劉 旋,喬天長,趙先龍,張麗芳,魏 湜,顧萬榮,焦 健,李 晶
(東北農(nóng)業(yè)大學(xué) 農(nóng)學(xué)院,農(nóng)業(yè)部東北地區(qū)作物栽培科學(xué)觀測實驗站,哈爾濱 150030)
玉米秸稈腐解液對幼苗根際土壤理化性質(zhì)的影響
劉 旋,喬天長,趙先龍,張麗芳,魏 湜,顧萬榮,焦 健,李 晶
(東北農(nóng)業(yè)大學(xué) 農(nóng)學(xué)院,農(nóng)業(yè)部東北地區(qū)作物栽培科學(xué)觀測實驗站,哈爾濱 150030)
為了探究玉米秸稈腐解液對幼苗根際土壤理化性質(zhì)的影響,選取‘鄭單958’為供試材料,分析不同腐解時間(0、60、120、180 d)和不同腐解質(zhì)量濃度(0.125、0.25、0.5 g/mL)下秸稈腐解液對幼苗(四葉、五葉、六葉期)根際土壤pH、電導(dǎo)率(EC值)、無機氮、有機質(zhì)、速效磷、速效鉀的影響。結(jié)果表明:在腐解180 d、0.5 g/mL質(zhì)量濃度處理下土壤pH達最高,60 d、120 d,0.5 g/mL質(zhì)量濃度處理下土壤pH低于對照;在腐解120 d、0.125 g/mL質(zhì)量濃度處理下土壤EC值達最高,在腐解120 d、0.5 g/mL質(zhì)量濃度處理下土壤無機氮質(zhì)量分?jǐn)?shù)最高;幼苗四葉、五葉、六葉期均在腐解60 d、0.125 g/mL質(zhì)量濃度處理下的土壤有機質(zhì)質(zhì)量分?jǐn)?shù)達最高;土壤速效磷質(zhì)量分?jǐn)?shù)在60 d、120 d、180 d腐解液處理下均隨腐解液質(zhì)量濃度增大而升高。在腐解120 d、0.5 g/mL質(zhì)量濃度處理下土壤速效鉀質(zhì)量分?jǐn)?shù)較高。因此,腐解時間不同的秸稈腐解液不同質(zhì)量濃度均對土壤的理化性質(zhì)產(chǎn)生影響,120 d腐解時間的高質(zhì)量濃度(0.5 g/mL)秸稈腐解液對土壤養(yǎng)分環(huán)境影響最為顯著。
玉米;秸稈腐解液;土壤理化性質(zhì);土壤養(yǎng)分
中國是全世界每年秸稈生產(chǎn)量最大的國家,目前農(nóng)作物秸稈年生產(chǎn)量達8億t,黑龍江省作為中國糧食生產(chǎn)的重要基地,在全國具有舉足輕重的作用。黑龍江省是中國玉米種植第一大省,2012年玉米種植面積達664.53萬hm2,每年產(chǎn)生玉米秸稈量為5 000萬t左右,其中30%用于還田,秸稈還田量還會增加[1]。研究表明,秸稈還田不僅避免資源浪費和環(huán)境污染,還可以改良土壤結(jié)構(gòu)及多種理化性質(zhì),增強土壤蓄水保墑和存肥的實力,改良土地本身環(huán)境,減少化肥使用,因而秸稈還田成為當(dāng)今主流的耕作措施,受到國內(nèi)外眾多學(xué)者的普遍關(guān)注[2-7]。李貴桐等[8]研究發(fā)現(xiàn),秸稈在腐解過程中,可以促進土壤顆粒的團聚,改善土壤結(jié)構(gòu)和土壤理化性狀,提高土壤肥力。秸稈長期施入農(nóng)田,土壤N、P、K和有機質(zhì)等養(yǎng)分質(zhì)量分?jǐn)?shù)增加[9-11]。王小彬等[12]認(rèn)為,土壤中表層速效磷質(zhì)量分?jǐn)?shù)與施用化肥量相關(guān),秸稈過腹還田可明顯增加表層土壤速效氮質(zhì)量分?jǐn)?shù),耕層土壤速效鉀質(zhì)量分?jǐn)?shù)則與秸稈直接還田關(guān)系更為密切。玉米秸稈還田后,提高了后茬小麥土壤的有機質(zhì)質(zhì)量分?jǐn)?shù),提高了土壤微生物C/N[13]。秸稈還田后,一方面秸稈碳礦化和腐殖化作用增加了土壤有機碳;另一方面,因秸稈碳的激發(fā)效應(yīng)等作用引起土壤固有有機碳的消耗[14]。也有研究認(rèn)為,植物殘茬及秸稈腐解過程中產(chǎn)生大量化感物質(zhì),經(jīng)積累可引起土壤物理性狀變化、微生物種群結(jié)構(gòu)失衡及土壤酶活性降低[15]等嚴(yán)重問題。在北方小麥-玉米兩熟種植制度下,大量玉米秸稈連年還田對麥田土壤生態(tài)系統(tǒng)已表現(xiàn)出顯著影響,玉米秸稈腐解液對小麥生長發(fā)育具有抑制作用[16-17]。在黑龍江省農(nóng)田生態(tài)系統(tǒng)中,玉米連作現(xiàn)象普遍,秸稈還田后的效應(yīng)尚不清楚,鮮有玉米連作下秸稈還田相關(guān)研究報道。本研究以玉米為受體,分析不同腐解強度玉米秸稈腐解液對幼苗根際土壤理化性質(zhì)的影響,試圖闡明連作狀態(tài)下秸稈還田對苗期玉米生長的影響,以期為合理的茬口選擇和優(yōu)化種植制度提供依據(jù)。
1.1 試驗材料
供試玉米品種為‘鄭單958’,由黑龍江唯農(nóng)種業(yè)公司提供。土壤為黑土,取自東北農(nóng)業(yè)大學(xué)植物類實驗實習(xí)基地。
1.2 試驗設(shè)計
試驗于2014年在東北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院盆栽試驗場進行。
1.2.1 玉米秸稈腐解液制備 取2013年收獲后的帶葉玉米秸稈,粉碎長度為5 cm左右,稱取350 g置入塑料桶(直徑30 cm,深40 cm)中,加入5 L土壤稀釋液(土壤稀釋液制備:25 g土加到250 mL水中,震蕩使之均勻溶解,靜止1 h后取100 mL加到6 L蒸餾水中稀釋得土壤稀釋溶液)。桶蓋用塑料布蓋嚴(yán),蓋上扎孔利于通氣,室溫下腐解,每隔5 d攪拌1次。
1.2.2 濃縮液獲取 分別于腐解0、60、120、180 d后提取腐解液(其中0 d是指腐解6 h),先經(jīng)紗布粗濾2次,后進行真空抽濾,再旋轉(zhuǎn)蒸發(fā)(45 ℃)濃縮,得到0.5 g/mL溶液(1 g/mL為1 mL水溶液中含有1 g干植物的提取物),4 ℃條件下貯藏備用。
將各時期腐解液分別稀釋成0.125、0.25、0.5 g/mL 3個質(zhì)量濃度[18],采用盆栽試驗,花盆直徑30 cm,深40 cm。播種后每盆保苗4株,待幼苗進入三葉期,各處理加入不同腐解時間不同質(zhì)量濃度的腐解液35 mL,以加入35 mL無菌水作為空白對照(CK),每處理設(shè)3次重復(fù)。分別于四葉期、五葉期、六葉期,采用抖土法將植株根系從土壤中整體挖出,抖掉與根系松散結(jié)合的表土,然后用毛刷將與根系緊密結(jié)合的根際土刷下來,收集5~10 cm土層的根際土作為供試土樣。
1.3 測定方法
1.4 數(shù)據(jù)處理
采用Excel 2007和DPS 7.05進行數(shù)據(jù)分析。
2.1 玉米秸稈腐解液對土壤pH的影響
土壤pH變化見表1,幼苗四葉、五葉、六葉期在180 d玉米秸稈腐解時間下,土壤pH均隨腐解液質(zhì)量濃度增大而增高,在60 d、120 d玉米秸稈腐解時間下,土壤pH均隨腐解液質(zhì)量濃度增大先升高后降低。0 d腐解時間下各腐解質(zhì)量濃度處理與對照差異不顯著,而180 d腐解時間下各腐解質(zhì)量濃度處理與對照差異達到顯著水平。在腐解180 d、0.5 g/mL質(zhì)量濃度處理下土壤pH最高,均比對照增加1%。60 d、120 d,0.5 g/mL質(zhì)量濃度處理下土壤pH低于對照(CK)。
表1 秸稈腐解液處理下土壤pH變化Table 1 Changes of soil pH under treatment of maize stalk decomposing liquid
注:數(shù)據(jù)為“平均數(shù)±標(biāo)準(zhǔn)差”,小寫字母表示各時期的同一時間腐解液、不同質(zhì)量濃度處理之間的差異顯著性(P<0.05);大寫字母表示不同時間腐解液、相同質(zhì)量濃度處理之間的差異顯著性(P<0.05);下同。
Note: Data in the table are “Mean value±standard deviation”,different lower case letters indicate significant difference between decomposing in the same day of and different mass concentration in each leaf age (P<0.05);different uppercase letters indicate significant difference between different treatments in the different days of decomposing and the same mass concentration in each leaf age (P<0.05);the same as below.
2.2 玉米秸稈腐解液對土壤EC值的影響
從表2可以看出,幼苗四葉、五葉、六葉期在60 d玉米秸稈腐解時間下,土壤EC值均隨腐解液質(zhì)量濃度增大而降低,在120 d、180 d玉米秸稈腐解時間下,土壤EC值隨腐解液質(zhì)量濃度增大先升高后降低。在四葉、五葉期,0 d腐解時間各腐解質(zhì)量濃度處理與對照差異不顯著,其余各腐解時間處理土壤EC值與對照差異顯著;在六葉期,各腐解時間處理與對照相比土壤EC值顯著降低。在腐解120 d、0.125 g/mL質(zhì)量濃度處理下土壤EC值最高,與高質(zhì)量濃度0.5 g/mL處理差異達顯著水平。
表2 秸稈腐解液處理下土壤EC值變化Table 2 Changes of soil EC under treatment of maize stalk decomposing liquid
2.3 玉米秸稈腐解液對土壤無機氮的影響
土壤無機氮變化見表3,幼苗四葉期時土壤無機氮隨腐解液質(zhì)量濃度增大而增高。幼苗五葉、六葉期,土壤無機氮質(zhì)量分?jǐn)?shù)在60 d、120 d腐解時間下隨腐解液質(zhì)量濃度增大而升高,在180 d腐解時間處理下土壤無機氮質(zhì)量分?jǐn)?shù)隨腐解液質(zhì)量濃度的增大呈先升高后降低趨勢。除五葉期0 d外,其余時間各質(zhì)量濃度處理均與對照存在顯著差異。幼苗四葉、五葉、六葉期均在120 d腐解液時間、0.5 g/mL質(zhì)量濃度處理下的土壤無機氮質(zhì)量分?jǐn)?shù)最高,與其他質(zhì)量濃度處理差異達顯著水平。分別比對照提高48.81%、15.98%和28.17%。同一腐解液質(zhì)量濃度下,60 d、120 d、180 d腐解時間處理土壤無機氮質(zhì)量分?jǐn)?shù)顯著高于對照。
表3 秸稈腐解液處理下土壤無機氮變化Table 3 Changes of soil available N under treatment of maize stalk decomposing liquid
2.4 玉米秸稈腐解液對土壤有機質(zhì)的影響
幼苗四葉、五葉、六葉期時,土壤有機質(zhì)質(zhì)量分?jǐn)?shù)在60 d、120 d腐解時間下均隨腐解液質(zhì)量濃度增大而先升高后降低(表4)。同一腐解液質(zhì)量濃度下,60 d、120 d腐解液處理在四葉、五葉期高于對照,差異不顯著。幼苗四葉、五葉、六葉期均在60 d腐解液時間、0.125 g/mL質(zhì)量濃度處理下的土壤有機質(zhì)質(zhì)量分?jǐn)?shù)最高, 分別比對照增加10.46%、14.06%和1.71%,差異不顯著??梢?,腐解質(zhì)量濃度及腐解時間對土壤有機質(zhì)質(zhì)量分?jǐn)?shù)的變化調(diào)控效應(yīng)不顯著。
表4 秸稈腐解液處理下土壤有機質(zhì)變化Table 4 Changes of soil organic matter under treatment of maize stalk decomposing liquid
2.5 玉米秸稈腐解液對土壤速效磷的影響
表5顯示,幼苗四葉、五葉、六葉期時,土壤速效磷質(zhì)量分?jǐn)?shù)在60 d、120 d、180 d腐解液處理下均隨腐解液質(zhì)量濃度增大而升高。四葉期,0 d腐解液各質(zhì)量濃度處理與對照差異不顯著,其余各腐解時間土壤速效磷質(zhì)量分?jǐn)?shù)均有提高,但差異不明顯,隨葉齡增加,高腐解時間處理與對照表現(xiàn)出顯著性差異。幼苗四葉、五葉、六葉期均在60 d腐解液時間、0.5 g/mL質(zhì)量濃度處理下的土壤速效磷質(zhì)量分?jǐn)?shù)最高,分別比對照增加19.8%、11%和11.6%。同一腐解質(zhì)量濃度下,隨腐解時間增加,速效磷質(zhì)量分?jǐn)?shù)呈現(xiàn)先升高后降低趨勢,120 d腐解時間下達到最高。
表5 秸稈腐解液處理下土壤速效磷變化Table 5 Changes of soil available P under treatment of maize stalk decomposing liquid
2.6 玉米秸稈腐解液對土壤速效鉀的影響
同一腐解時間,各質(zhì)量濃度處理土壤速效鉀質(zhì)量分?jǐn)?shù)變化顯著(表6)。幼苗四葉期時,60 d玉米秸稈腐解時間下,土壤速效鉀質(zhì)量分?jǐn)?shù)隨腐解液質(zhì)量濃度增大先升高后降低,60 d腐解液時間、0.125 g/mL質(zhì)量濃度處理下土壤速效鉀質(zhì)量分?jǐn)?shù)最高,較對照增加11.2%。幼苗五葉、六葉期在120 d、180 d玉米秸稈腐解時間下,土壤速效鉀質(zhì)量分?jǐn)?shù)表現(xiàn)出隨腐解液質(zhì)量濃度的增大而升高趨勢,在腐解120 d、0.5 g/mL質(zhì)量濃度處理下土壤速效鉀質(zhì)量分?jǐn)?shù)較高,顯著高于對照及質(zhì)量濃度為0.125 g/mL的處理。同一腐解液質(zhì)量濃度下,各腐解時間處理土壤速效鉀質(zhì)量分?jǐn)?shù)高于對照,除0 d外,五葉、六葉期各腐解時間處理均與對照達到顯著差異水平。
表6 秸稈腐解液處理下土壤速效鉀變化Table 6 Changes of soil available K under treatment of maize stalk decomposing liquid
土壤pH作為土壤酸堿度的強度指標(biāo),是土壤肥力和基本性質(zhì)的重要影響因素之一??梢愿淖兺寥乐袪I養(yǎng)元素的化合形態(tài)和時效性。pH可以直接脅迫土壤中氮元素的硝化作用,而且還可以使有機物礦化。土壤EC值的高低決定土壤中鹽離子對作物生長的影響。土壤速效氮、速效磷、速效鉀是可以直接被植物利用或經(jīng)過簡單轉(zhuǎn)化而直接利用的營養(yǎng)元素。土壤中很多養(yǎng)分如N、P主要的來源之一就是有機物,同時作為異養(yǎng)微生物的重要C源,有機質(zhì)擁有胡敏酸類物質(zhì),這類物質(zhì)能刺激植物發(fā)育。
本研究結(jié)果顯示,60 d、120 d腐解時間,高質(zhì)量濃度(0.5 g/mL)處理降低土壤pH。低腐解時間60 d各腐解液質(zhì)量濃度處理下土壤EC值均降低。120 d、180 d腐解時間下,中、高質(zhì)量濃度(0.25 g/mL、0.5 g/mL)處理較對照土壤EC值降低。各腐解液質(zhì)量濃度處理土壤無機氮、速效磷均提高,120 d腐解時間、高腐解質(zhì)量濃度(0.5 g/mL)處理下最高。腐解時間60 d、高質(zhì)量濃度(0.5 g/mL)處理下的土壤速效磷達到最高。各腐解質(zhì)量濃度處理速效鉀的量較對照表現(xiàn)為增加,120 d腐解液、高質(zhì)量濃度(0.5 g/mL)處理下土壤速效鉀較高。這與楊陽[19]在研究分蘗洋蔥根系分泌物對黃瓜的化感作用研究規(guī)律一致,化感強弱分蘗洋蔥經(jīng)根系分泌物處理后,黃瓜土壤pH升高,土壤EC值下降。與對照相比較,化感作用強的,受高質(zhì)量濃度的洋蔥根系分泌物影響,黃瓜根際土壤速效磷、速效鉀的質(zhì)量分?jǐn)?shù)增加,可利用的P、K質(zhì)量分?jǐn)?shù)增加。120 d腐解液、0.125 g/mL質(zhì)量濃度處理可提高土壤有機質(zhì)質(zhì)量分?jǐn)?shù),這與張琴等[20]研究結(jié)果類似,其研究結(jié)果顯示,不同腐解方式的棉花秸稈還田對棉花種子萌發(fā)具有不同的化感作用,可以提升土壤肥效,有效改良土壤。
前人對秸稈還田做了許多研究,閆超等[21]在研究水稻秸稈還田對土壤溶液養(yǎng)分的影響時發(fā)現(xiàn),秸稈還田使水稻分蘗期土壤溶液中無機氮質(zhì)量分?jǐn)?shù)和整個生育期間土壤溶液中磷質(zhì)量分?jǐn)?shù)降低,增加了鉀的質(zhì)量分?jǐn)?shù)。徐國偉等[22]在測定秸稈還田對土壤理化性質(zhì)影響時發(fā)現(xiàn),土壤 pH 顯著減小、全P、速效K質(zhì)量分?jǐn)?shù)顯著增加,在水稻達成熟期后有機質(zhì)質(zhì)量分?jǐn)?shù)顯著增加。吳婕等[23]研究也表明覆蓋秸稈可以顯著增加土壤有機質(zhì)、全N、速效N、速效P、速效K。和前人研究相結(jié)合,秸稈腐解或作物根部產(chǎn)生的化感物質(zhì)可以改變土壤理化性質(zhì),在植物的生長發(fā)育過程中,秸稈腐解或作物根部產(chǎn)生的化感物質(zhì)可以對土壤中營養(yǎng)元素的有效性、吸收與轉(zhuǎn)運起作用,來改變土壤的理化特性。本研究證明,120 d腐解時間、高質(zhì)量濃度(0.5 g/mL)玉米秸稈腐解液改善幼苗生長的土壤養(yǎng)分環(huán)境。
4.1 玉米幼苗根際pH、EC值隨著秸稈腐解液質(zhì)量濃度的升高而降低,無機氮、速效磷、速效鉀質(zhì)量分?jǐn)?shù)均隨秸稈腐解液質(zhì)量濃度的升高而增加,且隨著葉齡的增加高腐解時間變化表現(xiàn)顯著,腐解質(zhì)量濃度及腐解時間對土壤有機質(zhì)的變化調(diào)控效應(yīng)不顯著。
4.2 玉米秸稈腐解液改變幼苗根際土壤的理化性質(zhì),120 d腐解時間、高質(zhì)量濃度(0.5 g/mL)秸稈腐解液改善幼苗生長的土壤養(yǎng)分環(huán)境。
Reference:
[1] 王如芳,張吉旺,董樹亭,等.我國玉米主產(chǎn)區(qū)秸稈資源利用現(xiàn)狀及其效果[J].應(yīng)用生態(tài)學(xué)報,2011,22(6):1504-1510.
WANG R F,ZHANG J W,DONG SH T,etal.Present situation of maize strawres our ceutilization and its effect in main maize production regions of China [J].ChineseJournalofAppliedEcology,2011,22(6):1504-1510(in Chinese with English abstract).
[2] STREETS D G.Black smoke in China and its climate effects special panel on alternative energy systems and priority environmental issues for Asia [M].New York:Asian Economic Panel Meeting,2004:7-8.
[3] SINGH B,SHAN Y H,SINGH Y,etal.Crop residue management for lowland rice-based cropping systems in Asia[J].AdvancesinAgronomy,2008,98(8):117-199.
[4] DALAL R C,MAYER R J.Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland Ⅱ.Total organic carbon and its rate of loss from the soil profile[J].AustralianJournalofSoilResearch,1986,24(2):281-292.
[5] 趙勁松,張旭東,袁 星,等.土壤溶解性有機質(zhì)的特性與環(huán)境意義[J].應(yīng)用生態(tài)學(xué)報,2003,14(1):126-130.
ZHAO J S,ZHANG X D,YUAN X,etal.Characteristics and environmental significance of soil dissolved organic matter[J].ChineseJournalofAppliedEcology,2003,14(1):126-130(in Chinese with English abstract).
[6] 胡代澤.我國農(nóng)作物秸稈資源的利用現(xiàn)狀與前景[J].資源開發(fā)與市場,2000,16(1):19-20.
HU D Z.The utilizing status and prospects of the crop straw resources in China [J].ResourceDevelopment&Market,2000,16(1):19-20(in Chinese with English abstract).
[7] 潘劍玲,代萬安,尚占環(huán),等.秸稈還田對土壤有機質(zhì)和氮素的效性影響及機制研究進展[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2013,21(5):526-535.
PAN J L,DAI W A,SHANG ZH H,etal.Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability [J].ChineseJournalofEco-Agriculture,2013,21(5):526-535(in Chinese with English abstract).
[8] 李貴桐,趙紫娟,黃元仿,等.秸稈還田對土壤氮素轉(zhuǎn)化的影響[J].植物營養(yǎng)與肥料學(xué)報,2002,8(2):162-167.
LI G T,ZHAO Z J,HUANG Y F,etal.Effect of straw returning on soil nitrogen transformation [J].PlantNutritionandFertilizerScience,2002,8(2):162-167(in Chinese with English abstract).
[9] EAGLE A J,BIRD J A,HORWATH W R,etal.Rice yield and nitrogen utilization efficiency under alternative straw management practice [J].AgronomyJournal,2000,92(6):1096-1103.
[10] 勞秀榮,孫偉紅,王 真,等.秸稈還田與化肥配合施用對土壤肥力的影響[J].土壤學(xué)報,2003,40(4):618-623.
LAO X R,SUN W H,WANG ZH,etal.Effect of matching use of straw and chemical fertilizer on soil fertility [J].ActaPedologicaSinica,2003,40(4):618-623(in Chinese with English abstract).
[11] WIT C,CASSMAN K G,OLK D C.Crop rotation and residue management effects on carbon sequestration nitrogen cycling and productivity of irrigated rice systems[J].PlantSoil,2000,225(1):263-278.
[12] 王小彬,蔡典雄,張鏡清,等.旱地玉米秸稈還田對土壤肥力的影響[J].中國農(nóng)業(yè)科學(xué),2000,33(4):54-61.
WANG X B,CAI D X,ZHANG J Q,etal.Effects of corn stover incorporated in dry farmland on soil fertility[J].ScientiaAgriculturaSinica,2000,33(4):54-61(in Chinese with English abstract).
[13] 張 靜,溫曉霞,廖允成,等.不同玉米秸稈還田量對土壤肥力及冬小麥產(chǎn)量的影響[J].植物營養(yǎng)與肥料學(xué)報,2010,16(3):612-619.
ZHANG J,WEN X X,LIAO Y CH,etal.Effects of different amount of maize straw returning on soil fertility and yield of winter wheat Plant [J].NutritionandFertilizerScience,2010,16(3):612-619(in Chinese with English abstract).
[14] 王 虎,王旭東,田宵鴻.秸稈還田對土壤有機碳不同活性組分儲量及分配的影響[J].應(yīng)用生態(tài)學(xué)報,2014,25(1):3491-3498.
WANG H,WANG X D,TIAN X H.Effect of straw-returning on the storage and distribution of different active fractions of soil organic carbon [J].ChineseJournalofAppliedEcology,2014,25(12):3491-3498(in Chinese with English abstract).
[15] 陳 慧,郝慧榮,熊 君,等.地黃連作對根際微生物區(qū)系及土壤酶活性的影響[J].應(yīng)用生態(tài)學(xué)報,2007,18(12):2755-2759.
CHEN H,HAO H R,XIONG J,etal.Effects of successive croppingRehmanniaglutinosaon rhizosp here soil microbial flora and enzyme activities [J].ChineseJournalofAppliedEcology,2007,18(12):2755-2759(in Chinese with English abstract).
[16] 沈?qū)W善,屈會娟,李金才,等.玉米秸稈還田和耕作方式對小麥養(yǎng)分積累與轉(zhuǎn)運的影響[J].西北植物學(xué)報,2012,32(1):143-149.
SHEN X SH,QU H J,LI J C,etal.Effeccts of the maize straw returned to the field and tillage patterns on nutrition accumulation and translocation of winter wheat [J].ActaBotanicaBoreali-occidentaliaSinica,2012,32(1):143-149(in Chinese with English abstract).
[17] 蔣 向,任洪志,賀德先.玉米秸稈還田對土壤理化性狀與小麥生長發(fā)育和產(chǎn)量的影響研究進展[J].麥類作物學(xué)報,2011,31(3):569-574.
JIANG X,REN H ZH,HE D X.Research progress on effects of returning maize straws into soil on soil physical & chemical characters and on development and yield of wheat as succeeding crop[J].JournalofTriticeaeCrops,2011,31(3):569-574(in Chinese with English abstract).
[18] 趙先龍,李 晶,顧萬榮,等.連作下玉米秸稈腐解液對種子萌發(fā)的影響[J].作物雜志,2013,29(5):137-141.
ZHAO X L,LI J,GU W R,etal.Effect of decomposed liquids of maize stalk on seeds germination under successive cultivation [J].Crops,2013,29(5):137-141(in Chinese with English abstract).
[19] 楊 陽.分蘗洋蔥根系分泌物對黃瓜的化感作用及其應(yīng)用[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2010:144-145.
YANG Y.Allelopathy of chinese onion root exudates on cucumber and its application [D].Harbin:Northeast Agricultural University,2010:144-145(in Chinese with English abstract).
[20] 張 琴,李艷賓,李 勇,等.不同腐解方式下棉稈腐解液對棉稈種子萌發(fā)的化感效應(yīng)[J].種子,2011,30(4):17-21.
ZHANG Q,LI Y B,LI Y,etal.Allelopathy effect of decomposed liquids of cotton stalk under different decomposing modes on cotton seeds germination [J].Seed,2011,30(4):17-21(in Chinese with English abstract).
[21] 閆 超,刁曉林,葛慧玲,等.水稻秸稈還田對土壤溶液養(yǎng)分與酶活性的影響[J].土壤通報,2012,43(5):1232-1236.
YAN CH,DIAO X L,GE H L,etal.Effects of rice straw returning on nutrients in soil solution and activities of soil enzymes [J].ChineseJournalofSoilScience,2012,43(5):1232-1236(in Chinese with English abstract).
[22] 徐國偉,段 曄,王志琴,等.麥秸還田對土壤理化性質(zhì)及酶活性的影響[J].中國農(nóng)業(yè)科學(xué),2009,42(3):20-24.
XU G W,DUAN Y,WANG ZH Q,etal.Effect of wheat-residue application on physical and chemical characters and enzymatic activities in soil [J].ScientiaAgriculturaSinica,2009,42(3):20-24(in Chinese with English abstract).
[23] 吳 婕,朱鐘麟,鄭家國,等.秸稈覆蓋還田對土壤理化性質(zhì)及作物產(chǎn)量的影響[J].西南農(nóng)業(yè)學(xué)報,2006,19(2):192-195.
WU J,ZHU ZH L,ZHENG J G,etal.Influences of straw mulching treatment on soil physical and chemical properties and crop yields [J].SouthwestChinaJournalofAgriculturalSciences,2006,19(2):192-195(in Chinese with English abstract).
(責(zé)任編輯:成 敏 Responsible editor:CHENG Min)
Effects of Maize Stalk Decomposing Liquid on Soil Physical and Chemical Properties of Seedling Rhizosphere
LIU Xuan,QIAO Tianchang,ZHAO Xianlong,ZHANG Lifang,WEI Shi,GU Wanrong,JIAO Jian and LI Jing
(College of Agriculture,Northeast Agricultural University/ The Observation Experiment Station for Crop Cultivation Science in Northeast Area,Ministry of Agriculture of P.R.China,Harbin 150030,China)
In order to explore the effects of maize stalk decomposing substance on soil physical and chemical properties of seedling rhizosphere,‘Zhengdan 958’ was used as test materials.The effects of maize stalk decomposing substance with different decomposing time (0,60,120,180 d) and different mass concentration (0.125,0.25,0.5 g/mL) on soil pH,ECvalues,inorganic nitrogen,organic matter,available phosphorus and potassium were analyzed in seedling seeding rhizosphere.The results showed that the soil pH reached the highest level under the treatment of mass concentration of 0.5 g/mL and decomposition 180 d.The soil pH was lower than control with mass concentration of 0.5 g/mL and decomposition 60 d and 120 d,respectively.The soilECvalues reached the highest level with mass concentration of 0.125 g/mL and decomposed 120 d.The soil inorganic nitrogen reached the highest level with mass concentration of 0.5 g/mL and decomposed 120 d.The soil organic matter reached the highest level with the mass concentration of 0.125 g/mL after decomposed 60 d in 4,5,6 leaf stage of maize seedlings.The soil available phosphorus increased with increase of mass concentration after decomposition 60 d,120 d and 180 d.The soil available potassium reached the highest level with mass concentration of 0.5 g/mL after composition of 120 d.Therefore,the decomposition substance with different decomposition time and different mass concentrations had effect on soil physical and chemical properties of seedling rhizosphere,it was most significant effect of soil nutrient environment with mass concentration of 0.5 g/mL of ecomposed 120 d.
Maize; Stalk decomposing liquid; Soil physical and chemical properties; Soil nutrients
LIU Xuan,female,master student.Research area: maize high yield cultivation and physiology.E-mail:18345033400@163.com
LI Jing,female,associate professor.Research area: crop adversity physiology.E-mail:jingli1027@163.com
日期:2017-03-03
網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/61.1220.S.20170303.0835.066.html
2016-03-11
2016-06-13
國家科技支撐計劃項目 (2012BAD14B06);寒地作物品種改良與生理生態(tài)重點開放實驗室項目(HDZW-008)。
劉 旋,女,碩士研究生,從事玉米高產(chǎn)栽培生理研究。E-mail:18345033400@163.com
李 晶,女,副教授,主要從事作物逆境生理研究。E-mail:jingli1027@163.com
S513
A
1004-1389(2017)03-0376-08
Received 2016-03-11 Returned 2016-06-13
Foundation item National Science and Technology Support Program(No.2012BAD14B06); Project of Key Open Laboratory for Winter Crop Variety Improvement and Physiological Ecology(No.HDZW-008).