国产乱子免费精品| 日本三级黄在线观看| 七月丁香在线播放| 亚洲在线观看片| 精品久久久久久久久av| 中文资源天堂在线| 69av精品久久久久久| av天堂中文字幕网| 日韩亚洲欧美综合| 久久欧美精品欧美久久欧美| 嘟嘟电影网在线观看| 日韩精品有码人妻一区| 十八禁国产超污无遮挡网站| 国产亚洲午夜精品一区二区久久 | 2021少妇久久久久久久久久久| 看免费成人av毛片| 久久精品综合一区二区三区| 中文在线观看免费www的网站| 婷婷色综合大香蕉| 非洲黑人性xxxx精品又粗又长| 欧美日韩一区二区视频在线观看视频在线 | 亚洲人与动物交配视频| 精品不卡国产一区二区三区| 天美传媒精品一区二区| 国产在线男女| 免费不卡的大黄色大毛片视频在线观看 | 亚洲,欧美,日韩| 在线观看美女被高潮喷水网站| 伊人久久精品亚洲午夜| 国模一区二区三区四区视频| 午夜福利网站1000一区二区三区| 午夜激情福利司机影院| 免费观看a级毛片全部| 欧美另类亚洲清纯唯美| 国产精品国产三级国产av玫瑰| 99热精品在线国产| 我要看日韩黄色一级片| www.av在线官网国产| 成人无遮挡网站| 亚洲第一区二区三区不卡| 国产片特级美女逼逼视频| 午夜日本视频在线| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久伊人网av| 中文字幕久久专区| 深爱激情五月婷婷| 黄色日韩在线| 亚洲国产色片| 亚洲欧美日韩无卡精品| 精品久久久久久久久久久久久| 爱豆传媒免费全集在线观看| 国产成人午夜福利电影在线观看| 久久6这里有精品| 美女脱内裤让男人舔精品视频| 麻豆成人午夜福利视频| 国产精品无大码| 亚洲精品乱码久久久v下载方式| 在线免费观看的www视频| 99久久精品一区二区三区| 免费看美女性在线毛片视频| 亚洲av福利一区| 啦啦啦韩国在线观看视频| 中国国产av一级| 国产精品国产高清国产av| 一本久久精品| 婷婷色麻豆天堂久久 | 日韩三级伦理在线观看| 国产午夜精品一二区理论片| 日韩av在线大香蕉| 身体一侧抽搐| 欧美3d第一页| av免费在线看不卡| 国产又色又爽无遮挡免| 91精品伊人久久大香线蕉| 免费观看在线日韩| 青春草国产在线视频| 国内揄拍国产精品人妻在线| 黄色欧美视频在线观看| 亚洲av一区综合| 成人亚洲欧美一区二区av| 国产真实乱freesex| 国产精品无大码| av黄色大香蕉| 国产精品日韩av在线免费观看| 麻豆成人av视频| 久久午夜福利片| 欧美一区二区精品小视频在线| 欧美3d第一页| 丰满人妻一区二区三区视频av| 国产在线男女| 免费搜索国产男女视频| 1000部很黄的大片| 久久精品久久久久久久性| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品,欧美在线| 可以在线观看毛片的网站| 观看美女的网站| 在线a可以看的网站| 亚洲成人久久爱视频| 欧美日韩精品成人综合77777| 丝袜喷水一区| 国产精品女同一区二区软件| 熟女电影av网| 国产精品一二三区在线看| 亚洲美女视频黄频| 欧美潮喷喷水| 欧美激情在线99| 午夜福利在线观看免费完整高清在| 人妻系列 视频| 久久久成人免费电影| 免费一级毛片在线播放高清视频| 69av精品久久久久久| 国产免费一级a男人的天堂| 婷婷色av中文字幕| 五月玫瑰六月丁香| 搞女人的毛片| 男人和女人高潮做爰伦理| 欧美日韩在线观看h| 国产综合懂色| 免费看美女性在线毛片视频| 亚洲国产高清在线一区二区三| 国产视频内射| 最近最新中文字幕免费大全7| 亚洲欧美成人精品一区二区| 亚洲国产最新在线播放| 国产av在哪里看| 午夜久久久久精精品| 淫秽高清视频在线观看| 成人亚洲欧美一区二区av| 久久人人爽人人片av| 久久久成人免费电影| 久久久欧美国产精品| 欧美成人一区二区免费高清观看| 亚洲精品久久久久久婷婷小说 | www日本黄色视频网| 欧美97在线视频| 成人午夜高清在线视频| 一区二区三区高清视频在线| 中文字幕免费在线视频6| 国产精品三级大全| 中国美白少妇内射xxxbb| 天美传媒精品一区二区| 免费看光身美女| 久久久久久国产a免费观看| 一本久久精品| 欧美区成人在线视频| 免费观看的影片在线观看| 午夜福利在线观看免费完整高清在| 午夜福利视频1000在线观看| 亚洲国产高清在线一区二区三| 日本欧美国产在线视频| 精品一区二区三区人妻视频| 春色校园在线视频观看| av在线蜜桃| 久久精品夜色国产| 2021天堂中文幕一二区在线观| 成人鲁丝片一二三区免费| 91av网一区二区| 欧美高清性xxxxhd video| 美女国产视频在线观看| 99热这里只有是精品50| 变态另类丝袜制服| 赤兔流量卡办理| 久久综合国产亚洲精品| 久久久久久久久久成人| 女人十人毛片免费观看3o分钟| 免费av不卡在线播放| 一本久久精品| 成人毛片60女人毛片免费| 午夜激情欧美在线| 中文欧美无线码| 十八禁国产超污无遮挡网站| 最近中文字幕高清免费大全6| 男的添女的下面高潮视频| 日本三级黄在线观看| 乱人视频在线观看| 亚洲第一区二区三区不卡| 午夜福利成人在线免费观看| 男女国产视频网站| 小说图片视频综合网站| 又爽又黄无遮挡网站| 亚洲av福利一区| 免费无遮挡裸体视频| 99热全是精品| 亚洲国产欧洲综合997久久,| 免费无遮挡裸体视频| a级毛色黄片| 国产成人精品婷婷| 国产精品1区2区在线观看.| 建设人人有责人人尽责人人享有的 | 九九热线精品视视频播放| 99视频精品全部免费 在线| 免费看日本二区| 国国产精品蜜臀av免费| 一级黄色大片毛片| 婷婷色av中文字幕| 日本猛色少妇xxxxx猛交久久| 国产精品1区2区在线观看.| 久久精品久久久久久久性| 亚洲内射少妇av| 国产老妇女一区| 99久国产av精品| 亚洲精品国产成人久久av| 天堂中文最新版在线下载 | 一个人观看的视频www高清免费观看| 久久久午夜欧美精品| 又黄又爽又刺激的免费视频.| 欧美激情在线99| 蜜臀久久99精品久久宅男| 日韩视频在线欧美| 国产精品久久视频播放| 精品人妻视频免费看| 久久这里有精品视频免费| 一区二区三区乱码不卡18| eeuss影院久久| 91精品一卡2卡3卡4卡| 精品一区二区三区视频在线| 色综合亚洲欧美另类图片| 日韩,欧美,国产一区二区三区 |