巫芙蓉 閆媛媛 尹 陳
頁巖氣微地震壓裂實時監(jiān)測技術
——以四川盆地蜀南地區(qū)為例
巫芙蓉1閆媛媛2尹 陳1
1.中國石油川慶鉆探工程公司地球物理勘探公司 2.中國地質大學(北京)地球科學與資源學院
長水平井段多井拉鏈式水力壓裂是提高四川盆地蜀南地區(qū)頁巖氣產量和降本增效的重要手段。微地震壓裂監(jiān)測因其能夠對水力壓裂裂縫進行實時成像而被廣泛應用于頁巖氣壓裂效果評估和壓裂參數優(yōu)化調整。但目前國內頁巖氣微地震壓裂監(jiān)測僅能按照壓裂監(jiān)測前設計的參數完成平臺井壓裂作業(yè)后才能評估壓裂效果,其評估結果只能為下一個平臺井的壓裂參數提供指導,缺少對正實施井進行實時優(yōu)化壓裂參數的經驗,致使微地震壓裂監(jiān)測的實時作用失效。為此,利用放射狀排列微地震地面監(jiān)測和微地震井中聯合監(jiān)測技術,采用實時定位方法,對四川盆地蜀南地區(qū)頁巖氣長水平井段多井拉鏈式水力壓裂裂縫進行實時成像,實時評估壓裂效果,現場實時指導了前置液參數、射孔、暫堵劑的投放時間等參數的優(yōu)化,有效避免了重復壓裂、壓裂效果不均等現象,提升了壓裂改造效果。2口井組的實踐結果表明,微地震壓裂實時監(jiān)測在實時評估壓裂效果和實時優(yōu)化壓裂參數方面能夠發(fā)揮重要作用,平均測試頁巖氣產量增加2~5倍,值得進一步借鑒和推廣。
頁巖氣 微地震 實時監(jiān)測 水平井 拉鏈式壓裂 井中監(jiān)測 地面監(jiān)測 產量增加 四川盆地 蜀南地區(qū)
四川盆地蜀南地區(qū)下志留統龍馬溪組頁巖氣資源十分豐富[1-3],但由于地表屬于山地地形,地形高差達400 m,交通不便,人口稠密,再加上國內頁巖氣勘探開發(fā)配套技術不成熟,故頁巖氣的高效勘探開發(fā)進程較為緩慢。為了加快頁巖氣的高效勘探開發(fā)進程和提高頁巖氣產量,借鑒北美頁巖氣經驗,需要采用長水平井段多井拉鏈式水力壓裂新技術[4-6]。該區(qū)長水平井段最長可達2 000 m,長水平井段多井拉鏈式水力壓裂技術的發(fā)展和應用在國內處于起步階段,壓裂參數是否合理、壓裂效果的好壞直接關乎頁巖氣是否高產。因此迫切需要微地震監(jiān)測技術進行壓裂效果的實時評估和指導壓裂參數的優(yōu)化。但是,國內頁巖氣微地震壓裂監(jiān)測發(fā)揮的作用不佳,僅在按照壓裂監(jiān)測前設計的參數完成平臺井壓裂作業(yè)后,評估壓裂效果[7-9],評估結果只能為下一個平臺井的壓裂參數提供指導,缺少對正實施井進行實時優(yōu)化壓裂參數的經驗,致使微地震壓裂監(jiān)測的實時作用失效。
此外,長水平井段多井拉鏈式水力壓裂效果評估也對微地震監(jiān)測方式提出了更高的挑戰(zhàn)。微地震監(jiān)測一般分為微地震井中監(jiān)測和微地震地面監(jiān)測[10-12]。微地震井中監(jiān)測可以獲得高信噪比的微地震信號,但受到多井拉鏈式壓裂監(jiān)測和觀測方位的限制,沒有合適監(jiān)測距離的觀測井來同時對3~4口拉鏈式壓裂井進行監(jiān)測,因而只能使用一支未同步壓裂的井進行觀測,造成微地震井中監(jiān)測不能夠對觀測井(檢波器沉放井)進行監(jiān)測。另外微地震井中監(jiān)測垂向定位精度比平面定位精度高。微地震地面監(jiān)測觀測方位寬、不受觀測井的限制,但該區(qū)地表屬于山地地形,在垂向監(jiān)測距離達3 500 m的地表進行地面監(jiān)測,微地震信號衰減大、能量弱、速度場求取困難,微地震平面定位精度比垂向定位精度高[13-16]。筆者采用放射狀排列微地震地面監(jiān)測和微地震井中聯合監(jiān)測技術,結合兩者的優(yōu)勢,對長水平井段多井拉鏈式水力壓裂裂縫實時成像,實時指導了壓裂參數的優(yōu)化,提高了壓裂改造效果。
1.1 微地震監(jiān)測采集
微地震地面監(jiān)測采用放射狀排列,即以壓裂井口為中心,在其四周呈放射狀布設8~20條測線,1 000~3 000道檢波器,道間距20 m。同時在井中布設40級三分量檢波器,級距15 m,位置盡量靠近壓裂層段(圖1)。
1.2 微地震監(jiān)測實時處理
利用自主研發(fā)的GeoMonitor微地震監(jiān)測軟件系統,采用如下處理流程進行實時定位:①建立層狀速度場。采用聲波測井速度和地震層位建立初始速度模型,對地面監(jiān)測射孔信號和井中監(jiān)測射孔信號進行聯合定位,校正速度場,射孔定位誤差在規(guī)定范圍內,即為最終速度場。②預處理。對微地震地面監(jiān)測信號進行靜校正、去噪等處理;對微地震井中監(jiān)測三分量信號進行去噪、矢量旋轉、微地震事件自動拾取[17-19]。③實時定位[20]。采用三維網格自動搜索聯合定位方法,對檢波器接收到的微地震事件進行實時定位,實時定位延遲時小于10 s。④微地震事件點空間展示。將定位出的微地震事件點進行三維空間顯示,實時顯示在壓裂工程師面前。壓裂工程師結合定位結果,評估壓裂效果,優(yōu)化壓裂參數[21]。
將實時定位出的微地震事件點投影在三維空間中,可以通過俯視投影、側視投影,直觀分析壓裂裂縫的擴展情況。微地震事件點的個數代表巖石破裂的程度,微地震事件點越密集,巖石破裂點越多;微地震事件點延伸方向是水力壓裂裂縫帶的延伸方位,其延伸方向上的長度為壓裂裂縫帶長度,相垂直的另一方向為裂縫帶寬度。微地震事件深度方向的高度,為壓裂裂縫帶高度。微地震事件波及的體積為壓裂改造體積。通過微地震事件點的分析,可以對壓裂效果進行實時評估,同時優(yōu)化壓裂參數。
2.1 前置液參數調整
前置液參數為壓裂施工中的關鍵參數 ,對于壓裂施工的成敗有著重大的影響。不同的前置液參數對造縫長度的影響不同[22-23]。
A井前期(第4壓裂段)加入20 m3酸液后,就直接加入線性膠,其微地震監(jiān)測結果如圖2-a所示,微地震事件點極少,造縫效果不好。壓裂工程師根據微地震監(jiān)測結果,調整了第5壓裂段的前置液參數,先加入20 m3酸液,其后加100 m3滑溜水,再其后加線性膠,監(jiān)測結果如圖2-b所示,微地震事件點明顯增多,全部覆蓋了第5段,主要向南西方向展布,造縫明顯,第5段壓裂效果明顯好于第4段。
2.2 射孔方案的調整
圖2 不同前置液參數的微地震壓裂監(jiān)測結果對比圖
射孔方案對水力壓裂裂縫的擴展影響較大[24]。利用微地震監(jiān)測結果可以分析射孔方案的合理性。圖3-a、b是B井第4壓裂段的微地震監(jiān)測結果,微地震事件點密集分布,形成了復雜的裂縫網絡,覆蓋了第4壓裂段和第5壓裂段。為了避免第5段的重復壓裂和壓裂成本的浪費,將第5段的射孔方案進行了調整,跳過125 m進行射孔,然后進行壓裂。圖3-c、d是調整射孔方案后壓裂微地震監(jiān)測結果,微地震事件點沒有與第四段重合,而是沿著調整后位置進行破裂。
2.3 暫堵劑應用與投放
蜀南地區(qū)龍馬溪組頁巖微斷層、天然裂縫發(fā)育,對人工裂縫發(fā)育具有明顯控制作用。部分相對大尺度微斷層易造成大量壓裂液進入,濾液漏失嚴重,地面泵壓異常增高,不僅給施工增加難度,而且不易形成復雜縫網,造成部分區(qū)域不能達到理想改造效果。
圖3 射孔方案調整前后微地震監(jiān)測結果對比圖
圖4 加暫堵劑前后微地震監(jiān)測結果對比圖
當微地震監(jiān)測發(fā)現存在微斷層時,且壓裂破裂主要沿斷層方位展布,而沒有向其他區(qū)域拓展時,需要果斷加入暫堵劑,迫使人工壓裂裂縫轉向,壓開未破裂區(qū)域。圖4-a是暫堵劑投放前微地震事件點俯視圖,水平井軌跡的兩旁微地震事件分布不均勻,西南方向微地震事件點主要垂直井軌跡展布,但微地震事件點數和地層破裂寬度沒有水平井軌跡上方(北東方向)多和寬;水平井軌跡上方(北東方向)微地震事件點密集,說明地層破裂點多,形成了復雜的縫網,但隨著壓裂時間的推移,突然在黑色粗箭頭處,實時定位出一條呈南北向展布的線狀微地震事件密集點,且微地震事件震級比前期微地震事件震級大8倍(微地震事件點的大小代表震級大?。?,其后微地震事件點一致沿南北向展布,其他區(qū)域沒有產生新的微地震事件點,說明南北向微地震事件密集點處為一南北向展布的微斷層。壓裂工程師觀測到該現象時,果斷加入暫堵劑,剛開始,微斷層發(fā)育處仍然有微地震事件點(圖4-b黑色粗箭頭處),隨著暫堵劑進入地層,與微斷層溝通的虛線圓圈B處暫堵效果明顯,人工壓裂裂縫開始轉向,在水平井軌跡下方以前裂縫未打開區(qū)域即實線圓圈處,出現微地震事件點。表明暫堵劑投放后,減少了微斷層對壓裂的影響,裂縫轉向效果明顯,擴大并新造了一片復雜裂縫網絡。
多井拉鏈式水力壓裂作業(yè)完成后,結合微地震監(jiān)測結果,對壓裂有效改造體積進行了計算。A、B井組采用微地震地面和井中聯合監(jiān)測方法,實時優(yōu)化壓裂參數,其有效儲層改造體積分別達到1.8×108m3、2.5×108m3,遠遠超過未實時優(yōu)化壓裂參數C井組的有效儲層改造體積(0.8×108m3)。A、B井組日產平均測產量分別為8.2×104m3、15.3×104m3,C井組日產平均測產量僅為3.8×104m3。不難看出,實時監(jiān)測效果得到后期測試產量的驗證。
筆者利用放射狀排列微地震地面監(jiān)測和微地震井中聯合監(jiān)測技術,可以對頁巖氣長水平井多井拉鏈式水力壓裂裂縫進行實時成像,提高定位精度,現場指導壓裂參數的實時優(yōu)化,提升了儲層改造效果,得到后期測試產量的驗證。因此頁巖氣微地震壓裂實時監(jiān)測是頁巖氣壓裂工程師的眼睛,也是壓裂改造成功與否的關鍵手段。為了提高壓裂改造效果,筆者建議對所有頁巖氣井的壓裂改造均應進行微地震實時監(jiān)測。另外,這僅僅總結了有效壓裂改造體積與測試產量的對比關系,未對后期生產產量進行分析,下一步還需要研究分析實際生產井的產量大小與微地震監(jiān)測結果的關系。
[1] 劉振武, 撒利明, 楊曉, 李向陽. 頁巖氣勘探開發(fā)對地球物理技術的需求[J]. 石油地球物理勘探, 2011, 46(5): 810-818. Liu Zhenwu, Sa Liming, Yang Xiao, Li Xiangyang. Needs of geophysical technologies for shale gas exploration[J]. Oil Geophysical Prospecting, 2011, 46(5): 810-818.
[2] 李志榮, 鄧小江, 楊曉, 巫芙蓉, 劉定錦, 張紅, 等. 四川盆地南部頁巖氣地震勘探新進展[J]. 天然氣工業(yè), 2011, 31(4): 40-43. Li Zhirong, Deng Xiaojiang, Yang Xiao, Wu Furong, Liu Dingjin, Zhang Hong, et al. New progress in seismic exploration of shale gas reservoirs in the southern Sichuan Basin[J]. Natural Gas Industry, 2011, 31(4): 40-43.
[3] 伍夢婕, 鐘廣法, 李亞林, 楊曉. 四川盆地龍馬溪組頁巖氣儲層地震—測井層序分析[J]. 天然氣工業(yè), 2013, 33(5): 51-55. Wu Mengjie, Zhong Guangfa, Li Yalin, Yang Xiao. Seismic-logging sequence analysis of Longmaxi shale gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2013, 33(5): 51-55.
[4] 錢斌, 張俊成, 朱炬輝, 方澤本, 寇雙峰, 陳銳. 四川盆地長寧地區(qū)頁巖氣水平井組“拉鏈式”壓裂實踐[J]. 天然氣工業(yè), 2015, 35(1): 81-84. Qian Bin, Zhang Juncheng, Zhu Juhui, Fang Zeben, Kou Shuangfeng, Chen Rui. Application of zipper fracturing of horizontal cluster wells in the Changning shale gas pilot zone, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 81-84.
[5] 錢斌, 朱炬輝, 李建忠, 李國慶, 向蘭英. 連續(xù)油管噴砂射孔套管分段壓裂新技術的現場應用[J]. 天然氣工業(yè), 2011, 31(5): 67-69. Qian Bin, Zhu Juhui, Li Jianzhong, Li Guoqing, Xiang Lanying. Field application of abrasive jet multi-Stage fracturing with coiled tubing annular frac BHA[J]. Natural Gas Industry, 2011, 31(5): 67-69.
[6] 任勇, 錢斌, 張劍, 卓智川, 喬琳. 長寧地區(qū)龍馬溪組頁巖氣工廠化壓裂實踐與認識[J]. 石油鉆采工藝, 2015, 37(4): 96-99. Ren Yong, Qian Bin, Zhang Jian, Zhuo Zhichuan, Qiao Lin. Practice and understanding of industrial fracturing for shale gas of Longmaxi Formation in Changning region[J]. Oil Drilling & Production Technology, 2015, 37(4): 96-99.
[7] 邱健, 段樹法. 微地震監(jiān)測技術在陽201-H2井壓裂中的應用[J]. 天然氣勘探與開發(fā), 2013, 36(4): 49-53. Qiu Jian, Duan Shufa. Application of microseismic monitoringtechnology to Yang 201-H2 well fracturing[J]. Natural Gas Exploration & Development, 2013, 36(4): 49-53.
[8] 劉振武, 撒利明, 巫芙蓉, 董世泰, 李彥鵬. 中國石油集團非常規(guī)油氣微地震監(jiān)測技術現狀及發(fā)展方向[J]. 石油地球物理勘探, 2013, 48(5): 843-853. Liu Zhenwu, Sa Liming, Wu Furong, Dong Shitai, Li Yanpeng. Microseismic monitor technology status for unconventional resource E&P and its future development in CNPC[J]. Oil Geophysical Prospecting, 2013, 48(5): 843-853.
[9] 趙博雄, 王忠仁, 劉瑞, 雷立群. 國內外微地震監(jiān)測技術綜述[J].地球物理學進展, 2014, 29(4): 1882-1888. Zhao Boxiong, Wang Zhongren, Liu Rui, Lei Liqun. Review of Microseismic monitoring technology research[J]. Progress in Geophysics, 2014, 29(4): 1882-1888.
[10] 孫可明, 張樹翠, 辛利偉. 頁巖氣儲層層理方向對水力壓裂裂紋擴展的影響[J]. 天然氣工業(yè), 2016, 36(2): 45-51. Sun Keming, Zhang Shucui, Xin Liwei. Impacts of bedding directions of shale gas reservoirs on hydraulically induced crack propagation[J]. Natural Gas Industry, 2016, 36(2): 45-51.
[11] 卞曉冰, 蔣廷學, 賈長貴, 王海濤, 李雙明, 蘇瑗, 等. 基于施工曲線的頁巖氣井壓后評估新方法[J]. 天然氣工業(yè), 2016, 36(2): 60-65. Bian Xiaobing, Jiang Tingxue, Jia Changgui, Wang Haitao, Li Shuangming, Su Yuan, et al. A new post-fracturing evaluation method for shale gas wells based on fracturing curves[J]. Natural Gas Industry, 2016, 36(2): 60-65.
[12] 王萬迅, 葉連池, 王立治, 段正中. 裸孔長水平井蘇75-70-6H連續(xù)壓裂微地震監(jiān)測[J]. 中國工程科學, 2012, 14(4): 4-7. Wang Wanxun, Ye Lianchi, Wang Lizhi, Duan Zhengzhong. Microseismic fracturing mapping and fracturing of open-hole long horizontal Well Su 75-70-6H[J]. Engineering Science, 2012, 14(4): 4-7.
[13] 尹陳, 劉鴻, 李亞林, 巫芙蓉, 何光明, 陳春華. 微地震監(jiān)測定位精度分析[J]. 地球物理學進展, 2013, 28(2): 800-807. Yin Chen, Liu Hong, Li Yalin, Wu Furong, He Guangming, Chen Chunhua. The precision analysis of the microseismic location[J]. Progress in Geophysics, 2013, 28(2): 800-807.
[14] 尹陳, 巫芙蓉, 李亞林, 劉鴻, 陳波, 康亮, 等. 射孔校正速度對微地震定位精度的影響[J]. 地球物理學進展, 2013, 28(4): 1809-1816. Yin Chen, Wu Furong, Li Yalin, Liu Hong, Chen Bo, Kang Liang, et al. The effect of the velocity calibrated by the perforation on microsesmic location error[J]. Progress in Geophysics, 2013, 28(4): 1809-1816.
[15] Yin Chen, Liu Hong, Wu Furong, Li Yalin, Kang Liang, Chen Bo, et al. The effect of the calibrated velocity on the microseismic event location precision[C]//83thSEG Technical Program Expanded Abstracts 2013, 22-27 September 2013, Houston, Texas, USA.
[16] Yin C, Wu FR, Li YL, Liu H, He GM, Chen CH. The application of the microseismic monitoring in natural fracture detection[C]//76thEAGE Conference and Exhibition, 16-19 June 2014, Amsterdam, The Netherlands.
[17] 胡永泉, 尹成, 潘樹林, 巫芙蓉, 李亞林, 劉玉海. 改進的時變斜度峰度法微地震信號識別技術[J]. 石油物探, 2012, 51(6): 625-632. Hu Yongquan, Yin Cheng, Pan Shulin, Wu Furong, Li Yalin, Liu Yuhai. A microseismic signal recognition technique based on improved time-varying Skewness and Kurtosis Method[J]. Geophysical Prospecting for Petroleum, 2012, 51(6): 625-632.
[18] 胡永泉, 尹成, 潘樹林, 巫芙蓉, 李亞林, 劉玉海. 基于單道奇異值分解的微地震資料去噪方法[J]. 石油天然氣學報, 2013, 35(4): 64-69. Hu Yongquan, Yin Cheng, Pan Shulin, Wu Furong, Li Yalin, Liu Yuhai. Denoising method for microseismic data based on single-channel SVD[J]. Journal of Oil and Gas Technology, 2013, 35(4): 64-69.
[19] 尹陳, 賀振華, 李亞林, 巫芙蓉, 曹立斌, 劉鴻, 等. 基于微震特性的相對震級技術研究及應用[J]. 地球物理學報, 2015, 58(6): 2210-2220. Yin Chen, He Zhenhua, Li Yalin, Wu Furong, Cao Libin, Liu Hong, et al. Research and application of the relative magnitude technique based on microseism[J]. Chinese Journal of Geophysics, 2015, 58(6): 2210-2220.
[20] Li Gaoming, Chen Jingyi, Han Mei, Gajraj A, Xing Yang, Wu Furong, et al. Accurate microseismic event location inversion using a gradient-based method[C]//paper 159187-MS presented at the SPE Annual Technical Conference and Exhibition, 8-10 October 2012, San Antonio, Texas, USA.
[21] 呂世超, 郭曉中, 賈立坤. 水力壓裂井中微地震監(jiān)測資料處理與解釋[J]. 油氣藏評價與開發(fā), 2013, 3(6): 37-42. Lü Shichao, Guo Xiaozhong, Jia Likun. Microseismic monitoring data processing and interpretation of horizontal fracturing wells[J]. Reservoir Evaluation and Development, 2013, 3(6): 37-42.
[22] 張軍. 一種求解壓裂施工前置液量的方法[J]. 油氣井測試, 2002, 11(3): 9-11. Zhang Jun. A method of evaluating the quantity of ahead fluid in one hydraulic fracture treatment[J]. Well Testing, 2002, 11(3): 9-11.
[23] 姚海晶. 壓裂施工中前置液用量計算方法研究[J]. 大慶石油地質與開發(fā), 2007, 26(6): 107-109. Yao Haijing. Ahead fluid volume calculation during fracturing[J]. Petroleum Geology & Oilfield Development in Daqing, 2007, 26(6): 107-109.
[24] 李勇明, 陳曦宇, 趙金洲, 申峰, 喬紅軍. 水平井分段多簇壓裂縫間干擾研究[J]. 西南石油大學學報: 自然科學版, 2016, 38(1): 76-83. Li Yongming, Chen Xiyu, Zhao Jinzhou, Shen Feng, Qiao Hongjun. The effects of crack interaction in multi-stage horizontal fracturing[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2016, 38(1): 76-83.
Real-time microseismic monitoring technology for hydraulic fracturing in shale gas reservoirs: A case study from the Southern Sichuan Basin
Wu Furong1, Yan Yuanyuan2, Yin Chen1
(1. Geophysical Exploration Company, CNPC Chuanqing Drilling Engineering Co., Ltd., Chengdu, Sichuan 610213, China; 2. School of Science, China University of Geosciences
Zipper hydraulic fracturing in multiple wells with long horizontal sections is a primary solution means to increase the shale gas production rate and efficiency and to reduce the cost in Southern Sichuan Basin. Microseismic based fracturing monitoring can be used for real-time imaging of hydraulic fractures, so it has been widely used to evaluate the fracturing effect of shale gas reservoirs and to direct the optimization and adjustment of fracturing parameters. In China, however, the microseismic fracturing monitoring on fracturing of shale gas reservoirs cannot be used to evaluate the fracturing results until the fracturing operation in the pad wells is completed according to the parameters which are designed prior to the fracturing monitoring. Its evaluation results can merely provide a guidance for the fracturing parameters of the next pad wells instead of the wells in operation. As a result, the real-time effect of microseismic fracturing monitoring is out of work. In view of this, the fractures induced by zipper hydraulic fracturing in multiple shale gas wells with long horizontal sections in Southern Sichuan area, Sichuan Basin, was real-time imaged by using the combined technology of radially arranged microseismic surface monitoring and microseismic well monitoring on the basis of real-time positioning method. The fracturing results were assessed and used in real time for the optimization of prepad fluid parameter, perforation and temporary plugging additive releasing time, so as to effectively avoid repeated fracturing and uneven fracturing effects and improve fracturing stimulation effects. This method is applied in two well groups. It is shown that the average shale gas production rate is increased by 2–5 times. Furthermore, microseismic fracturing real-time monitoring plays a vital role in real-time evaluation of fracturing effect and real-time optimization of fracturing parameters, so it can be used as the reference and should be popularized further.
Shale gas; Microseismic; Real-time monitoring; Horizontal well; Zipper fracturing; Well monitoring; Surface monitoring; Production increase; Southern Sichuan Basin
10.3787/j.issn.1000-0976.2016.11.006
2016-07-16 編 輯 韓曉渝)
巫芙蓉等.頁巖氣微地震壓裂實時監(jiān)測技術——以四川盆地蜀南地區(qū)為例. 天然氣工業(yè),2016, 36(11): 46-50.
NATUR. GAS IND. VOLUME 36, ISSUE 11, pp.46-50, 11/25/2016. (ISSN 1000-0976; In Chinese)
國家科技重大專項課題“水力壓裂實時監(jiān)測與地質工程一體化評估技術”(編號:2016ZX05023004)。
巫芙蓉,女,1971年生,高級工程師,碩士;主要從事地球物理勘探方法與應用研究工作。地址:(610213)四川省天府新區(qū)華陽大道一段216號。電話:(028)85608216。ORCID: 0000-0002-0532-6830。E-mail: 276053858@qq.com