• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mining potential social relationship with active learning in LBSN①

    2017-06-27 08:09:23WangHaiping王海平ZhangHongWangYongBingJia
    High Technology Letters 2017年2期

    Wang Haiping (王海平), Zhang Hong, Wang Yong, Bing Jia

    (*Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, P.R.China) (**National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100029, P.R. China) (***Henan Worker’s Cultural Palace, Zhengzhou 450007, P.R.China)

    Mining potential social relationship with active learning in LBSN①

    Wang Haiping (王海平)*, Zhang Hong②**, Wang Yong②**, Bing Jia***

    (*Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, P.R.China) (**National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100029, P.R. China) (***Henan Worker’s Cultural Palace, Zhengzhou 450007, P.R.China)

    Rapid development of local-based social network (LBSN) makes it more convenient for researchers to carry out studies related to social network. Mining potential social relationship in LBSN is the most important one. Traditionally, researchers use topological relation of social network or telecommunication network to mine potential social relationship. But the effect is unsatisfactory as the network can not provide complete information of topological relation. In this work, a new model called PSRMAL is proposed for mining potential social relationships with LBSN. With the model, better performance is obtained and guaranteed, and experiments verify the effectiveness.

    data preprocessing, feature fusion, active learning

    0 Introduction

    Local-based social network (LBSN) is a new kind of social network where people could mark their positions information, and it developed rapidly in recent years. But LBSN differs from traditional social network as people could mark their positions information in the network. With the extensive use of smart phones, a large number of local-based social networks like Foursquares and Gowalla have emerged and have been drawing people’s attention. Besides, traditional social networks like Facebook and Twitter also add the position information in their products to improve their popularity. In this way, people could publish their statuses in the form of text or picture marked with geographical information in LBSN.

    Nowadays, millions of check-ins appear in LBSN every day, which provide sufficient information for the study of social network, including social relationship mining, recommendation of goods and services, community detection, etc. As mining of social relationship is the basis of many studies, it has been drawing wide attention of researchers. Traditionally, researchers use topological relation of social network or telecommunication network to mine potential social relationship[1]. As LBSN could be viewed as the combination of traditional social relationship and marks with position information, potential social relationships could also be mined by traditional methods, however, in which obvious disadvantage exists. As people do not always use a certain local-based social network to communicate with their friends, the relational network extracted from the LBSN could not fully cover their relationships. In other word, features extracted from the existing relational network could not describe the attribute completely. Therefore, researchers have studied mining the potential social relationships by using geographical position information.

    Ref.[2] discovered the relation between relationships and geographical position information, and verified the effectiveness to infer potential relationships with geographical information. Ref.[3] defined computation methods to extract features from LBSN and mined potential relationships later. Ref.[4] also studied the problem of inferring links with geographical information to be proved the effective Ref.[5] proposed an entropy-based model (EBM) to infer social connections,and further estimate the strength of social connections with spatial information. However, the studies mentioned above mainly focused on designing features, and less considered about preprocessing data and improving the prediction model. In this paper, a new model called PSRMAL is brought out for mining potential social relationships to predict people’s potential social relational network, combined with geographical information extracted from LBSN.

    The rest of the paper is organized as follows: In Section 1, a method for designing PSRMAL is explained. The experiment is described in Section 2. Finally, conclusion is given in Section 3.

    1 Design of PSRMAL

    In this section, a method for devising model PSRMAL will be introduced in detail. The model can be viewed as two parts. The first is to extract features from LBSN, and the second is to train the model and further improve its performance. Fig.1 shows the structure for mining potential social relationships from LBSN, and the process could be divided into four steps, i.e. region partition, feature computation, feature fusion and active learning. The detailed description is as follows.

    Fig.1 The structure for mining potential social relationships

    1.1 Region partition

    As each check-in corresponds to a GPS record, regions could be partitioned by clustering people’s GPS records of check-in. Generally, there are four methods for clustering, i.e. partitioning methods, hierarchical methods, density-based methods and grid-based methods. Partitioning, hierarchical and grid-based methods are designed to find spherical-shaped clusters, while positions where people check in are not always in regular shapes. Therefore, density-based methods are used to obtain segment regions in this work.Although density-based cluster is suitable for partitioning regions, it is still insufficient to ensure the rationality. In this paper, partition regions are brought out with three density-based cluster methods, i.e. DBSCAN (density-based spatial clustering of applications with noise), OPTICS (ordering points to identify the clustering structure), and DENCLUE (clustering based on density distribution functions). After region partition, each check-in record corresponds to three region marks to guarantee the rationality of partition.

    1.2 Feature computation

    Generally, people appearing at common positions are likely to be friends[6]. The more frequently they do, the more likely to be. Therefore, three methods that have usually been used for similarity computation in social network are applied, i.e common neighbors, Jaccard index and Cosine index[7]. Here positions are used that people check in to replace the nodes in network. Then features could be computed with three methods and features ComP, JacP and CosP could be obtained respectively. Here ComP denotes the common positions that two persons have checked in, JacP denotes the value that computed with Jaccard index for two persons, and CosP denotes values computed with cosine index. The computational formulas are shown as follows.

    ComPij=φi∩φj

    (1)

    JacPij=φi∩φj/φi∪φj

    (2)

    (3)

    1.3Featurefusionwithlogistic

    Withthefeaturedefinitionmethodsmentionedinsubsection1.2,threedifferentkindsoffeaturesetsXN, XS, XE∈n×dcould be extracted, and XN, XS, XEdenote the feature sets extracted from LBSN with DBSCAN, OPTICS and DENCLUE respectively. Then letxNijdenotes theipair of persons’ position features extracted withjfeature computation method, while positions are obtained by DBSCAN. Similarly, letxSijandxEijdenote features when positions are obtained by OPTICS and DENCLUE correspondingly.

    Then the fusion feature could be computed as

    xij=αjxNij+βjxSij+γjxEij

    (4)

    whereαj,βjandγjrepresenttheweightsofdifferentfeatureswithcomputationj,and3nvalues will be obtained. To calculate the weighted values, the feature sets are united as

    (5)

    where R=[1,1…1]T∈1×d, and each column of XUis

    xUi=(xNi1,xNi2…,xNin,xSi1,xSi2,…,xSin,xEi1,xEi2, …,xEin, 1)T∈(3n+1)×1

    Correspondingly, W can be expressed as W=[αT,βT,γT,c]T∈(3n+1)×1,whereα=[α1,α2…αn]T∈n×1, β=[β1,β2,βn]T∈n×1andγ=[γ1,γ2…γn]T∈n×1are the weight sets of different features, andcisaconstantargument.

    Forconvenience,formW=(w1,w2…w3n,c)T∈(3n+1)×1isusedtodenotetheweightset,andtheweightsetsofdifferentfeaturesareα=[w1,w2…wn]T∈n×1, β=[wn+1,wn+2…w2n]T∈n×1andγ=[w1,w2…wn]T∈n×1.

    Inthiswork,logisticregressionisappliedtocalculatetheparameters.Theprobabilitythattwopersonshaverelationshipornotcanbeexpressedas

    (6)

    (7)

    LethW(xU)=g(WTxU), and combine the two equations above to obtainp(y|xU, W)=hW(xU)y(1-hW(xU)1-y)

    The likelihood function could be expressed as

    (8)

    And the log-likelihood is

    (9)

    Whenl(W) reaches the maximum, W is the weight set. In this study, gradient decent is used to solve it. The elements of W can be got as

    (10)

    Thenwjcouldbegotwhenthepartialderivateconverges,andtheresultis

    (11)

    1.4Activelearning

    Inthiswork,activelearningisusedtoimprovetheperformanceforminingofpotentialsocialrelationship.Activelearningisproposedrelativetopassivelearning[8-13].Passivelearningreferstoselectingsamplesrandomlyfromthedatasetandlabelthem,thentrainsamodelwiththelabeledsamplesandclassifyunlabeledoneswiththemodel.However,theremayexistproblemssuchasinformationredundancy,excessivenoise,asthesamplesfortrainingmodelsarefetchedrandomly,whichwouldseriouslyaffecttheeffectivenessofclassification[14-19].Activelearningistodividethesamplelabelingworkintotwosteps.Firstly,itistolabelafewsamplesastheinitialtrainingset,fortrainingabasicclassifier,andlabeltheothersampleswiththeclassifier.Secondly,itistoselectacertainnumberofsamplesthatarehardtoconfirmtheirclassesaccordingtotheresult,andlabeltheseonesmanually.Thenewlabeledsamplestotheinitialtrainingsetareadded,andthefinalclassifierwiththenewtrainingsetistrained[20-25].Asthenewtrainingsetfetchedinthiswaycontainsmorecomprehensiveinformationofthedataset,amorerobustmodelwouldbeobtained.

    2 Experiment

    Inthissection,theperformanceofPSRMALisevaluatedwithaclassicalgorithm,supportvectormachine(SVM).Besides,socialrelationshipsarealsominedwiththreesinglefeaturesascontrastexperiments.Firstly,thefeaturesshouldbeextractedwiththreedifferentmethods.Secondly,thefeaturesarefusedwithlogisticregression,whiletheparameterW for fusion is shown in Table1.

    Table 1 weight set

    With the value of weight set W, each member of fusion feature X could be obtained as

    Xij=αjxNij+βjxsij

    (12)

    Lastly,thepotentialsocialrelationshipswillbeminedbyusingXN, XS, XEand X respectively. In Fig.2(a)~(c), it is to express the experiment results of different methods for dividing positions, including DBSCAN, OPTICS, DENCLUE and the fusion. Let N denote the positions divided with DBSCAN,S denote OPTICS, E denote DENCLUE and F denote the fusion. As can be seen in the figures, the performance of fusion feature outperforms single features in almost all cases. The fusion is crucial to guarantee the stability of model and achieve high performance. Besides, active learning also contributes to enhance the performance. As the comprehensive assessment, F-measure is more persuasive. The values obtained by using XN, XS, XEand X are 42.18%, 41.08%, 38.43% and 44.34%, and the F-measure of fusion feature is boosted by 2.16%, 3.26% and 5.92% respectively.

    (a) Index of precision

    (b) Index of recall

    (c) Index of F-measure

    3 Conclusion and future work

    In this study, a new model PSRMAL is proposed for mining potential social relationships with geographical information in LBSN. The importance of region partition is emphasized and the region is segmented with three different cluster methods, in which the rationality of partition is ensured. Then the features are fused with logistical and the performance of model is further improved with active learning mothed. Experiments prove the effectiveness of PSRMAL. In the future, more energy will be put to the efficiency of model to make it more suitable for real-time processing.

    Reference

    [ 1] Adamic L A, Adar E. Friends and neighbors on the web.SocialNetworks, 2001, 25(3): 211-230

    [ 2] Cho E, Myers S A, Leskovec J. Friendship and mobility user movement in location-based social networks. In: Proceeding of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2011. 1082-1090

    [ 3] Wang D, Pedreschi D, Song C, et al. Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2011. 1100-1108

    [ 4] Scellato S, Noulas A, Mascolo C. Exploiting place features in link prediction on location-based social networks. In: Proceedings the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2011. 1046-1054

    [ 5] Pham H, Shahabi C, Liu Y. EBM: an entropy-based model to infer social strength from spatiotemporal data. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, USA, 2013. 265-276

    [ 6] Pham H, Hu L, Shahabi C. Towards integrating real-world spatiotemporal data with social networks. In: Proceedings of the 19th ACM SIGSPATIAL, New York, USA, 2011. 453-457

    [ 7] Moyano L G, Thomae O R M, Frias-Martinez E. Uncovering the spatio-temporal structure of social networks using cell phone records. In: Proceedings the 12th International Conference on Data Mining Workshops (ICDMW 2012), Brussels, Belgium, 2012. 242-249

    [ 8] Zhang X Y, Wang S, Yun X. Bidirectional active learning: a two-way exploration into unlabeled and labeled dataset.IEEETransactionsonNeuralNetworksandLearningSystems, 2015, 26(12): 3034-3044

    [ 9] Zhang X Y, Wang S, Zhu X, et al. Update vs. upgrade: modeling with indeterminate multi-class active learning.Neurocomputing, 2015, 162: 163-170

    [10] Zhang X. Interactive patent classification based on multi-classifier fusion and active learning.Neurocomputing, 2014, 127(3): 200-205

    [11] Zhang X Y, Cheng J, Xu C, et al. Multi-view multi-label active learning for image classification. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Cancun, Mexico, 2009. 258-261

    [12] Zhang X Y, Xu C, Cheng J, et al. Automatic semantic annotation for video blogs. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Hannover, Germany, 2008. 121-124

    [13] Zhang X Y, Cheng J, Lu H, et al. Selective sampling based on dynamic certainty propagation for image retrieval. In: Proceedings of the Advances in Multimedia Modeling (MMM), Kyoto, Japan, 2008. 425-435

    [14] Zhang X Y, Cheng J, Lu H, et al. Weighted co-SVM for image retrieval with MVB strategy. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), San Antonio, USA, 2007. 517-520

    [15] Wang S, Zhang X Y, Yun X, et al. Joint recovery and representation learning for robust correlation estimation based on partially observed data. In: Proceedings of the IEEE International Conference on Data Mining Workshop, Atlantic City, USA, 2015. 1-7

    [16] Zhang X Y. Preference modeling for personalized retrieval based on browsing history analysis.IEEJTransactionsonElectricalandElectronicEngineering, 2013, 8 (S1): 81-87

    [17] Zhu X B, Jin X, Zhang X Y, et al. Context-aware local abnormality detection in crowded scene.ScienceChinaInformationSciences(SCIS), 2015, 58(5): 1-11

    [18] Zhu G, Wang J, Wu Y, et al. MC-HOG correlation tracking with saliency proposal. In: Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016.1-7

    [19] Zhang Y, Xu C, Zhang X, et al. Personalized retrieval of sports video based on multi-modal analysis and user preference acquisition.MultimediaToolsandApplications, 2009, 44(2): 305-330

    [20] Zhang X Y, Hou Z, Zhu X, et al. Robust malware detection with dual-lane AdaBoost. In: Proceedings of the IEEE International Conference on Computer Communications, San Francisco, USA, 2016. 1051-1052

    [21] Zhang X Y, Zhang K, Yun X, et al. Location-based correlation estimation in social network via collaborative learning. In: Proceedings of the IEEE International Conference on Computer Communications, San Francisco, USA, 2016. 1073-1074

    [22] Zhang X Y, Wang S, Zhang L, et al. Ensemble feature selection with discriminative and representative properties for malware detection. In: Proceedings of the IEEE International Conference on Computer Communications, San Francisco, USA, 2016. 674-675

    [23] Zhang Y, Zhang X, Xu C, et al. Personalized retrieval of sports video. In: Proceedings of the ACM Multimedia Workshop, Augsburg, Germany, 2007. 313-322

    [24] Zhang X Y. Effective search with saliency-based matching and cluster-based browsing.HighTechnologyLetters, 2013, 19(1): 105-109

    [25] Zhang X Y. Dynamic batch selective sampling based on version space analysis.HighTechnologyLetters, 2012, 18(2): 208-213

    Wang Haiping, born in 1987. He is in pursuit of Ph.D degree, and is currently an engineer in Institute of Information Engineering, Chinese Academy of Sciences. He received his Master degree from College of Information of Renmin University of China in 2012. He also received his B.S. degree from Beijing Technology and Business University in 2009. His research interests include the design of algorithms for parallel processing, big data analysis and text mining.

    10.3772/j.issn.1006-6748.2017.02.012

    ①Supported by the National Natural Science Foundation of China (No. 61501457).

    ②To whom correspondence should be addressed. E-mail: zhangh@isc.org.cn, wangyong@cert.org.cn

    on Apr. 20, 2016

    欧美日韩一级在线毛片| 99热国产这里只有精品6| 啦啦啦中文免费视频观看日本| 99香蕉大伊视频| 日韩大码丰满熟妇| 欧美日韩一级在线毛片| 最近最新免费中文字幕在线| 国内毛片毛片毛片毛片毛片| 精品乱码久久久久久99久播| 黑人巨大精品欧美一区二区mp4| 日本a在线网址| 国产免费现黄频在线看| 女性生殖器流出的白浆| 国产一区二区三区综合在线观看| 欧美黑人欧美精品刺激| 男女午夜视频在线观看| 精品少妇一区二区三区视频日本电影| 久久精品国产综合久久久| 国产精品偷伦视频观看了| 成年美女黄网站色视频大全免费| 十八禁网站网址无遮挡| 日本黄色日本黄色录像| 国产亚洲欧美在线一区二区| 色94色欧美一区二区| 日韩三级视频一区二区三区| 亚洲精品国产精品久久久不卡| 欧美午夜高清在线| 亚洲男人天堂网一区| 一二三四社区在线视频社区8| 国产精品.久久久| 国产亚洲欧美在线一区二区| 丝袜美腿诱惑在线| 中文字幕人妻丝袜制服| 一级黄色大片毛片| 国产激情久久老熟女| 精品国产乱子伦一区二区三区 | 男男h啪啪无遮挡| 久久久久久久精品精品| 精品国产国语对白av| 曰老女人黄片| 超碰97精品在线观看| 久久久久久久国产电影| 日韩电影二区| 91麻豆精品激情在线观看国产 | 国产主播在线观看一区二区| 国产不卡av网站在线观看| 国产一卡二卡三卡精品| 人妻一区二区av| 一本一本久久a久久精品综合妖精| 欧美黄色片欧美黄色片| 国产三级黄色录像| 肉色欧美久久久久久久蜜桃| 99国产精品一区二区蜜桃av | 日韩欧美国产一区二区入口| 欧美av亚洲av综合av国产av| avwww免费| 中文字幕人妻丝袜制服| 国产亚洲欧美精品永久| 国产精品1区2区在线观看. | 欧美精品啪啪一区二区三区 | 69精品国产乱码久久久| 国产免费视频播放在线视频| 国产在线一区二区三区精| 日韩熟女老妇一区二区性免费视频| 国产av又大| 精品第一国产精品| 激情视频va一区二区三区| 少妇被粗大的猛进出69影院| 一区二区三区精品91| 久久久精品94久久精品| 超碰97精品在线观看| 一本一本久久a久久精品综合妖精| 最新的欧美精品一区二区| 欧美国产精品一级二级三级| 性色av一级| 1024香蕉在线观看| 一区二区三区精品91| 久久午夜综合久久蜜桃| 亚洲精品中文字幕在线视频| 免费在线观看完整版高清| 日韩大码丰满熟妇| 中文字幕av电影在线播放| 国产成人欧美| 亚洲久久久国产精品| 大香蕉久久成人网| 久久午夜综合久久蜜桃| 在线亚洲精品国产二区图片欧美| 日韩熟女老妇一区二区性免费视频| 免费在线观看黄色视频的| 国产1区2区3区精品| 国产成人欧美| 精品国产一区二区三区久久久樱花| 日韩制服骚丝袜av| 在线十欧美十亚洲十日本专区| av在线老鸭窝| 1024视频免费在线观看| 精品国产乱子伦一区二区三区 | 国产精品亚洲av一区麻豆| av电影中文网址| 国产亚洲精品第一综合不卡| 永久免费av网站大全| 成人三级做爰电影| 不卡av一区二区三区| 国产又爽黄色视频| 又大又爽又粗| 两个人看的免费小视频| 婷婷成人精品国产| 色94色欧美一区二区| 日韩一卡2卡3卡4卡2021年| 99久久99久久久精品蜜桃| av在线app专区| 99精国产麻豆久久婷婷| 一本—道久久a久久精品蜜桃钙片| 午夜福利影视在线免费观看| 日韩欧美一区二区三区在线观看 | 男女无遮挡免费网站观看| cao死你这个sao货| 亚洲精品国产色婷婷电影| 国产亚洲av高清不卡| 国产伦理片在线播放av一区| 亚洲国产av新网站| 女性被躁到高潮视频| 美女中出高潮动态图| 国产精品久久久久久人妻精品电影 | 免费在线观看完整版高清| 久久精品人人爽人人爽视色| 日韩大片免费观看网站| 亚洲va日本ⅴa欧美va伊人久久 | 777米奇影视久久| 亚洲国产精品成人久久小说| 亚洲成av片中文字幕在线观看| 制服诱惑二区| 中文字幕av电影在线播放| 国产精品影院久久| 日韩人妻精品一区2区三区| 亚洲精品国产色婷婷电影| 在线观看www视频免费| 国产在线视频一区二区| 女人精品久久久久毛片| 黑人巨大精品欧美一区二区mp4| 高清视频免费观看一区二区| 性少妇av在线| 亚洲va日本ⅴa欧美va伊人久久 | 法律面前人人平等表现在哪些方面 | 国产亚洲欧美在线一区二区| 大片电影免费在线观看免费| 婷婷成人精品国产| 日本a在线网址| 一级毛片电影观看| 嫩草影视91久久| 香蕉丝袜av| 免费久久久久久久精品成人欧美视频| 麻豆乱淫一区二区| 亚洲精品美女久久久久99蜜臀| 亚洲一卡2卡3卡4卡5卡精品中文| 两性午夜刺激爽爽歪歪视频在线观看 | 91国产中文字幕| 丁香六月欧美| 精品亚洲成国产av| 亚洲精品久久久久久婷婷小说| 黄色a级毛片大全视频| 好男人电影高清在线观看| 久久人妻福利社区极品人妻图片| 国产高清国产精品国产三级| 久久精品国产a三级三级三级| 国产亚洲精品久久久久5区| 日本猛色少妇xxxxx猛交久久| 黄网站色视频无遮挡免费观看| 老汉色av国产亚洲站长工具| 精品久久蜜臀av无| 超碰97精品在线观看| 午夜福利在线免费观看网站| av天堂久久9| 成人av一区二区三区在线看 | 欧美日韩精品网址| 亚洲,欧美精品.| 视频区图区小说| 人人妻人人添人人爽欧美一区卜| 天堂俺去俺来也www色官网| 女性生殖器流出的白浆| 正在播放国产对白刺激| 日本五十路高清| 51午夜福利影视在线观看| av一本久久久久| 国产成人欧美| 国产精品 国内视频| 黄色a级毛片大全视频| 午夜免费成人在线视频| 两性夫妻黄色片| 欧美日韩国产mv在线观看视频| 久久精品熟女亚洲av麻豆精品| 黄片大片在线免费观看| 高清欧美精品videossex| 精品人妻在线不人妻| 日本av免费视频播放| 人妻人人澡人人爽人人| 99国产精品免费福利视频| 夜夜夜夜夜久久久久| 久久国产精品影院| 叶爱在线成人免费视频播放| 免费av中文字幕在线| 欧美 日韩 精品 国产| 男女之事视频高清在线观看| 国精品久久久久久国模美| 久久精品国产a三级三级三级| 久久久久久久久久久久大奶| 99九九在线精品视频| 亚洲精品久久成人aⅴ小说| 成年人黄色毛片网站| 精品久久久精品久久久| 日韩,欧美,国产一区二区三区| 久久久久视频综合| 好男人电影高清在线观看| 亚洲av欧美aⅴ国产| xxxhd国产人妻xxx| 国产xxxxx性猛交| 国产精品偷伦视频观看了| 欧美乱码精品一区二区三区| 国产91精品成人一区二区三区 | 亚洲av成人一区二区三| 国产伦理片在线播放av一区| 欧美日韩亚洲国产一区二区在线观看 | 99精品久久久久人妻精品| 欧美 亚洲 国产 日韩一| 成年动漫av网址| 久9热在线精品视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲伊人久久精品综合| 999精品在线视频| 美女脱内裤让男人舔精品视频| 国产高清国产精品国产三级| 国产xxxxx性猛交| 久9热在线精品视频| 欧美激情久久久久久爽电影 | 69精品国产乱码久久久| 亚洲欧美日韩另类电影网站| 精品国产一区二区三区久久久樱花| 国产人伦9x9x在线观看| 日韩视频在线欧美| 免费不卡黄色视频| 少妇粗大呻吟视频| 亚洲av国产av综合av卡| 一本大道久久a久久精品| 中文字幕人妻丝袜一区二区| 91麻豆av在线| 久久久久久久国产电影| 国产精品成人在线| 美女国产高潮福利片在线看| 一个人免费在线观看的高清视频 | 国产亚洲av片在线观看秒播厂| 电影成人av| 国产免费一区二区三区四区乱码| 欧美日本中文国产一区发布| 亚洲精品国产色婷婷电影| 97在线人人人人妻| 成人手机av| www日本在线高清视频| 国产一区二区三区综合在线观看| 搡老乐熟女国产| av在线app专区| 制服诱惑二区| 国产日韩欧美视频二区| 母亲3免费完整高清在线观看| 黄色毛片三级朝国网站| 女性生殖器流出的白浆| 我的亚洲天堂| 久久精品aⅴ一区二区三区四区| 国产麻豆69| 国产精品一二三区在线看| 日本a在线网址| 中文字幕av电影在线播放| 少妇被粗大的猛进出69影院| 欧美一级毛片孕妇| 丁香六月天网| 国产成人av教育| 一二三四在线观看免费中文在| 国产精品.久久久| 国产男女内射视频| 日本91视频免费播放| 久9热在线精品视频| 亚洲成人手机| 久久久水蜜桃国产精品网| 欧美另类一区| 成年动漫av网址| 日本vs欧美在线观看视频| 国产亚洲一区二区精品| 这个男人来自地球电影免费观看| 久久久久网色| 免费女性裸体啪啪无遮挡网站| 亚洲色图综合在线观看| 欧美黄色片欧美黄色片| 搡老乐熟女国产| 美女午夜性视频免费| 国产麻豆69| 婷婷成人精品国产| 久久精品亚洲av国产电影网| 国产亚洲av高清不卡| 男女免费视频国产| 一本久久精品| 俄罗斯特黄特色一大片| 美女福利国产在线| 国产一区二区激情短视频 | 久久女婷五月综合色啪小说| 久久 成人 亚洲| kizo精华| 国产人伦9x9x在线观看| 国产精品久久久人人做人人爽| 最新在线观看一区二区三区| 乱人伦中国视频| 成人黄色视频免费在线看| 日韩 亚洲 欧美在线| 精品国产乱码久久久久久男人| av在线播放精品| 欧美激情 高清一区二区三区| 国产男人的电影天堂91| 天天影视国产精品| 少妇的丰满在线观看| 成年av动漫网址| 中文欧美无线码| 9热在线视频观看99| 叶爱在线成人免费视频播放| 咕卡用的链子| 久久国产精品大桥未久av| 日本av手机在线免费观看| 久久久欧美国产精品| 婷婷丁香在线五月| 国产一区有黄有色的免费视频| 午夜老司机福利片| 亚洲专区中文字幕在线| 精品国产乱码久久久久久小说| 亚洲精品在线美女| 欧美成狂野欧美在线观看| 日韩 亚洲 欧美在线| 亚洲国产精品一区二区三区在线| 一本大道久久a久久精品| 国产精品一区二区在线观看99| 91大片在线观看| 青春草视频在线免费观看| 亚洲欧美成人综合另类久久久| 夜夜骑夜夜射夜夜干| 亚洲久久久国产精品| 中国国产av一级| 日韩欧美一区二区三区在线观看 | 交换朋友夫妻互换小说| 女性被躁到高潮视频| 肉色欧美久久久久久久蜜桃| av不卡在线播放| 丝袜美腿诱惑在线| 亚洲自偷自拍图片 自拍| 午夜福利在线免费观看网站| 午夜91福利影院| 亚洲av日韩精品久久久久久密| 欧美久久黑人一区二区| 午夜福利,免费看| 黑人猛操日本美女一级片| 亚洲第一av免费看| 正在播放国产对白刺激| 黄片播放在线免费| 久久久久精品人妻al黑| 日日爽夜夜爽网站| 色94色欧美一区二区| 亚洲伊人色综图| 久久精品久久久久久噜噜老黄| 久久久久久免费高清国产稀缺| 亚洲精品自拍成人| 秋霞在线观看毛片| 久久99一区二区三区| av电影中文网址| 99国产综合亚洲精品| 亚洲欧美一区二区三区久久| 俄罗斯特黄特色一大片| 老司机深夜福利视频在线观看 | 亚洲欧美一区二区三区久久| 老司机影院毛片| 久久国产亚洲av麻豆专区| 黄色视频不卡| 真人做人爱边吃奶动态| 19禁男女啪啪无遮挡网站| 亚洲精品久久午夜乱码| 亚洲精品国产精品久久久不卡| 精品国产乱子伦一区二区三区 | 国产成+人综合+亚洲专区| 丝袜美腿诱惑在线| 老司机影院成人| 久久精品国产亚洲av高清一级| 亚洲自偷自拍图片 自拍| 免费观看av网站的网址| 色婷婷久久久亚洲欧美| 欧美在线一区亚洲| 日韩 亚洲 欧美在线| 最近最新免费中文字幕在线| 水蜜桃什么品种好| 免费高清在线观看视频在线观看| 老汉色∧v一级毛片| 香蕉国产在线看| 欧美日韩黄片免| 香蕉国产在线看| 老汉色∧v一级毛片| 美女主播在线视频| 精品亚洲乱码少妇综合久久| 国产精品亚洲av一区麻豆| 国产成人系列免费观看| 国产精品免费大片| 亚洲成人国产一区在线观看| 色视频在线一区二区三区| 日本黄色日本黄色录像| 亚洲中文日韩欧美视频| 国产av精品麻豆| 一本久久精品| cao死你这个sao货| 国产精品国产三级国产专区5o| 黄片大片在线免费观看| 在线亚洲精品国产二区图片欧美| 老司机午夜十八禁免费视频| 搡老岳熟女国产| 午夜激情久久久久久久| 国产免费av片在线观看野外av| 制服人妻中文乱码| 在线精品无人区一区二区三| 男男h啪啪无遮挡| 精品国产一区二区三区久久久樱花| 夜夜骑夜夜射夜夜干| 在线看a的网站| 午夜激情av网站| 国产黄色免费在线视频| 老司机影院成人| 国产精品久久久久久人妻精品电影 | 亚洲熟女毛片儿| 国产av又大| 18禁观看日本| 国产成人欧美在线观看 | 久久精品国产a三级三级三级| 亚洲av男天堂| 国产淫语在线视频| 中文字幕最新亚洲高清| 精品少妇黑人巨大在线播放| 久久99热这里只频精品6学生| 五月开心婷婷网| 99九九在线精品视频| 黄频高清免费视频| 亚洲专区国产一区二区| 免费观看a级毛片全部| 伊人久久大香线蕉亚洲五| 日本vs欧美在线观看视频| 午夜影院在线不卡| 久久久精品94久久精品| 国产一区二区三区综合在线观看| 亚洲欧美一区二区三区久久| 交换朋友夫妻互换小说| 在线观看www视频免费| 国产欧美日韩综合在线一区二区| 美女主播在线视频| 一级毛片精品| 国产av精品麻豆| 人人妻人人添人人爽欧美一区卜| 亚洲av电影在线进入| 人妻人人澡人人爽人人| 亚洲精华国产精华精| 性色av一级| bbb黄色大片| videos熟女内射| 国产激情久久老熟女| 午夜福利,免费看| 久久国产亚洲av麻豆专区| 欧美日韩亚洲综合一区二区三区_| 老司机亚洲免费影院| 色精品久久人妻99蜜桃| 国产成人欧美| 女人精品久久久久毛片| 考比视频在线观看| 国精品久久久久久国模美| 亚洲九九香蕉| 九色亚洲精品在线播放| 国产黄频视频在线观看| 久久精品国产a三级三级三级| 婷婷丁香在线五月| 欧美老熟妇乱子伦牲交| 免费av中文字幕在线| 成年动漫av网址| 精品第一国产精品| 黄色视频,在线免费观看| 老司机在亚洲福利影院| 亚洲熟女精品中文字幕| 丝袜喷水一区| 正在播放国产对白刺激| 色94色欧美一区二区| 久久久久网色| 亚洲天堂av无毛| av天堂在线播放| 一级片'在线观看视频| 一本一本久久a久久精品综合妖精| 国产成人精品久久二区二区免费| 69av精品久久久久久 | 91麻豆精品激情在线观看国产 | 男女免费视频国产| 999久久久精品免费观看国产| 少妇人妻久久综合中文| 久久亚洲精品不卡| 中文字幕av电影在线播放| 黄频高清免费视频| 在线观看www视频免费| 少妇人妻久久综合中文| 另类亚洲欧美激情| 国产成人免费无遮挡视频| 99精国产麻豆久久婷婷| 国产亚洲av高清不卡| 国产成人一区二区三区免费视频网站| 精品一区二区三卡| 看免费av毛片| 亚洲精品中文字幕一二三四区 | 亚洲成av片中文字幕在线观看| 欧美日韩国产mv在线观看视频| 日韩人妻精品一区2区三区| 丝袜在线中文字幕| 精品欧美一区二区三区在线| 99国产精品免费福利视频| 午夜福利影视在线免费观看| 桃红色精品国产亚洲av| 国产野战对白在线观看| 久久ye,这里只有精品| 久久女婷五月综合色啪小说| 一级a爱视频在线免费观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲av电影在线观看一区二区三区| 国产成人精品在线电影| 午夜激情av网站| 国产欧美日韩综合在线一区二区| 国产精品香港三级国产av潘金莲| 亚洲精品久久午夜乱码| 高清黄色对白视频在线免费看| 在线观看www视频免费| 欧美黄色淫秽网站| 免费在线观看完整版高清| av电影中文网址| 亚洲五月婷婷丁香| 男女午夜视频在线观看| 国产精品一区二区免费欧美 | 日韩一区二区三区影片| 日本撒尿小便嘘嘘汇集6| 亚洲视频免费观看视频| 女人爽到高潮嗷嗷叫在线视频| 国产成人影院久久av| 亚洲少妇的诱惑av| 国产人伦9x9x在线观看| 99国产综合亚洲精品| 国产精品一二三区在线看| 欧美黄色淫秽网站| 在线精品无人区一区二区三| 在线十欧美十亚洲十日本专区| 波多野结衣一区麻豆| 搡老岳熟女国产| 久久青草综合色| 人成视频在线观看免费观看| 999久久久精品免费观看国产| 少妇的丰满在线观看| 亚洲成av片中文字幕在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品熟女久久久久浪| 成人黄色视频免费在线看| 国产真人三级小视频在线观看| 亚洲色图综合在线观看| 一级片免费观看大全| 日韩欧美国产一区二区入口| 伦理电影免费视频| 精品国产乱码久久久久久男人| 超碰97精品在线观看| 亚洲国产欧美在线一区| 亚洲精品美女久久av网站| 手机成人av网站| 国产成人一区二区三区免费视频网站| 欧美午夜高清在线| 美国免费a级毛片| 香蕉国产在线看| 男人添女人高潮全过程视频| 真人做人爱边吃奶动态| 这个男人来自地球电影免费观看| 久久久国产欧美日韩av| 脱女人内裤的视频| av网站免费在线观看视频| 日韩欧美国产一区二区入口| 青春草亚洲视频在线观看| 久久久水蜜桃国产精品网| 777久久人妻少妇嫩草av网站| 菩萨蛮人人尽说江南好唐韦庄| 久久亚洲国产成人精品v| 老司机深夜福利视频在线观看 | 天天影视国产精品| 曰老女人黄片| 啪啪无遮挡十八禁网站| 丝瓜视频免费看黄片| 欧美大码av| 男女免费视频国产| 欧美+亚洲+日韩+国产| av天堂久久9| 亚洲七黄色美女视频| 狠狠精品人妻久久久久久综合| 亚洲欧洲精品一区二区精品久久久| 中文字幕另类日韩欧美亚洲嫩草| 女人被躁到高潮嗷嗷叫费观| 高清在线国产一区| 黄频高清免费视频| 天天躁夜夜躁狠狠躁躁| 成人影院久久| 亚洲国产日韩一区二区| 无限看片的www在线观看| 一级,二级,三级黄色视频| av不卡在线播放| xxxhd国产人妻xxx| 国产欧美亚洲国产| 精品久久蜜臀av无| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品av麻豆av| 一个人免费在线观看的高清视频 | 动漫黄色视频在线观看| 亚洲精品久久久久久婷婷小说|