謝 品,秦衛(wèi)軍,溫偉紅 (第四軍醫(yī)大學(xué):西京醫(yī)院泌尿外科,基礎(chǔ)部免疫學(xué)教研室,陜西西安7003)
微生物在腫瘤治療中的研究現(xiàn)狀
謝 品1,秦衛(wèi)軍1,溫偉紅2(第四軍醫(yī)大學(xué):1西京醫(yī)院泌尿外科,2基礎(chǔ)部免疫學(xué)教研室,陜西西安710032)
人體微生物群是指定植在口腔、腸道、皮膚等器官的所有微生物有機(jī)體的總稱,其與人類健康和疾病關(guān)系密切.研究發(fā)現(xiàn),腸道致病性微生物通過誘發(fā)炎癥反應(yīng),促進(jìn)多種惡性腫瘤的發(fā)生和發(fā)展;腸道有益菌通過調(diào)節(jié)宿主的生理和代謝過程,保護(hù)機(jī)體抵御腫瘤細(xì)胞生長.微生物療法代表了抗腫瘤治療的新策略,是近年來醫(yī)學(xué)領(lǐng)域的研究焦點(diǎn).本文系統(tǒng)地總結(jié)了微生物在腫瘤治療中的應(yīng)用現(xiàn)狀,主要包括以下三個(gè)方面:①細(xì)菌作為天然藥物數(shù)據(jù)庫,提供了各類具有抗腫瘤特性的活性物質(zhì);②細(xì)菌作為藥物遞送載體,使抗腫瘤分子特異靶向腫瘤細(xì)胞;③細(xì)菌作為治療劑,協(xié)同促進(jìn)傳統(tǒng)抗腫瘤療法的療效.總之,細(xì)菌在腫瘤治療領(lǐng)域扮演重要角色,是癌癥精準(zhǔn)治療的必要組成部分.
微生物;藥物;載體;化療;放療;免疫治療
微生物在人體營養(yǎng)代謝、自身發(fā)育、免疫反應(yīng)及疾病發(fā)生等過程中都具有極其重要的作用.惡性腫瘤是機(jī)體在多種致瘤因子的作用下局部組織細(xì)胞異常增生和分化而形成的,是目前危害人類健康最為嚴(yán)重的一類疾病.已有研究[1]發(fā)現(xiàn),人體微生物與結(jié)直腸癌、肝癌、胃癌等多種惡性腫瘤的發(fā)生、發(fā)展密切相關(guān).有學(xué)者[2]提出腸道微生物群落的改變先于腫瘤的形成,誘發(fā)炎癥反應(yīng),影響機(jī)體的致癌作用.其中,腸道致病性細(xì)菌可以促進(jìn)細(xì)胞增殖,腸道共生細(xì)菌則會(huì)保護(hù)機(jī)體抵御腫瘤細(xì)胞生長.某些情況下,刺激腫瘤的腸道致病性細(xì)菌在另外一種腫瘤中可能具有完全相反的效應(yīng).總之,腸道微生物和腫瘤之間的關(guān)系非常復(fù)雜.越來越多的研究人員致力于利用微生物開展抗腫瘤的治療策略研究.本文系統(tǒng)地總結(jié)了微生物作為腫瘤治療的天然藥物數(shù)據(jù)庫、藥物遞送載體以及聯(lián)合放化療和免疫療法等方面的研究現(xiàn)狀,以期為開發(fā)微生物抗腫瘤治療策略提供理論參考.
長期以來,篩選有效的抗腫瘤藥物是臨床的迫切需求.許多微生物代謝產(chǎn)物具有藥物活性,是潛在的抗腫瘤藥物數(shù)據(jù)庫.已有研究發(fā)現(xiàn),許多蛋白類、多糖類、酯類、生物堿類、萜類、有機(jī)酸類、蒽醌類微生物代謝產(chǎn)物具有抗腫瘤活性.其作用機(jī)制主要包括:①作用于DNA、微管、拓?fù)洚悩?gòu)酶以及其他酶;②作用于細(xì)胞通路誘導(dǎo)腫瘤細(xì)胞凋亡,誘導(dǎo)免疫反應(yīng);③通過改變機(jī)體內(nèi)環(huán)境的酸堿平衡,抑制腫瘤細(xì)胞生長.纖維素堆囊菌產(chǎn)生的埃博霉素能與真核細(xì)胞的微管骨架結(jié)合,阻止有絲分裂,發(fā)揮類似紫杉醇的作用抗癌活性[3].假單胞菌外毒素PE38上的腺苷二磷酸(adenosine diphosphate,ADP)核糖基化結(jié)構(gòu)域通過修飾延伸因子2,阻止蛋白質(zhì)合成,誘發(fā)細(xì)胞程序性死亡,能有效地抑制肝癌、血液腫瘤的生長[4-5].Masuelli等[6]證實(shí)青紫色素桿菌和鉛色詹森菌等革蘭氏陰性菌代謝產(chǎn)生的紫色桿菌素(violacein,VIO)可通過誘導(dǎo)p53降解、NF?κB在細(xì)胞質(zhì)中富集和產(chǎn)生ROS等多條途徑誘導(dǎo)細(xì)胞自噬和凋亡,從而有效抑制頭頸部腫瘤細(xì)胞的增殖.
隨著現(xiàn)代分子生物學(xué)和基因工程技術(shù)的發(fā)展,靶向治療已經(jīng)發(fā)展成為腫瘤治療的新途徑,開發(fā)腫瘤靶向治療的載體是生物醫(yī)學(xué)領(lǐng)域的研究熱點(diǎn).早期研究[7-9]發(fā)現(xiàn),沙門氏菌屬、利斯特菌屬、埃希氏菌屬和梭狀芽胞桿屬等兼性厭氧微生物具有良好的腫瘤靶向定植能力和抗腫瘤特性,可作為腫瘤靶向治療的候選載體.Sznol等[10]發(fā)現(xiàn)沙門氏菌在多種荷瘤小鼠腫瘤部位的聚集量是其他正常部位的1 000~10 000倍,并且可明顯延緩腫瘤生長.VNP20009、A1?R和CRC2631等沙門氏菌屬減毒株是臨床上研究較為深入的藥物遞送載體.
目前,以沙門氏菌為載體的腫瘤靶向治療策略主要包括:①表達(dá)前體藥激活酶類;②表達(dá)腫瘤特異性抗原和抗體;③基因沉默;④表達(dá)細(xì)胞因子和細(xì)胞促凋亡分子等.Pawelek等[11]利用沙門氏菌表達(dá)皰疹病毒胸苷激酶(herpes simplex virous thymidine kinase,HSV?TK)與更昔洛韋聯(lián)合使用,可以有效抑制腫瘤生長,延長生存期.Fensterle等[12]使用沙門氏菌向腫瘤部位輸送PSA抗原,可以迅速激活CD8+T細(xì)胞,有效抑制腫瘤生長.Zhang等[13]發(fā)現(xiàn)攜帶有siRNA?STAT3質(zhì)粒的沙門氏菌對小鼠肝原位移植瘤的生長具有顯著的抑制作用.al?Ramadi等[14]發(fā)現(xiàn)攜帶IL?2的鼠傷寒沙門氏菌對小鼠腫瘤有較強(qiáng)的抑制作用,且能有效降低肺轉(zhuǎn)移瘤的形成.Ursshima等[15]發(fā)現(xiàn)口服表達(dá)CD40配體的沙門氏菌能有效抑制B細(xì)胞淋巴瘤在小鼠體內(nèi)的生長.表達(dá)TNF,F(xiàn)AS配體及TRAIL等促凋亡分子的沙門氏菌可以有效地抑制多種腫瘤的生長[16-18].
此外,沙門氏菌在腫瘤組織中的特異性分布,可以作為理想的腫瘤診斷工具.表達(dá)單純皰疹胸苷激酶報(bào)告基因的VNP20009工程菌可以特異地磷酸化14C標(biāo)記的14C標(biāo)記的1?(2?脫氧?2?氟?β?D?阿拉伯呋喃基)?5?碘尿嘧啶(1?(2?Deoxy?2?fluoro?β?D?arabino?furanosyl)?5?iodouracil,F(xiàn)IAU),用于影像學(xué)研究[19].Panteli等[20]將攜帶綠色熒光蛋白ZsGreen的沙門氏菌轉(zhuǎn)入腫瘤部位,通過包被ZsGreen抗體的微流控系統(tǒng)檢測腫瘤部位的ZsGreen釋放量,再根據(jù)ZsGreen釋放量與腫瘤體積的相關(guān)性推算腫瘤體積.該方法可成功檢測μm3級的腫瘤組織,對準(zhǔn)確評價(jià)腫瘤復(fù)發(fā)和治療效果都具有非常重要的臨床應(yīng)用價(jià)值.
腸道微生物群落是一個(gè)復(fù)雜的微生態(tài)系統(tǒng),與人類健康密切相關(guān).研究發(fā)現(xiàn),腸道菌群不僅通過多種途徑參與腫瘤的發(fā)生和發(fā)展,還在腫瘤治療中具有一定的促進(jìn)作用.
3.1 微生物對化療的促進(jìn)作用鉑類藥物(plati?num,Pt)是最廣譜的抗腫瘤藥物,它通過形成Pt?DNA復(fù)合物,造成DNA復(fù)制、轉(zhuǎn)錄障礙,導(dǎo)致腫瘤細(xì)胞死亡.該類化療藥物的耐藥是臨床治療的主要障礙,而人體微生物菌群對其抗腫瘤效果具有重要影響.Iida等[21]發(fā)現(xiàn),奧沙利鉑的抗腫瘤活性與小鼠體內(nèi)有無微生物密切相關(guān).在無菌或抗生素處理的EL4淋巴瘤和MC38結(jié)腸癌小鼠模型中,奧沙利鉑的抗腫瘤效果顯著降低.其分子機(jī)制為:奧沙利鉑與腫瘤細(xì)胞內(nèi)的DNA形成Pt?DNA復(fù)合物,微生物菌群分泌的LPS分子與腫瘤浸潤的髓系細(xì)胞表面的TLR4(Toll?like receptor 4)相互作用,誘導(dǎo)其通過NADPH氧化酶(NOX2)途徑旁分泌產(chǎn)生活性氧(reactive oxy?gen species,ROS),進(jìn)而誘發(fā)DNA損傷.Gui等[22]發(fā)現(xiàn)給抗生素處理的小鼠重新注射嗜酸乳桿菌可以恢復(fù)順鉑的抗腫瘤活性.以上結(jié)果表明,微生物菌群通過分泌TLR的“激活劑”,促進(jìn)腫瘤微環(huán)境中固有免疫細(xì)胞合成ROS,誘發(fā)DNA損傷,從而實(shí)現(xiàn)抗腫瘤的效果[21].
烷化劑是一類細(xì)胞周期非特異性的抗腫瘤藥物,它通過與核酸、蛋白質(zhì)上的氨基、羥基、巰基等形成共價(jià)鍵,改變其結(jié)構(gòu)和功能,從而抑制細(xì)胞增殖或誘導(dǎo)細(xì)胞死亡.Viaud等[23]發(fā)現(xiàn)環(huán)磷酰胺通過破壞腸上皮屏障打亂腸道微生態(tài)平衡,導(dǎo)致乳桿菌和希氏腸球菌等共生細(xì)菌進(jìn)入腸系膜相關(guān)的淋巴結(jié)和脾臟,誘導(dǎo)CD4+T細(xì)胞向Th17和記憶型Th1細(xì)胞分化,進(jìn)而增強(qiáng)環(huán)磷酰胺的抗腫瘤療效.Daillere等[24]也發(fā)現(xiàn)給抗生素處理的肉瘤小鼠模型口服希氏腸球菌可以恢復(fù)環(huán)磷酰胺的抗腫瘤活性.同時(shí),環(huán)磷酰胺處理后,NOD1和NOD2缺失可以促進(jìn)荷瘤小鼠體內(nèi)的共生微生物向脾臟等免疫器官轉(zhuǎn)移,導(dǎo)致腫瘤微環(huán)境中Treg細(xì)胞數(shù)量減少,分泌γ干擾素的γδT細(xì)胞數(shù)量增多,顯示出了更強(qiáng)的抗腫瘤活性.
3.2 微生物對放療的促進(jìn)作用大量研究表明益生菌可緩解局部放療引起的副作用.Ciorba等[25]發(fā)現(xiàn)鼠李糖乳桿菌LGG可以激活TLR2,促使表達(dá)環(huán)氧化酶2(cyclooxygenase?2,COX2)的細(xì)胞從小腸絨毛轉(zhuǎn)移到腸隱窩,并誘導(dǎo)ROS的產(chǎn)生,激活細(xì)胞內(nèi)的NRF2系統(tǒng),從而保護(hù)腸粘膜免受放療引起的副作用.在臨床上,乳酸桿菌、雙歧桿菌和干酪乳桿菌等益生菌可以預(yù)防放療引起的腸下垂;雙歧桿菌、乳酸桿菌和鏈球菌等被證實(shí)可以預(yù)防骨盆放療引起的肝臟毒性[26-27].Sharma等[28]證實(shí)給頭頸部腫瘤患者注射短乳桿菌可以降低放療引起的粘膜炎.
全身放療是骨髓移植和T細(xì)胞過繼療法的重要準(zhǔn)備環(huán)節(jié),微生物與機(jī)體對該療法的耐受性密切相關(guān).Crawford等[29]發(fā)現(xiàn)無菌小鼠對全身照射具有耐受性,需要更高的輻射劑量才能誘發(fā)腸病和50%死亡率.全身照射后,無菌小鼠的腸粘膜中上皮細(xì)胞的凋亡數(shù)量和腫瘤浸潤淋巴細(xì)胞的數(shù)量都明顯低于有菌小鼠.該現(xiàn)象主要?dú)w因于無菌小鼠可以誘導(dǎo)腸上皮細(xì)胞表達(dá)脂肪細(xì)胞因子(fasting?induced adipose factor,F(xiàn)IAF),參與脂代謝、血管生成及器官修復(fù)等過程,保護(hù)機(jī)體免受放療引起的損傷.細(xì)菌在分解碳水化合物過程中產(chǎn)生的短鏈脂肪酸與過氧化物酶體增殖物激活型受體γ(peroxisome proliferator?activated receptors γ,PPARγ)共同誘導(dǎo)FIAF表達(dá),進(jìn)而保護(hù)機(jī)體免受全身放療引起的粘膜炎和結(jié)腸炎等[30].以上結(jié)果也解釋了有菌小鼠和無菌小鼠的都可以耐受放射治療的毒性作用.
3.3 微生物對免疫治療的促進(jìn)作用在傳統(tǒng)的抗腫瘤療法面臨耐藥和復(fù)發(fā)等重大挑戰(zhàn)時(shí),免疫療法在血液腫瘤和實(shí)體瘤的治療中顯示了前所未有的潛力.然而,免疫療法的有效性也因患者的個(gè)體差異和腫瘤類型而有明顯差異.最新的研究發(fā)現(xiàn),腸道菌群也參與調(diào)節(jié)多種抗腫瘤免疫治療的效果.
3.3.1 CpG脫氧核苷酸療法 模式識別受體(pattern recognition receptor,PRRs)通過識別細(xì)菌DNA的CpG結(jié)構(gòu)域,誘發(fā)免疫應(yīng)答.人工合成的CpG脫氧核苷酸可以激活固有免疫系統(tǒng).Iida等[21]發(fā)現(xiàn),無菌或抗生素處理荷瘤小鼠(EL4淋巴瘤,MC38結(jié)腸癌和B16黑色瘤)對CpG脫氧核苷酸療法不反應(yīng).其原因在于,無菌小鼠腫瘤部位的髓系細(xì)胞和免疫細(xì)胞分泌TNF?α、IL?12和INF?γ等細(xì)胞因子的水平受到限制.TNF?α與腸道微生物的相關(guān)性分析表明,另枝菌屬Alistipes shahii可促進(jìn)腫瘤部位的髓系細(xì)胞對CpG脫氧核苷酸療法的響應(yīng);而乳酸桿菌腸道微生物的作用則完全相反.Viaud等[31]發(fā)現(xiàn)用環(huán)磷酰胺處理后,乳酸桿菌可以增強(qiáng)抗原呈遞細(xì)胞的活力,從而引發(fā)有效的抗腫瘤免疫反應(yīng).
3.3.2 T細(xì)胞過繼療法 T細(xì)胞過繼療法是通過提取患者外周血中的T細(xì)胞,再經(jīng)過基因修飾,使T細(xì)胞表達(dá)識別腫瘤特異性抗原的T細(xì)胞受體,從而激活并引導(dǎo)T細(xì)胞殺死腫瘤細(xì)胞.Paulos等[32]發(fā)現(xiàn),輻照的小鼠的荷瘤模型對T細(xì)胞過繼療法反應(yīng)良好,而抗生素處理組小鼠對該療法反應(yīng)較差.這是因?yàn)檩椪掌茐男∈蟮哪c上皮屏障,打亂腸道微生態(tài)平衡,導(dǎo)致腸道微生物進(jìn)入腸系膜淋巴結(jié),通過LPS與TLR分子相互作用,促進(jìn)樹突細(xì)胞分化成熟,增強(qiáng)CD8+T細(xì)胞活性,進(jìn)而發(fā)揮抗腫瘤活性.該結(jié)果解釋了為什么轉(zhuǎn)移性黑色素瘤患者在全身放療后再進(jìn)行T細(xì)胞過繼療法會(huì)取得較好的治療效果.總之,維持宿主和共生微生物的穩(wěn)態(tài)平衡對T細(xì)胞過繼療法的有效性具有重要意義.
3.3.3 免疫檢查點(diǎn)療法 免疫檢查點(diǎn)療法是一類通過調(diào)節(jié)T細(xì)胞活性來提高抗腫瘤免疫反應(yīng)的治療方法.針對CTLA?4、PD1和PDL?1的抗體阻斷療法在晚期黑色素瘤、腎癌和肺癌中顯示巨大的應(yīng)用價(jià)值.研究[33-34]表明,腸道微生物也可參與調(diào)節(jié)免疫檢查點(diǎn)療法的抗腫瘤效果.
Vétizou等[33]發(fā)現(xiàn)抗生素處理和無菌小鼠的荷瘤模型對CTLA?4阻斷療法響應(yīng)較差,表明腸道微生物在CTLA?4阻斷療法中發(fā)揮重要作用.CTLA?4阻斷療法誘發(fā)T細(xì)胞介導(dǎo)的腸黏膜損傷,導(dǎo)致腸道微生物群落結(jié)構(gòu)發(fā)生改變(擬桿菌屬和伯克氏菌屬的豐度降低,梭菌屬的豐度升高,免疫調(diào)節(jié)因子相關(guān)的脆弱擬桿菌的豐度維持不變).口服多形擬桿菌和脆弱擬桿菌的荷瘤小鼠對CTLA?4阻斷療法部分恢復(fù)響應(yīng),在其腫瘤部位檢測到成熟的樹突細(xì)胞,在淋巴結(jié)中檢測到Th1細(xì)胞.總之,CTLA?4的阻斷療法通過影響腸道表皮細(xì)胞與上皮淋巴細(xì)胞的穩(wěn)態(tài)而促進(jìn)多種擬桿菌的增殖,進(jìn)而通過粘膜處的樹突細(xì)胞激活Th1細(xì)胞,發(fā)揮抗腫瘤活性.
Sivan等[34]發(fā)現(xiàn)攜帶不同腸道微生物的小鼠的B16黑色素瘤荷瘤模型對PDL?1阻斷療法呈現(xiàn)截然不同的免疫應(yīng)答.PDL?1阻斷劑可以有效抑制JAK小鼠的腫瘤生長,而TAC荷瘤小鼠組則無響應(yīng).腸道微生物群落結(jié)構(gòu)分析發(fā)現(xiàn),雙歧桿菌的豐度與PDL?1阻斷劑的療效密切相關(guān),其可通過增強(qiáng)CD8+T細(xì)胞活性,引發(fā)抗腫瘤反應(yīng).該過程與CTLA?4阻斷劑通過腸道微生物引發(fā)炎癥反應(yīng)和免疫激活過程全然不同.
圍繞微生物開發(fā)的一系列抗腫瘤治療策略目前在臨床前研究中取得了較好的效果,但在臨床應(yīng)用中仍存在許多困難和挑戰(zhàn).沙門氏菌具備良好的藥物傳遞載體優(yōu)勢,能夠成功靶向前列腺癌、乳腺癌、胰腺癌及脊髓癌.但是,沙門氏菌自身可以誘導(dǎo)機(jī)體產(chǎn)生炎性因子,激活先天性免疫反應(yīng).未來仍需要借助基因工程技術(shù)剔除沙門氏菌基因組中的潛在致病基因,篩選靶向性好、致病性弱的高效工程菌,以確保臨床應(yīng)用的安全性.腸道微生物與人體免疫系統(tǒng)在長期的進(jìn)化過程中產(chǎn)生了高度的默契.借助基因組學(xué)、蛋白質(zhì)組學(xué)和代謝組學(xué)技術(shù),通過監(jiān)測腸道微生態(tài)系統(tǒng)的菌落特征、菌群之間及其與宿主之間的相互作用,闡明腸道菌群調(diào)節(jié)宿主免疫反應(yīng)的深層機(jī)制,揭示腸道菌群與腫瘤發(fā)生發(fā)展及診療的復(fù)雜關(guān)系,進(jìn)而指導(dǎo)臨床制定更加精準(zhǔn)的腫瘤治療方案.總之,微生物在腫瘤醫(yī)學(xué)中擁有十分廣闊的應(yīng)用前景,隨著研究的深入,必將為腫瘤的診斷和治療提供新的思路和理論依據(jù).
[1] Pope JL,Tomkovich S,Yang Y,et al.Microbiota as a mediator of cancer progression and therapy[J].Transl Res,2017,179:139-154.
[2] Zackular JP,Baxter NT,Iverson KD,et al.The gut microbiome modulates colon tumorigenesis[J].MBio,2013,4(6):e00692-13.
[3] Forli S.Epothilones:from discovery to clinical trials[J].Curr Top Med Chem,2014,14(20):2312-2321.
[4] Gao W,Tang Z,Zhang YF,et al.Immunotoxin targeting glypican?3 regresses liver cancer via dual inhibition of Wnt signaling and protein synthesis[J].Nat Commun,2015,6:6536.
[5] Kreitman RJ,Pastan I.Antibody fusion proteins:anti?CD22 recombinant immunotoxin moxetumomab pasudotox[J].Clin Cancer Res,2011,17(20):6398-6405.
[6] Masuelli L,Pantanella F,La Regina G,et al.Violacein,an indole?derived purple?colored natural pigment produced by Janthinobacterium lividum,inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo[J].Tumour Biol,2016,37(3):3705-3717.
[7] Minton NP.Clostridia in cancer therapy[J].Nat Rev Microbiol,2003,1(3):237-242.
[8] Lambin P,Theys J,Landuyt W,et al.Colonisation of Clostridium in the body is restricted to hypoxic and necrotic areas of tumours[J].Anaerobe,1998,4(4):183-188.
[9] Forbes NS,Munn LL,F(xiàn)ukumura D,et al.Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors[J].Cancer Res,2003,63(17):5188-5193.
[10] Sznol M,Lin SL,Bermudes D,et al.Use of preferentially replicating bacteria for the treatment of cancer[J].J Clin Invest,2000,105(8):1027-1030.
[11] Pawelek JM,Low KB,Bermudes D.Tumor?targetedSalmonella as a novel anticancer vector[J].Cancer Res,1997,57(20):4537-4544.
[12] Fensterle J,Bergmann B,Yone CL,et al.Cancer immunotherapy based on recombinant Salmonella enterica serovar Typhimurium aroA strains secreting prostate?specific antigen and cholera toxin subunit B[J].Cancer Gene Ther,2008,15(2):85-93.
[13] Zhang L,Gao L,Zhao L,et al.Intratumoral delivery and suppression of prostatetumor growth by attenuated Salmonella enterica serovar ty?phimurium carryingplasmid?based small interfering RNAs[J].Cancer Res,2007,67(12):5859-5864.
[14] al?Ramadi BK,F(xiàn)ernandez?Cabezudo MJ,El?Hasasna H,et al.Potent anti?tumor activity of systemically?administered IL2?expressing Salmonella correlates with decreased angiogenesis and enhanced tumor apoptosis[J].Clin Immunol,2009,130(1):89-97.
[15] Ursshima M,Suzuki H,Yuza Y,et al.An oral CD40 ligand gene thera?py against lymphoma using attenuated Salminella Typhimurium[J].Blood,2000,95(4):1258-1263.
[16] Galán JE,Wolf?Watz H.Protein delivery into eukaryotic cells by typeⅢsecretion machines[J].Nature,2006,444(7119):567-573.
[17] Loeffler M1,Le'Negrate G,Krajewska M,et al.IL18?producing Salmonella inhibit tumor growth[J].Cancer Gene Ther,2008,15(12):787-794.
[18] Walczak H,Miller RE,Ariail K,et al.Tumoricidal activity of tumor necrosis factor?related apoptosis?inducing ligand in vivo[J].Nat Med,1999,5(2):157-163.
[19] Soghomonyan SA,Doubrovin M,Pike J,et al.Positron emission tomography(PET)imaging of tumor?localized Salmonella expressing HSV1?TK[J].Cancer Gene Ther,2005,12(1):101-108.
[20] Panteli JT,F(xiàn)orkus BA,Van Dessel N,et al.Genetically modified bacteria as a tool to detect microscopic solid tumor masses with triggered release of a recombinant biomarker[J].Integr Biol(Camb),2015,7(4):423-434.
[21] Iida N,Dzutsev A,Stewart CA,et al.Commensal bacteria control canc?er response to therapy by modulating the tumor microenvironment[J].Science,2013,342(6161):967-970.
[22] Gui QF,Lu HF,Zhang CX,et al.Well?balanced commensal lmicrobiota contributes to anti?cancer response in a lung cancer mouse model[J].Genet Mol Res,2015,14(2):5642-5651.
[23] Viaud S,Saccheri F,Mignot G,et al.The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide[J].Science,2013,342(6161):971-976.
[24] Daillère R,Vétizou M,Waldschmitt N,et al.Enterococcus hirae and Barnesiellaintestinihominisfacilitatecyclophosphamide?induced therapeutic immunomodulatory effects[J].Immunity,2016,45(4):931-943.
[25] Ciorba MA,Riehl TE,Rao MS,et al.Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR?2/cyclo?oxygenase?2?dependent manner[J].Gut,2012,61(6):829-838.
[26] Touchefeu Y.Systematic review:the role of the gut microbiota in chemotherapy?or radiation?induced gastrointestinal mucositis?current evidence and potential clinical applications[J].Aliment Pharmacol Ther,2014,40(5):409-421.
[27] Delia P,Sansotta G,Donato V,et al.Use of probiotics for prevention of radiation?induced diarrhea[J].World J Gastroenterol,2007,13(6):912-915.
[28] Sharma A,Rath GK,Chaudhary SP,et al.Lactobacillus brevis CD2 lozenges reduce radiation?and chemotherapy?induced mucositis in patients with head and neck cancer:a randomized double?blind placebo?controlled study[J].Eur J Cancer,2012,48(6):875-881.[29]Crawford PA,Gordon JI.Microbial regulation of intestinal radio sensitivity[J].Proc Natl Acad Sci,2005,102(37):13254-13259.
[30] Korecka A,de Wouters T,Cultrone A,et al.ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways[J].Am J Physiol Gastrointest Liver Physiol,2013,304(11):1025-1037.
[31] Viaud S,Daillère R,Boneca IG,et al.Harnessing the Intestinal Microbiome for optimal therapeutic immunomodulation[J].Cancer Res,2014,74(16):4217-4221.
[32] Paulos CM,Wrzesinski C,Kaiser A,et al.Microbial translocation augments the function of adoptively transferred self/tumor specific CD8+T cells via TLR4 signaling[J].J Clin Invest,2007,117(8):2197-2204.
[33] Vétizou M,Pitt JM,Daillère R,et al.Anticancer immunotherapy by CTLA?4 blockade relies on the gut microbiota[J].Science,2015,350(6264):1079-1084.
[34] Sivan A,Corrales L,Hubert N,et al.Commensal Bifidobacterium promotes antitumor immunity and facilitates anti?PD?L1 effcacy[J].Science,2015,350(6264):1084-1089.
Current views on bacterial-based anti-tumor therapy
XIE Pin1,QIN Wei-Jun1,WEN Wei-Hong21Department of Urology,Xijing Hospital,2Department of Immu?nology,School of Basic Medical Sciences,F(xiàn)ourth Military Medi?cal University,Xi'an 710032,China
Microbiota,a complex community of microorganisms,which exists in symbiosis within various sites of human host.To date,the precise role of the human microbiome in health and disease states remains largely undefined.Viruses and bacterial species have been implicated in oncogenesis,while commensal mi?crobe plays a beneficial role in the fight against cancer,via modu?lating the host physiological and metabolic processes during cancer development and progression.Therefore,microbial therapeutics represent a new and promising research area with potential broad implications in cancer therapy.In this review,we present recent progresses of bacterial therapeutic approaches in anti?tumor respon?ses.It mainly focuses on three aspects as following:①bacteria acts as a nature drug database,providing sorts of active substances with anti?tumor activity;②bacteria acts as a drug delivery vector,enabling antitumor molecules to specifically target tumor cells;③bacteria acts as therapeutic agents,playing an intricate role in modulating the efficacy of anti?cancer treatments.These newly find?ings suggest that bacteria will likely become an important compo?nent of precision and personalized medicine for cancer.
microbe;drug;vector;chemotherapy;radiotherapy;immunotherapy
R730.5
A
2017-07-18;接受日期:2017-08-04
國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973)(2013CB530500);國家自然科學(xué)基金(81372225,81372771)
謝 品.博士.E?mail:xiepin1985@126.com
溫偉紅.博士,副教授.研究方向:免疫.E?mail:wenweih@fmmu.edu.cn
2095?6894(2017)10?05?04