• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    釀酒酵母細胞中內質網應激與未折疊蛋白反應的研究進展

    2017-06-01 12:20:16趙運英蔣伶活
    微生物學雜志 2017年2期
    關鍵詞:哺乳動物內質網磷酸化

    趙運英, 王 頔, 袁 凡, 蔣伶活

    (江南大學生物工程學院 糧食發(fā)酵工藝與技術國家工程實驗室, 江蘇 無錫 214122)

    釀酒酵母細胞中內質網應激與未折疊蛋白反應的研究進展

    趙運英, 王 頔, 袁 凡, 蔣伶活*

    (江南大學生物工程學院 糧食發(fā)酵工藝與技術國家工程實驗室, 江蘇 無錫 214122)

    內質網應激激活的未折疊蛋白反應(Unfolded protein response,UPR)途徑在釀酒酵母和哺乳動物細胞中是非常保守的。內質網(Endoplasmic reticulum,ER)是蛋白質合成、折疊和修飾的細胞器,也是貯存鈣的主要場所之一。酵母細胞內質網鈣平衡與UPR的作用是相互的;兩個MAPK途徑——HOG途徑和CWI途徑都是細胞應答內質網應激壓力時生存所必需的;重金屬鎘離子能夠激活UPR途徑,它通過激活鈣離子通道Cch1/Mid1進入細胞影響鈣離子的功能。本文結合最新研究進展對釀酒酵母細胞中的兩個MAPK途徑、鎘離子和鈣離子穩(wěn)態(tài)與內質網應激激活的UPR途徑之間相互關系進行綜述。

    未折疊蛋白反應;內質網應激;MAPK;鈣離子信號途徑;釀酒酵母

    細胞應激涉及線粒體、內質網和細胞核的應激。內質網(Endoplasmic reticulum,ER)是蛋白質合成、折疊和修飾的細胞器,也是貯存鈣的主要場所之一。內質網功能的紊亂會導致未折疊蛋白在內質網腔內積累及其腔內鈣穩(wěn)態(tài)的破壞。缺氧、營養(yǎng)缺乏、氧化還原狀態(tài)的破壞、異常的鈣離子調節(jié)、病毒感染、蛋白翻譯后修飾發(fā)生故障或者內質網中未折疊或錯誤折疊蛋白質的積累均可導致內質網應激(Endoplasmic reticulum stress,ER stress)[1-5]。內質網應激與許多人類疾病的發(fā)生和發(fā)展密切相關,如癌癥、糖尿病、炎性疾病以及神經系統(tǒng)、腎臟、肺和心血管疾病等[6-10]。許多研究證明癌細胞可以抵抗極端的環(huán)境壓力,可能是由于癌細胞改變了內質網應激反應的正常狀態(tài)[11]。釀酒酵母作為一種模式生物,被廣泛用于科學研究。內質網應激激活的未折疊蛋白反應(Unfolded protein response,UPR)途徑在釀酒酵母和哺乳動物細胞中是非常保守的。本文將論述釀酒酵母細胞中內質網應激與未折疊蛋白反應的最新研究進展。

    1 酵母細胞中內質網應激和UPR概述

    1.1 酵母細胞和哺乳動物細胞的UPR組分

    內質網壓力是指未折疊蛋白在內質網內積累,從而誘導一種可適應性程序稱作未折疊蛋白反應。內質網應激激活的UPR反應是1988年由Kozutsumi等人觀察到的非折疊蛋白反應[12]。后來通過酵母遺傳學研究發(fā)現了決定UPR反應的蛋白因子,UPR這一獨特的細胞反應才得到普遍的認可[13-14]。釀酒酵母內質網膜上的跨膜蛋白Ire1(Inositol requiring enzyme 1)是一種核酸內切酶。在無內質網應激條件下,Ire1的內質網腔內結構域與內質網內的分子伴侶蛋白Grp38結合[15]。當錯誤折疊或者未折疊蛋白聚集時,Grp38轉而與這些蛋白結合,Ire1得到釋放并激活,形成聚合體,非常規(guī)地剪接胞質內無翻譯活性的HAC1 mRNA[16-17](圖1a,表1)。剪接后的HAC1 mRNA被翻譯為轉錄因子蛋白Hac1,Hac1進入細胞核中結合靶基因啟動子上的UPR元件,誘導靶基因的表達,以緩解錯誤折疊或者未折疊蛋白造成的內質網應激壓力。這些靶基因的啟動子上都含有UPR元件,包括KAR2、PDI1、EUG1、FKB2、LHS1、AIM17、ERJ5、FIT2、FIT3、FRE1、GAS5、HXT9、KEG1、LDB17、MTR10、SIL1、TAD2和VPS17等內質網應答相關基因[18-20]。

    在哺乳動物的內質網膜上,有三種跨膜蛋白:IRE1、PERK (Protein kinase receptor-like ER kinase)和ATF6 (Activating transcription factor 6)[21]。三者在內質網腔內的結構域均與內質網分子伴侶Grp78(Glucose-regulated protein 78)結合而處于非活化狀態(tài)。內質網中的未折疊蛋白或錯誤折疊蛋白增加時,這三種跨膜蛋白與Grp78分離而被激活。哺乳動物有酵母Ire1的同源體IRE1α 和IRE1β,但尚未發(fā)現酵母Hac1的同源體。但是,哺乳動物細胞的ATF6與酵母Hac1具有序列同源性[21]。哺乳動物UPR的啟動依賴于IRE1α 把XBP1u mRNA剪接為XBP1s mRNA,后者的翻譯產物有轉錄因子的功能;同時,還依賴于高爾基體的兩個蛋白酶S1P和S2P分步酶切ATF6,使其成為有活性的轉錄因子(圖1b和1d,表1)。ATF6激活UPR基于其結合靶基因的順式作用元件[22]。PERK可以磷酸化翻譯起始因子eIF2,導致細胞整體翻譯水平的下調,從而降低內質網中的蛋白負載量;同時,誘導轉錄因子ATF4的翻譯(圖1c,表1)。

    表1 酵母細胞和哺乳動物細胞的UPR組分比較

    UPR在酵母和哺乳動物細胞中普遍存在,并且兩者UPR激活的分子機制都存在明顯的相同點[25-26]。在酵母和哺乳動物細胞中,許多條件能夠誘導UPR,如抑制糖基化反應(衣霉素)、干擾二硫鍵的正常形成(DTT,β-巰基乙醇)以及破壞鈣離子體內平衡等能夠引起內質網未折疊/錯誤折疊蛋白積累的條件。在酵母中,這些條件激活Ire1,從而激活HAC1 mRNA(在哺乳動物細胞中是XBP1 mRNA)的剪切,形成有功能的轉錄因子Hac1(XBP1)。在酵母細胞中HAC1 mRNA和哺乳動物細胞中XBP1 mRNA的剪切被認為是內質網壓力的典型標志。除了UPR,內質網壓力也能觸發(fā)其他反應,尤其是鈣離子的內流,這對細胞存活是很重要的[27],這一過程能夠幫助蛋白質折疊。鈣離子的內流過程通過Slt2 MAPK途徑被激活,但不依賴于UPR[27-28]。

    圖1 酵母細胞(a)和哺乳動物細胞(b~d)中內質網應激的感受器和UPR反應[23-24]Fig.1 ER-stress sensors and responses in yeast and mammalian cells[23-24]

    1.2 酵母細胞中UPR的類型

    2 內質網應激與有絲分裂原蛋白激酶(Mitogen-activated protein kinase, MAPK)途徑的關系

    2.1 內質網應激與高滲透壓甘油形成途徑(High Osmolarity Glycerol, HOG)的關系

    當未折疊蛋白積聚于內質網引起內質網壓力時,未折疊蛋白反應迅速響應誘導轉錄程序以緩解壓力。然而,在極端條件下,當UPR激活不足以減輕內質網壓力時,內質網壓力可能會持續(xù)較長時間。在不能通過立即激活UPR解決內質網壓力的情況下,細胞是如何反應來抵抗內質網壓力的還不清楚。研究表明,釀酒酵母細胞中的MAP激酶-Hog1在內質網應激階段后期被磷酸化并且?guī)椭鷥荣|網恢復動態(tài)平衡[32]。在內質網應激反應后期,Hog1磷酸化移位進入細胞核,調節(jié)基因表達。隨后,Hog1返回細胞質,在細胞質中其磷酸化水平仍然很高,這有助于細胞自噬的激活,其中Atg8是一個關鍵的自噬蛋白。因此,Hog1在抵抗內質網壓力上有多方面的功能。

    在酵母細胞中,UPR的激活依賴于IRE1和HAC1兩個基因。內質網應激可以誘導Hog1的磷酸化,但UPR的誘導表達并不依賴于HOG途徑。UPR通過一種特殊的機制調節(jié)Hog1的磷酸化:內質網應激條件下,UPR可以促進Hog1的磷酸化,Hog1的磷酸化需要IRE1和HAC1,以及HOG途徑的Ssk1支路。高滲脅迫條件下,UPR對Hog1的磷酸化沒有影響;CWI途徑條件下,UPR可以抑制Hog1的磷酸化。研究表明[32-33],在內質網應激條件下,HOG途徑中相關基因的缺失株表現出生長缺陷,這說明HOG途徑對內質網應激反應是必需的。但是,HOG途徑在內質網應激反應中的作用機制并不清楚。

    2.2 內質網應激與細胞壁完整性途徑(Cell Wall Integrity, CWI)的關系

    酵母細胞壁是一種依賴于分泌蛋白和膜蛋白構成其組分的胞外結構,而內質網具有運輸新合成的分泌蛋白和膜蛋白的功能。蛋白質量控制機制在細胞壁完整性方面作用的研究表明,未折疊蛋白反應(UPR)以及內質網相關的蛋白質降解(Endoplasmic Reticulum-Associated Degradation, ERAD)途徑對于構成細胞壁組分是必需的[34]。IRE1的無意突變株、ERAD組分hrd1和ubc7的雙缺失株以及ire1缺失株或錯誤折疊蛋白的表達都與細胞壁蛋白的突變株表現出相似的表型,包括對破壞細胞壁化合物的高度敏感、對細胞壁蛋白層的改變、減少細胞壁的厚度以及增加細胞凝集度。與在細胞壁完整性中的重要作用一致,在細胞壁脅迫或未受脅迫生長狀態(tài)下,UPR可以被細胞壁完整性途徑的MAP激酶信號途徑激活。細胞壁脅迫和本底UPR活性都受到Swi6p的調節(jié),Swi6p是一種細胞循環(huán)和細胞壁脅迫基因轉錄的調節(jié)子,以一種不依賴于已知的共調節(jié)分子的方式進行調節(jié)。另外,Mpk1在應對內質網脅迫過程中被磷酸化而激活,并且在內質網脅迫條件下直接或間接激活Cch1-Mid1 Ca2+通道[28]。能引起內質網脅迫的各種試劑也會導致G2/M期的Swe1依賴性延遲或停止。然而,大多數細胞在任何條件下,Mpk1和鈣調磷酸酯酶對于G2/M期的延遲都不是必需的。反過來,Swe1對于CCS途徑的運行不是必需的。在酵母中,MPK1激酶信號到達Cch1-Mid1 Ca2+通道是應對內質網脅迫最主要的和最基本的方式[28]。

    IRE1的缺失或錯誤折疊蛋白的表達能夠導致細胞對CWI途徑壓力敏感。在CWI途徑壓力作用下,UPRE-lacZ的表達活性被誘導,HAC1的mRNA的剪接和UPRE-lacZ的表達誘導依賴于Mpk1、Ire1和CWI途徑中細胞膜感受器Mid2及下游轉錄因子Swi6[34]。然而,內質網應激條件下,Mpk1可以被磷酸化而激活但不依賴于Ire1,HAC1的mRNA的剪接也不依賴于Mpk1[35]。內質網應激反應主要是通過CWI途徑中細胞膜感受器Wsc1進行信號傳導,從而激活Mpk1磷酸化。表型分析也表明,WSC1和MPK1基因的缺失可以導致酵母細胞對內質網應激壓力敏感。

    3 鎘離子與UPR的關系

    鎘(Cd)是一種重要的重金屬環(huán)境污染物??諝庵械逆k主要來自家庭或工業(yè)產生的廢氣、汽車尾氣、金屬加工行業(yè)、電池或油漆制造業(yè)以及廢物的處理過程。鎘可以從污染源地隨著空氣傳播,污染食物或水質。煙葉本身可以積累較高濃度的鎘,因而吸煙是鎘污染的重要來源之一[36]。近來的流行病學案例研究進一步證實鎘具有致癌性。肺癌、前列腺癌、胰腺癌和腎癌的發(fā)生都與長期接觸鎘有關[37-39]。鎘離子是一種毒性很強的金屬離子,可以在不同的細胞水平引起許多毒害作用。首先,鎘是一種能夠誘導細胞突變的化合物。鎘離子引起的超突變主要是通過抑制DNA修復系統(tǒng)中相關酶的活性完成的[40-41]。主要的機制有兩種,一是通過高親和力結合到蛋白活性位點的半胱氨酸殘基上,抑制酶的活性[41];二是通過替換金屬蛋白酶結合的鋅離子和鈣離子抑制酶的活性[42-44]。其次,鎘可以引起氧化脅迫(ROS)。鎘能夠提高細胞內的ROS水平從而提高脂類的過氧化作用和ROS相關的DNA損傷[45-48]。第三,鎘也可以引起酵母細胞和許多哺乳動物細胞類型的凋亡[45,49-50]。這個過程涉及到caspase-依賴的細胞凋亡和caspase-不依賴的細胞凋亡[51-53]。最新的研究表明,對于許多細胞而言,鎘依賴的細胞凋亡是內質網應激反應應答的結果[54-55]。到目前為止,鎘的細胞和分子生物學毒性機制尚未清楚。研究表明[56],內質網應激反應應答途徑中的功能基因IRE1和HAC1的缺失株對鎘耐受性是必需的,鎘能夠通過誘導UPR和HAC1的mRNA剪接造成釀酒酵母細胞中內質網壓力,因此在酵母細胞中內質網是鎘離子毒性的靶目標。在哺乳動物細胞中,鎘離子是誘導內質網壓力的典型標志[54,57-58]。在腎小管細胞中,鎘離子激活哺乳動物UPR的三個主要分支(PERK/eIF2α、IRE1/XBP1 和 ATF6 途徑)[54];在纖維細胞中鎘離子至少能激活IRE1/XBP1途徑[58]。這表明在哺乳動物細胞中,內質網可能是鎘離子毒性的靶位點。因此,鎘在內質網積累的結果也可以直接導致誘導內質網應激反應和鎘毒性。另外,擾亂鈣離子的內平衡是鎘離子毒性的另一個重要方面,鎘離子不能夠抑制內質網蛋白質二硫鍵的形成,但是能夠擾亂鈣離子代謝:鎘離子激活鈣離子通道Cch1/Mid1刺激鎘離子進入細胞[56]。

    本實驗室最近通過對釀酒酵母非必需基因缺失株文庫基因組規(guī)模的篩選,發(fā)現了106個基因缺失株對鎘離子敏感,其中包括編碼兩個MAP激酶途徑——HOG途徑和CWI途徑的相關組分。進一步研究發(fā)現,HOG途徑中Sho1和Sln1分支都參與了鎘脅迫下對Hog1磷酸化的激活[59]。在 CWI 途徑中,鎘激活Slt2的磷酸化是通過膜感受器Mid2p將信號通過 GEFs-Rom1p傳遞到Rho1,進而激活PKC途徑中的MAP激酶[60]。在這些研究基礎上,將進一步研究鎘離子誘導的UPR途徑與HOG途徑和CWI途徑的關系。

    4 內質網應激與鈣離子信號途徑的關系

    酵母細胞內質網鈣平衡與UPR的作用是相互的,酵母細胞中內質網中鈣的排空能夠激活依賴于Ire1和Hac1的未折疊蛋白反應信號途徑[27]。內質網的排空刺激也可以使鈣通過細胞膜上的鈣通道Cch1-Mid1和另外一個未知系統(tǒng)(轉運蛋白X和M)流入細胞內。內質網上錯誤折疊蛋白激活鈣輸入系統(tǒng)的能力是不依賴于Ire1p和Hac1p的,并且鈣的流入和信號因子也不是起始UPR信號途徑所必須的。在內質網應激反應條件下,CWI途徑中的Mpk1被磷酸化而激活[35]。而Mpk1可以直接或間接激活位于細胞膜上的鈣通道Mid1和Cch1,從而使鈣流入細胞內。鈣通道、鈣調蛋白、鈣調磷酸酯酶和其他因子的激活是細胞應答內質網壓力時所必需的。

    哺乳動物細胞的內質網通過內質網上高Ca2+親和力的鈣泵Ca2+-ATPase (sarco-endoplasmic reticulum Ca2+ATPase,SERCA)家族的激活積累高濃度的鈣[61-62]。這個鈣庫對蛋白質的遷移、折疊、糖基化、二硫鍵的形成和通過內質網滯留分子伴侶來分選分泌蛋白是非常重要的[63]。引起內質網內鈣排空的藥物,如鈣載體和螯合劑、SERCA泵的抑制劑和鈣釋放通道的激活劑等,都可以影響內質網中蛋白的折疊效率,從而激活UPR信號途徑[64]。酵母細胞缺少SERCA-型鈣泵的同源物,但是可以表達哺乳動物分泌途徑Ca2+-ATPases(SPCAs)的同源物Pmr1[65]。Pmr1定位在高爾基體上,為高爾基復合體上高效糖基化、蛋白加工和分選反應提供需要的鈣離子和錳離子。與用SERCA抑制劑處理的哺乳動物細胞一樣,pmr1缺失株表現為通過高親和力鈣通道Cch1和Mid1高效的流入鈣,并表現出對內質網應激反應敏感的表型[66]。鈣離子穩(wěn)態(tài)的破壞有助于癌癥、老年癡呆癥和心血管疾病的發(fā)生和加重[67-68]。編碼人體鈣泵蛋白SERCA的基因ATP2A2突變導致毛囊角化病, 而ATP2A2的活性下降會妨礙鈣的吸收,這是心臟衰竭的標志[69-70]。這些鈣離子穩(wěn)態(tài)相關的人體疾病與內質網鈣離子穩(wěn)態(tài)失衡造成的內質網應激相關。

    闡明鈣在酵母細胞內質網中的作用是非常困難的。酵母細胞的鈣結合蛋白在沒有鈣的情況下也可以發(fā)揮功能。另外,酵母細胞中內質網的鈣濃度比哺乳動物低10~100倍[62]。缺失Pmr1的突變株積累正常內質網中一半的鈣離子,但是鈣離子濃度的降低并不能激活UPR信號途徑,這說明酵母細胞內質網腔內的高鈣離子濃度對蛋白質的折疊并不是必須的[71]。由于SERCA同源物已經在動物、植物、無脊椎動物以及其他真菌中發(fā)現[72],在芽殖酵母進化過程中SERCA-樣酶的缺失反應了鈣離子在內質網折疊反應中作用的降低。另外,其他鈣離子-ATPases,例如Pmr1p、Pmc1p或者新發(fā)現的P型-ATPase Cod1/Spf1[73],都補償了酵母細胞中原有SERCA的缺失。文獻報道[27],內質網中蛋白質折疊或者麥角固醇合成的抑制劑都會刺激鈣離子的流入(通過Cch1-Mid1鈣通道和其他途徑)和/或激活細胞存活所必須的鈣信號途徑。這種鈣離子細胞存活途徑在其他治病酵母菌——白色念珠菌和光滑假絲酵母菌中可以被激活[74]。

    前期工作中,通過基因組規(guī)模的遺傳學篩選,我們發(fā)現120個基因的缺失導致釀酒酵母細胞對鈣敏感[75],包括7個ESCRT基因(SNF7、SNF8、VPS20、STP22、VPS25、VPS28和VPS36)的缺失株。內質網/高爾基體膜上的鈣泵Pmr1是維持內質網鈣濃度所必須的,PMR1的缺失可以導致對內質網應激反應敏感。我們進一步發(fā)現,7個ESCRT基因通過Rim101/ Nrg1這條負向調控信號途徑來調控PMR1的表達(圖2)[76]。在上述研究的基礎上,對以前我們發(fā)現的120個鈣敏感基因缺失株進行內質網應激反應敏感篩選,找出對鈣和內質網應激壓力均敏感的基因缺失株,進而研究鈣在內質網應激反應應答過程中的作用。

    圖2 PMR1的正調控和負調控Fig.2 Positive and negative regulation of PMR1 gene

    5 結論與展望

    除了作為蛋白質合成、折疊和翻譯后修飾的部位,內質網還是細胞內鈣主要的存儲位置,并通過多個集成系統(tǒng)維持鈣離子穩(wěn)態(tài)。內質網內的鈣離子由鈣泵蛋白SERCA從胞質內攝入,降低SERCA表達會導致內質網內的鈣離子儲存耗竭和內質網應激相關的細胞凋亡,而SERCA的過度表達則可以減輕內質網應激程度。因此,內質網內的鈣離子穩(wěn)態(tài)直接與內質網應激相關。闡明內質網應激過程的功能和調控機制對進一步了解以上人體相關疾病的發(fā)生機理有十分重要的理論意義。釀酒酵母作為一種模式生物,被廣泛用于科學研究。因此,研究釀酒酵母細胞內的UPR應答機制將為了解哺乳動物細胞的相關機制提供重要線索。

    鎘可以誘導酵母和動物細胞凋亡,而鎘誘導的細胞凋亡是內質網應激的結果,內質網是鎘的靶細胞器。目前,鎘的細胞毒性作用已有很多報道,但其作用靶點及毒性機理并不十分明確。鎘可以影響DNA復制和修復、細胞周期進程、生長和分化以及凋亡。鎘能干擾細胞生長所必需的鈣、鋅、鐵等離子的穩(wěn)態(tài)。雖然鎘本身沒有氧化還原活性,不能與DNA直接作用,但它可以間接誘導氧化脅迫,破壞基因組的完整性。而細胞內的氧化脅迫是誘導內質網應激的因素之一。鎘可以激活兩個MAPK激酶Hog1和Slt2的磷酸化,而這兩個MAPK與細胞內的各種應激反應是密切相關的。因此鎘和內質網應激的關系值得深入研究。

    [1]Xu C,Bailly-Maitre B,Reed JC.Endoplasmic reticulum stress:cell life and death decisions[J].Journal of Clinical Investigation,2005,115(10):2656-2664.

    [2]Cao SS,Kaufman RJ.Endoplasmic reticulum rtress and oxidativestress in cell fate decision and human disease[J].Antioxidants and Redox Signaling,2014,21(3):396-413.

    [3]He B.Viruses,endoplasmic reticulum stress,and interferon responses[J].Cell Death and Differentiation,2006,13(3):393-403.

    [4]Han J,Back SH,Hur J.ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death[J].Nature Cell Biology,2013,15(5):481-490.

    [5]Malhotra JD,Miao H,Zhang K.Antioxidants reduce endoplasmic reticulum stress and improve protein secretion[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(47):18525-18530.

    [6]Mekahli D,Bultynck G,Parys JB,et al.Endoplasmic reticulum calcium depletion and disease[J].Cold Spring Harbor Perspectives in Biology,2011,3(6).pii:a004317.doi:10.1101/cshperspect.a004317.

    [7]Wang S,Kaufman RJ.The impact of the unfolded protein response on human disease[J].Journal of Cell Biology,2012,197(7):857-867.

    [8]Yoshida H.ER stress and diseases[J].Febs Journal,2007,274(3):630-658.

    [9]Oyadomari S,Araki E,Mori M.Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells[J].Apoptosis,2002,7(4):335-345.

    [10]Liang CP,Han S,Li G,et al.Impaired MEK signaling and SERCA expression promote ER stress and apoptosis in insulin-resistant macrophages and are reversed by exenatide treatment[J].Diabetes, 2012,61(10):2609-2620.

    [11]Cui J,Kaandorp JA,Sloot PM,et al.Calcium homeostasis and signaling in yeast cells and cardiac myocytes[J].FEMS Yeast Research,2009,9(8):1137-1147.

    [12]Kozutsumi Y,Segal M,Normington K,et al.The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins[J].Nature,1988,332(6163):462-464.

    [13]Sidrauski C,Chapman R,WALTER P.The unfolded protein response:an intracellular signalling pathway with many surprising features[J].Trends in Cell Biology,1998,8(6):245-249.

    [14]Ron D,Walter P.Signal integration in the endoplasmic reticulum unfolded protein response[J].Nature Reviews Molecular Cell Biology,2007,8(7):519-529.

    [15]Ma Y,Hendershot LM.The unfolding tale of the unfolded protein response[J].Cell,2001,107(7):827-830.

    [16]Kimata Y,Ishiwata-Kimata Y,Ito T,et al.Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins[J].Journal of Cell Biology,2007,179(1):75-86.

    [17]Aragon T,van Anken E,Pincus D,et al.Messenger RNA targeting to endoplasmic reticulum stress signalling sites[J].Nature,2009,457(7230):736-740.

    [18]Mori K,Ogawa N,Kawahara T,et al.Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element inSaccharomycescerevisiae[J].The Journal of Biological Chemestry,1998,273(16):9912-9920.

    [19]Hu Z,Killion PJ,Iyer VR.Genetic reconstruction of a functional transcriptional regulatory network[J].Nature Genetics,2007,39(5):683-687.

    [20]MacIsaac KD,Wang T,Gordon DB,et al.An improved map of conserved regulatory sites forSaccharomycescerevisiae[J].BMC Bioinformatics,2006,7:113.

    [21]Ye J,Rawson RB,Komuro R,et al.ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs[J].Molecular Cell,2000,6(6):1355-1364.

    [22]Lee K,Tirasophon W,Shen X,et al.IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response[J].Genes & Development,2002,16(4):452-466.

    [23]Kimata Y, Kohno K. Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells[J].Current Opinion in Cell Biology,2011,23(2):135-142.

    [24]Boyce M,Yuan J.Cellular response to endoplasmic reticulum stress: a matter of life or death[J].Cell Death and Differentiation,2006,13(3):363-373.

    [25]Bernales S,Papa FR,Walter P.Intracellular signaling by the unfolded protein response[J].Annual Review of Cell and Developmental Biology,2006,22:487-508.

    [26]Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease[J]. Neurology, 2006, 66 (2 Suppl 1): S102-109.

    [27]Bonilla M, Nastase KK, Cunningham KW. Essential role of calcineurin in response to endoplasmic reticulum stress[J]. EMBO Journal, 2002, 21(10): 2343-2353.

    [28]Bonilla M, Cunningham KW. Mitogen-activated protein kinase stimulation of Ca2+signaling is required for survival of endoplasmic reticulum stress in yeast[J]. Molecular and Cellular Biology, 2003, 14(10): 4296-4305.

    [29]Mori K, Ogawa N, Kawahara T, et al. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element inSaccharomycescerevisiae[J]. The Journal of Biological Chemistry, 1998, 273(16): 9912-9920.

    [30]Carrara M, Prischi F, Nowak PR, et al. Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling[J]. EMBO Journal, 2015, 34(11):1589-1600.

    [32]Bicknell AA, Tourtellotte J, Niwa M. Late phase of the endoplasmic reticulum stress response pathway is regulated by Hog1 MAP kinase[J]. The Journal of Biological Chemistry, 2010, 285(23): 17545-17555.

    [33]Torres-Quiroz F, Garcia-Marques S, Coria R, et al. The activity of yeast Hog1 MAPK is required during endoplasmic reticulum stress induced by tunicamycin exposure[J]. The Journal of Biological Chemistry, 2010, 285(26): 20088-20096.

    [34]Scrimale T, Didone L, de Mesy Bentley KL, et al. The unfolded protein response is induced by the cell wall integrity mitogen-activated protein kinase signaling cascade and is required for cell wall integrity inSaccharomycescerevisiae[J]. Molecular and Cellular Biology, 2009, 20(1): 164-175.

    [35]Babour A, Bicknell AA, Tourtellotte J, et al. A surveillance pathway monitors the fitness of the endoplasmic reticulum to control its inheritance[J]. Cell, 2010, 142(2): 256-269.

    [36]Ashraf MW. Concentrations of cadmium and lead in different cigarette brands and human exposure to these metals via smoking[J]. Journal of Arts, Science & Commerce, 2011, 2: 140-147.

    [37]Nawrot T, Plusquin M, Hogervorst J, et al. Environmental exposure to cadmium and risk of cancer: a prospective population-based study[J]. The Lancet Oncology, 2006, 7(2): 119-126.

    [38]Kellen E, Zeegers MP, Hond ED, et al. Blood cadmium may be associated with bladder carcinogenesis: the Belgian case-control study on bladder cancer[J]. Cancer Detection and Prevention, 2007, 31(1): 77-82.

    [39]Gallagher CM, Chen JJ, Kovach JS. Environmental cadmium and breast cancer risk[J]. Aging (Albany NY), 2010, 2(11): 804-814.

    [40]Jin YH, Clark AB, Slebos RJC, et al. Cadmium is a mutagen that acts by inhibiting mismatch repair[J]. Nature Genetics, 2003, 34(3): 326-329.

    [41]Bravard A, Vacher M, Gouget B, et al. Redox regulation of human OGG1 activity in response to cellular oxidative stress[J]. Molecular and Cellular Biology, 2006, 26: 7430-7436.

    [42]Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions[J]. Free Radical Biology and Medicine, 1995, 18(2): 321-336.

    [43]Schutzendubel A, Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization[J]. Journal of Experimental Botany, 2002, 53(372): 1351-1365.

    [44]Faller P, Kienzler K, Krieger-Liszkay A. Mechanism of Cd2+toxicity: Cd2+inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+site[J]. Biochimica et Biophysica Acta, 2005, 1706(1-2): 158-164.

    [45]Pulido MD, Parrish AR. Metal-induced apoptosis: mechanisms[J]. Mutatation Reserach, 2003, 533(1-2): 227-241.

    [46]Howlett NG, Avery SV. Induction of lipid peroxidation during heavy metal stress inSaccharomycescerevisiaeand influence of plasma membrane fatty acid unsaturation[J]. Applied and Environmental Microbiology, 1997, 63(8): 2971-2976.

    [47]Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage[J]. Current Topics in Medicinal Chemistry, 2001, 1(6): 529-539.

    [48]Lopez E, Arce C, Oset-Gasque MJ, et al. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture[J]. Free Radical Biology and Medicine, 2006, 40(6): 940-951.

    [49]Nargund AM, Avery SV, Houghton JE. Cadmium induces a heterogeneous and caspase-dependent apoptotic response inSaccharomycescerevisiae[J]. Apoptosis, 2008, 13(6): 811-821.

    [50]Bertin G, Averbeck D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review)[J]. Biochimie, 2006, 88(11): 1549-1559.

    [51]Li M, Kondo T, Zhao Q L, et al. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria-dependent pathways[J]. The Journal of Biological Chemistry, 2000, 275(50): 39702-39709.

    [52]Lemarie A, Lagadic-Gossmann D, Morzadec C, et al. Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor[J]. Free Radical Biology and Medicine, 2004, 36(12): 1517-1531.

    [53]Coutant A, Lebeau J, Bidon-Wagner N, et al. Cadmium-induced apoptosis in lymphoblastoid cell line: involvement of caspase-dependent and-independent pathways[J]. Biochimie, 2006, 88(11): 1815-1822.

    [54]Yokouchi M, Hiramatsu N, Hayakawa K, et al. Atypical, bidirectional regulation of cadmium-induced apoptosis via distinct signaling of unfolded protein response[J]. Cell Death and Differentiation, 2007, 14(8): 1467-1474.

    [55]Yokouchi M, Hiramatsu N, Hayakawa K, et al. Involvement of selective reactive oxygen species upstream of proapoptotic branches of unfolded protein response[J]. The Journal of Biological Chemistry, 2008, 283(7): 4252-4260.

    [56]Gardarin A, chedin S, lagniel G, et al. Endoplasmic reticulum is a major target of cadmium toxicity in yeast[J]. Molecular Microbiology, 2010, 76(4): 1034-1048.

    [57]Liu F, Inageda K, Nishitai G, et al. Cadmium induces the expression of Grp78, an endoplasmic reticulum molecular chaperone, in LLC-PK1 renal epithelial cells[J]. Environmental Health Perspectives, 2006, 114(6): 859-864.

    [58]Biagioli M, Pifferi S, Ragghianti M, et al. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis[J]. Cell Calcium, 2008, 43(2): 184-195.

    [59]Jiang L, Cao C, Zhang L, et al. Cadmium-induced activation of high osmolarity glycerol pathway through its Sln1 branch is dependent on the MAP kinase kinase kinase Ssk2, but not its paralog Ssk22, in budding yeast[J]. FEMS Yeast Research, 2014, 14(8): 1263-1272.

    [60]Xiong B, Zhang L, Xu H, et al. Cadmium induces the activation of cell wall integrity pathway in budding yeast[J]. Chemico Biological Interacttions, 2015, 240: 316-323.

    [62]Tadic V, Prell T, Lautenschlaeger J, et al. The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis[J]. Frontiers in Cellular Neuroscience, 2014, 8:147.

    [63]Nurbaeva MK, Eckstein M, Snead ML, et al. Store-operated Ca2+entry modulates the expression of enamel genes[J]. Journal of Dental Research, 2015, 94(10):1471-1477.

    [64]Azzimonti B, Dell'oste V, Borgogna C, et al. The epithelial-mesenchymal transition induced by keratinocyte growth conditions is overcome by E6 and E7 from HPV16, but not HPV8 and HPV38: characterization of global transcription profiles[J]. Virology, 2009, 388(2):260-269.

    [65]Strayle J, Pozzan T, Rudolph HK. Steady-state free Ca2+in the yeast endoplasmic reticulum reaches only 10 microM and is mainly controlled by the secretory pathway pump Pmr1[J]. EMBO Journal, 1999, 18(17): 4733-4743.

    [66]Locke EG, Bonilla M, Liang L, et al. A homolog of voltage-gated Ca2+channels stimulated by depletion of secretory Ca2+in yeast[J]. Molecular and Cellular Biology, 2000, 20(18): 6686-6694.

    [67]Camandola S, Mattson MP. Aberrant subcellular neuronal calcium regulation in aging and Alzheimer's disease[J]. Biochimica et Biophysica Acta, 2011, 1813(5): 965-973.

    [68]Varghese J, Rich T, Jimenez C. Benign familial hypocalciuric hypercalcemia[J]. Endocrine Practice, 2011,Suppl 1, 13-17.

    [69]Huo J, Liu Y, Ma J, et al. A novel splice-site mutation of ATP2A2 gene in a Chinese family with Darier disease[J]. Archives Dermatological Research, 2010, 302(10): 769-772.

    [70]Kho C, Lee A, Jeong D, et al. SUMO1-dependent modulation of SERCA2a in heart failure[J]. Nature, 2011, 477(7366): 601-605.

    [71]Devasahayam G, Burke DJ, Sturgill TW. Golgi manganese transport is required for rapamycin signaling inSaccharomycescerevisiae[J]. Genetics, 2007, 177(1):231-238.

    [72]Cyert MS, Philpott CC. Regulation of cation balance inSaccharomycescerevisiae[J]. Genetics, 2013 , 193(3):677-713.

    [73]Cronin SR, Khoury A, Ferry DK, et al. Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p[J]. Journal of Cell Biology, 2000, 148(5): 915-924.

    [74]Brand A, Lee K, Veses V, et al. Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae[J]. Molecular Microbiology, 2009,71(5):1155-1164.

    [75]Zhao Y, Du J, Zhao G, et al. Activation of calcineurin is mainly responsible for the calcium sensitivity of gene deletion mutations in the genome of budding yeast[J]. Genomics, 2013, 101(1): 49-56.

    [76]Zhao Y, Du J, Xiong B, et al. ESCRT components regulate the expression of the ER/Golgi calcium pump genePMR1 through the Rim101/Nrg1 pathway in budding yeast[J]. Journal of Molecular Cell Biology, 2013, 5(5): 336-344.

    Advances in Endoplasmic Reticulum Stress and Unfolded Protein Response inSaccharomycescerevisiae

    ZHAO Yun-ying, WANG Di, YUAN Fan, JIANG Ling-huo

    (TheNat’lEngin.Lab.forCerealFerment’nTechnol.,Schl.ofBiotech.,JiangnanUni.,Wuxi214122)

    Unfolded protein response (UPR) signaling pathway activated by endoplasmic reticulum stress is highly conserved in bothSaccharomycescerevisiaeand mammalian cells. Reticulum Endoplasmic (ER) is an organelle for protein synthesis, folding and modification as well as one of the main places for storage Ca2+.The homeostasis of Ca2+and UPR are interrelated and interact on each other. The two MAPK pathways, HOG pathway and CWI pathway are all necessary for cell survival under ER stress treated conditions. And ion of heavy metal cadmium is also able to activate the UPR pathway and it enters into the cells through activating the calcium channel Cch1/Mid1 to affect the function of calcium ion. The interactions between two MAPK kinase pathways, cadmium or calcium ion homeostasis and UPR signaling activated by endoplasmic reticulum stress inS.cerevisiaecells are all summarized in this review.

    unfolded protein response; endoplasmic reticulum stress; MAPK; calcium signaling pathway;Saccharomycescerevisiae

    國家自然科學基金項目(81371784,31301021);中國博士后科學基金第55批資助項目(5924130201140280)

    趙運英 女,講師。從事酵母遺傳學和分子生物學研究工作。E-mail:yunying1213@hotmail.com

    * 通訊作者。男,教授,博士生導師。從事酵母和絲狀真菌遺傳學與分子生物學研究工作。E-mail:linghuojiang@jiangnan.edu.cn

    2016-03-25;

    2016-08-31

    Q93

    A

    1005-7021(2017)02-0098-09

    10.3969/j.issn.1005-7021.2017.02.017

    猜你喜歡
    哺乳動物內質網磷酸化
    為什么鴨嘴獸被歸為哺乳動物?
    內質網自噬及其與疾病的關系研究進展
    憤怒誘導大鼠肝損傷中內質網應激相關蛋白的表達
    ITSN1蛋白磷酸化的研究進展
    2 從最早的哺乳動物到人類
    哺乳動物大時代
    哺乳動物家族會
    LPS誘導大鼠肺泡上皮細胞RLE-6 TN內質網應激及凋亡研究
    MAPK抑制因子對HSC中Smad2/3磷酸化及Smad4核轉位的影響
    Caspase12在糖尿病大鼠逼尿肌細胞內質網應激中的表達
    拜城县| 万荣县| 武胜县| 武隆县| 泗洪县| 桐柏县| 黄梅县| 工布江达县| 德化县| 桂阳县| 凤翔县| 托克逊县| 新河县| 天长市| 新乡市| 韶关市| 仙桃市| 包头市| 平潭县| 广南县| 云阳县| 铁力市| 宜黄县| 长春市| 和田市| 昌都县| 安阳市| 武山县| 兴业县| 高青县| 海城市| 安多县| 深州市| 始兴县| 四子王旗| 武功县| 肃南| 鹤山市| 互助| 寿阳县| 炎陵县|