• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    由4-甲基-1,2,3-噻二唑-5-甲酸構(gòu)筑的銅配合物的合成、晶體結(jié)構(gòu)及與DNA作用

    2016-12-06 09:05:20胡未極武大令沈金杯趙國良浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院金華3004浙江師范大學(xué)行知學(xué)院金華3004
    關(guān)鍵詞:噻二唑浙江師范大學(xué)晶體結(jié)構(gòu)

    胡未極 武大令 沈金杯趙國良*,,(浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華3004)(浙江師范大學(xué)行知學(xué)院,金華3004)

    由4-甲基-1,2,3-噻二唑-5-甲酸構(gòu)筑的銅配合物的合成、晶體結(jié)構(gòu)及與DNA作用

    胡未極1武大令1沈金杯1趙國良*,1,2
    (1浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華321004)
    (2浙江師范大學(xué)行知學(xué)院,金華321004)

    由4-甲基-1,2,3-噻二唑-5-甲酸(HMTC,C4H4N2O2S)和菲咯啉(Phen)合成了2個(gè)銅配合物[Cu(MTC)2(H2O)2]n(1),[Cu2(MTC)2(Phen)2(H2O)4](MTC)2(2)。用元素分析、紅外光譜、熱重分析、粉末X射線衍射進(jìn)行表征,用單晶X射線衍射方法測(cè)定了配合物的晶體結(jié)構(gòu)。結(jié)果表明,配合物1是一維鏈狀結(jié)構(gòu),屬于單斜晶系,P21/c空間群,中心金屬銅(Ⅱ)離子的配位構(gòu)型是一個(gè)畸變的四方錐結(jié)構(gòu)。配合物2屬于三斜晶系,P1空間群,是一個(gè)雙核結(jié)構(gòu),由2個(gè)配位水分子上的氧橋連2個(gè)銅(Ⅱ)離子形成六配位的扭曲八面體結(jié)構(gòu)。用溴化乙錠熒光探針測(cè)定了配體和配合物與DNA的相互作用,結(jié)果顯示無論是配體還是配合物均能使EB-DNA復(fù)合體系的熒光發(fā)生不同程度的猝滅,且配合物的作用強(qiáng)度大于配體,具有剛性平面輔助配體的配合物2的作用強(qiáng)度又大于不加輔助配體的配合物1。

    銅配合物;4-甲基-1,2,3-噻二唑-5-甲酸;晶體結(jié)構(gòu);DNA作用

    In recent years,the rational design and synthesis of functional complexes construction based on organic ligands have attracted considerable attention because of the novel topological structures[1]and potential application in gas adsorption[2],separation[3],catalysis[4], magnetism[5],luminescence[6]and bioactivity[7].

    Copper is an indispensable micronutrients to human,which is closely related to human health and plays an important role in metabolism,synthesizing DNAandsoon[8-9].Inthe previous reports,the interaction between polypyridine transition metal complexes and DNA has drawn extensive attention[10-11].Numerous studies concluded that polypyridine copper complexes possessed plentiful potential bioactivity due to the intercalation of the complexes into DNA,such as the work done by Sigman[12],Thomas[13]and Reddy[14].

    Thiadiazol derivatives are widely used in the area ofpesticidesandpharmaceuticsowingtotheir extensivebiologicalactivityincludingantifungal, antibacterial,antitubercular,antimycobacterial,anticancer,diuretic,and hypoglycemic properties[15-17].So it is significant to carry out the research concerning mechanisms and bonding abilities between copper thiadiazol carboxylate polypyridine complexes and DNA,which can help us to design and synthesize DNA secondary structure probes,nucleic acid location reagents and anti-cancer drugs.

    Amongthiadiazolcompounds,biological activities of 1,3,4-thiadiazol compounds and 1,2,3-thiadiazol compounds have been reported for many times,while reports about boiogical activity based on 1,2,3-hiadiazol derivatives haven′t been seen before. Inthispaper,wereportthesynthesisand characterizations of two new copper(Ⅱ)complexes constructed by 4-methyl-1,2,3-thiadiazol-5-carboxylic acidandphenanthroline.Theinteractionsof complexes and ligand with DNA were also studied by EtBr fluorescence probe.

    1 Experimental

    1.1Materials and measurements

    Allreagentsandsolventsusedwereof commercially available quality and without purified before using.FTIR spectra were recorded on a Nicolet NEXUS 670 FTIR spectrophotometer using KBr discs in the range of 4 000~400 cm-1.Elemental analyses of C,H,N were performed on elemental analyzer,Elementar Vario ELⅢ.Crystallographic data were collected on a Bruker Smart ApexⅡCCD diffracto-meter.A Mettler Toledo thermal analyzer TGA/SDTA 851ewas used to carry out the thermoanalytical analysis with a heating rate of 10℃·min-1from 30 to 600℃in air atmosphere.Powder X-ray diffraction(PXRD)data were collected on a PW 3040/60 Focus X-Ray diffractometer using Cu Kα radiation(λ=0.154 06 nm, 10°·min-1,1°~30°).Fluorescence spectra were measured at room temperature with an Edinburgh FL-FS 920 TCSPC system.

    1.2Synthesis of[Cu(MTC)2(H2O)2]n(1)

    A mixture of HMTC(0.288 g,2.0 mmol),CuCl2·2H2O(0.170 g,1.0 mmol),NaOH(0.040 g,1.0 mmol) and H2O(15 mL)was put into a 50 mL vessel and stirred for 8h at room temperature.The resulted solution was allowed to evaporation at room temperature for two weeks.Green crystals suitable for singlecrystal analysisandphysicalmeasurementswere obtained,washed with distilled water,and dried in air.Yield:58%(based on HMTC).Anal.Calcd.for C8H10N4O6S2Cu(%):C,24.88;H,2.59;N,14.51.Found (%):C,24.79;H,2.42;N,14.42.IR(KBr,cm-1):3 300, 1 631,1 500,1 448,1 390,1 370,1 284,1 218,1 031, 784,733,597,534.

    1.3Synthesisof[Cu2(MTC)2(Phen)2(H2O)4](MTC)2(2)

    A mixture of HMTC(0.144 g,1 mmol),CuCl2·2H2O(0.085 g,0.5 mmol),NaOH(0.040 g,1.0 mmol), Phen(0.100 g,0.5 mmol)and EtOH(5 mL)/H2O(5 mL)was put into a 50 mL vessel and stirred for 8 h at room temperature.The resulted solution was allowed to evaporation at room temperature for two weeks. Green crystals suitable for single-crystal analysis and physical measurements were obtained,washed with distilled water,and dried in air.Yield:50%(based on HMTC).Anal.Calcd.for C40H36N12O12S4Cu2(%):C,42.40; H,3.18;N,14.84.Found(%):C,42.21;H,3.07;N, 14.72.IR(KBr,cm-1):3 521,3 061,1 589,1 512,1 440,1 212,1 149,1 110,1 024,874,785,738,590.

    1.4X-ray diffraction analysis

    The single crystals of the two complexes with approximate dimensions(0.360 mm×0.150 mm×0.100 mm,1;0.266 mm×0.238 mm×0.069 mm,2)were selected and mounted on a Bruker Smart ApexⅡCCD diffractometer.The diffraction data were collected using a graphite monochromated Mo Kα radiation(λ= 0.071 073 nm)at 296(2)K.The employed single crystals exhibit no detectable decay during the data collection.Absorption corrections were applied using SADABS[18].The structure was solved by direct methods with the SHELXS-97[19]program package and refined with the full-matrix least-squares technique based on F2using the SHELXTL-97[20]program package. Hydrogen atoms on water molecules were located in a difference Fourier map and included in the subsequent refinement using restrains(OH)0.085 nm,HH 0.13 nm)with Uiso(H)=1.5 Ueq(O).Other hydrogen atoms were added theoretically.Detail information about the crystal data is summarized in Table 1.Selected interatomic distances and bond angles are given in Table 2~3.All hydrogen bonds are given in Table 4.

    CCDC:825716,1;1435439,2.

    Table 1Crystallographic data for the complexes 1 and 2

    Table 2Selected bond distances(nm)and angles(°)of the complex 1

    Continued Table 1

    Table 3Selected bond distances(nm)and angles(°)of the complex 2

    Table 4Hydrogen bond distances(nm)and bond angles(°)of the complexes 1 and 2

    1.5EB-DNA binding study by fluorescence spectrum

    TheinteractionsoftheHMTCligandand complexes with calf thymus DNA(CT-DNA)were studied by ethidium bromide(EB)fluorescent probe. The experiment was carried out by adding different volumes of compound solution(10-4mol·L-1for HMTC ligand or complexes)to a 10 mL colorimetric cylinder prepared 2 h in advance,which contained 1.0 mL 200 μg·mL-1EB,1.0 mL 200 μg·mL-1CT-DNA,and 2.0 mL tris-HCl buffer solution(pH=7.4),then the mixed solution were diluted with double-distilled water.The final solutions were incubated for 12 h at 4℃.The fluorescence was recorded at an excitation wavelength of 251 nm and emission wavelength between 520 nm and 700 nm.

    2 Results and discussion

    2.1Crystal structure analysis of the complexes

    2.1.1Structure analysis of complex 1

    Single-crystalX-rayanalysisshowsthatthe complex 1 crystallizes in the monoclinic system with space group P21/c and Z=4.Each asymmetric unit consists of one Cu2+,two MTC ligands,two coordinated water.The Cu(Ⅱ)ion is five-coordinated with four O atoms from two coordinated water(O1W,O2W)and two ligands(O1,O3i)and one N atom from the ligand (N4)(Fig.1).The O2W,O1,O3iand N4 are locted in thebasalplane,whereastheO1Wfromthe coordinated water occupied the axial position,forming a distorted pentahedron coordinated geometry.The distance of Cu-O is 0.194 6 nm to 0.223 7 nm,andCu-N is 0.204 3 nm,according with the distance of Cu-O and Cu-N in the literature[21-22].

    Fig.1(a)Ellipsoidal structural view of 1 with probability level of 30%;(b)View of the coordination environment of Cu(Ⅱ)ion for 1

    This dual-nuclei is bridged by one ligand forming a 1D chain along the a axis.There are obviously face to face π-π stacking interactions in 1(Fig.2),with the center to center distance of 0.378 3 nm and 0.351 0 nm between the aromatic rings and the adjacent unit.

    Fig.2π-π packing interactions in complex 1

    Intermolecular hydrogen bonding interactions are observed in 1(Fig.3).Both of hydrogen bonding interactions and the π-π stacking interactions made the molecules further connect into a 3D supramolecular network(Fig.4).

    2.1.2Structure analysis of complex 2

    Fig.3Hydrogen bonding interactions of complex 1

    Fig.4Three-dimensional supramolecular network of complex 1

    Fig.5(a)Ellipsoidal structural view of 2 with probability level of 30%;(b)View of the environment of Cu(Ⅱ)ion for 2

    Single-crystalX-rayanalysisshowsthatthe complex 2 crystallizes in the triclinic system with space group P1 and Z=1.Complex 2 displays a binuclear structure(Fig.5),which is bridged by two oxygen atoms from two coordinated water.Each asymmetric unit consists of two Cu2+ions,two MTC ligands,two Phen ligands,four coordinated water and two free MTC anions.Each Cu2+ion adopts six-coordinated mode with a distorted octahedral geometry,by two N atoms(N5,N6)from one Phen and four oxygen atoms (one from the MTC ligand O1,the another three from three coordinated water O1W,O2W,O1Wi).The O1, O1Wi,O2W,N5 are locted in the equatorial plane, and the O1W and N6 occupy the axial positions.The distance of Cu-O is 0.196 9 nm to 0.277 5 nm and Cu-N is 0.200 7 nm to 0.202 1 nm,according with the distance of Cu-O and Cu-N in the literature[23-24].

    Fig.6Hydrogen bonding interactions of complex 2

    As shown in Fig.6,in the complex2,the coordinated water molecules(O1W and O2W)act as hydrogen donors,contributing hydrogen atoms(H1WA, H1WB and H2WA and H2WB)to O4i,O3ii,O2iiiand O2 forming the hydrogen bonds.The structure is extended into a 2D network through the intermolecular hydrogen bonding interactions(H1WA…O2 0.184 nm, H1WB…O4i0.170 nm,H2WA…O3ii0.187 nm, H2WB…O2iii0.202 nm).

    We have analyzed the PXRD pattern and the simulated powder patterns form the single crystal data of 1 and 2 to examine the phase purity of the complexes.As shown in Fig.7,it is indicated that the complexes 1 and 2 have highly crystalline purity.

    2.3IR spectrum

    In the IR spectrum of complex 1,there are two strong peaks near 3 300 cm-1(ν(O-H))and 597 cm-1(δ(O-H)),which corresponds to presence of coordinated water molecules.The peak at 1 500 cm-1may be assigned to the asymmetric COO-stretching vibration, the peak at about 1 390 cm-1are associated with the symmetric COO-stretching vibrations,in stead of the features at 1 733 cm-1associated with the COO-stretching vibrations of the ligand.It is indicated that the coordination of the carboxylate oxygen atoms with the Cu2+ions[25].For complex 2,the peaks at 3 521cm-1and 570 cm-1show the presence of coordinated water molecules,two absorption peaks at 1 512 cm-1(ν(OCO)asym)and 1 440 cm-1(ν(OCO)sym)indicate the coordination of the carboxylate oxygen atoms with the Cu2+ions.Two bands occurring at 1 592 cm-1(ν(C= N)),861 cm-1(δ(C-H))show the coordination of nitrogen atoms from Phen[26].These results are consistent with the X-ray diffraction structural analysis.

    Fig.7 Experimental and simulated PXRD patterns for complexes 1 and 2

    2.4Thermo-gravimetric analysis

    As depicted in Fig.8,for 1,the first weight loss of 10.02%up to 194℃can be assigned to the loss of the two water molecules(Calcd.9.33%).The second weight loss of 74.46%up to 550℃can be assigned to the loss of the two ligands(Calcd.74.22%),then, the residue weight of 15.52%corresponds to CuO (Calcd.16.45%).For 2,the first weight loss of 6.56% up to 103℃can be assigned to the loss of the four water molecules(Calcd.6.36%).The second weight loss of 82.38%up to 450℃can be assigned to the loss of the two Phen molecules and the four ligands (Calcd.82.66%),then,the residue weight of 11.26% corresponds to CuO(Calcd.10.98%).

    2.5EB-DNA binding study

    1.當(dāng)前在小學(xué)生英語的教學(xué)領(lǐng)域,有一大部分教師沿用傳統(tǒng)英語教學(xué)方法,不僅在方法上被時(shí)代所淘汰,在教學(xué)理念上也非常陳舊和落后,很多農(nóng)村的教師在新式的教學(xué)方法方面幾乎沒有涉及過信息化教學(xué)模式,在他們的教學(xué)過程中根本無法有效地在課堂上吸引學(xué)生的注意力。在這種情況下,學(xué)生學(xué)習(xí)積極性很難被充分調(diào)動(dòng)。

    Fig.9 shows the emission spectra of EB bounded to DNA with HMTC ligand,complexes.As concentrations of the compounds increasing,the emission intensity at 592 nm of EB-DNA system decreased in different degrees.According to the classical Stern-Volmer equation[27]:I0/I=1+Ksqr,where I0and I represented the fluorescence intensities in the absence or presence of the compounds,respectively.r is the concentration ratio of the compounds to DNA.Ksqis a linear Stern-Volmer quenching constant.The Ksqvalue is obtained as the slope of I0/I versus r linear plot.

    Fig.8TG curves of complexes 1 and 2

    Fig.9Emission spectra of EB-DNA system in the absence and presence of HMTC ligand,1 and 2

    From the inset in Fig.9,the Ksqvalue are 0.240, 0.525 and 1.855 for the HMTC ligand and complexes 1 and 2.It is indicated that the interaction of the ligand itself and complexes with DNA could release some free EB from EB-DNA,because of the present of thiadiazol rings.For complex 2,it has the strongest interaction with the DNA(related to HMTC ligand and complex 1)because of releasing more free EB form EB-DNA by the big Phen planar molecules.

    3 Conclusions

    Two copper(Ⅱ)complexes[Cu(MTC)2(H2O)2]n(1) and[Cu2(MTC)2(Phen)2(H2O)4](MTC)2(2)based on the thiadiazol derivative HMTC have been successfully synthesized.The complex 1 exhibits extended 3D frameworkbyintermolecularhydrogenbonding interactions and π-π packing interactions,and the complex 2 displays 2D frameworks by intermolecular hydrogen bonding interactions.The complex 2 has stronger interaction with the DNA than complex 1, might be resulted from releasing more free EB form EB-DNA by the big Phen planar molecules.

    References:

    [1]Yaghi O M,O′Keeffe M,Ockwig N W,et al.Nature,2003, 423(6941):705-714

    [2]Ocking N W,Friedrichs D,O′Keeffe M,et al.J.Am.Chem. Soc.,2007,129(7):1858-1859

    [3]Gurdal Y,Keskin S.Ind.Eng.Chem.Res.,2012,51(21): 7373-7382

    [4]Shultz A M,Farha O K,Hupp J T,et al.J.Am.Chem.Soc., 2009,131(12):4204-4205

    [5]Guo Y N,Xu G F,Gamez P,et al.J.Am.Chem.Soc.,2010, 132(25):8538-8539

    [6]Binnemans K.Chem.Rev.,2009,109(9):4283-4374

    [7]DanielKG,GuptaP,HarbachRH,etal.Biochem.Pharmacol., 2004,67(6):1139-1151

    [8]Zhou H,Zheng C,Zou G J,et al.Int.J.Biochem.Cell Biol., 2002,34:678-684

    [9]Cai X,Pan N,Zou G.Biometals,2007,20(1):1-11

    [10]Peng B,Chao H,Sun B,et al.J.Inorg.Biochem.,2007,101 (3):404-411

    [11]Jiang Q,Xiao N,Shi P F,et al.Coord.Chem.Rev.,2007, 251(15/16):1951-1972

    [12]Sigman D S.Acc.Chem.Res.,1986,19(6):180-186

    [13]Thomas A M,Nethaji M,Chakravarty A R.J.Inorg.Biochem., 2004,98(6):1087-1094

    [14]Reddy P A N,Santra B K,Nethaji M,et al.J.Inorg.Biochem., 2004,98(2):377-386

    [15]Mathew,Keshavayya J,Vaidya V P,et al.Eur.J.Med. Chem.,2007,42(6):823-840

    [16]Amir M,Kumar H,Javed S A.Bioorg.Med.Chem.Lett., 2007,17(16):4504-4508

    [17]Karegoudar P,Prasad D J,Ashok M,et al.Eur.J.Med. Chem.,2008,43(4):808-815

    [18]Sheldrick G M.SADABS,Program for Empirical Absorption Correction of Area Detector Data,University of G?ttingen, Germany,1997.

    [19]Sheldrick G M.SHELXS 97,Program for Crystal Structure Solution,University of G?ttingen,Germany,1997.

    [20]Sheldrick G M.SHELXL 97,Program for Crystal Structure Refinement,University of G?ttingen,Germany,1997.

    [21]WANG Ji-Xiao(王繼虓),WANG Che(王澈),GAO Xue(高雪),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2015,31 (5):923-929

    [22]HU Chun-Yan(胡春燕),XIAO Wei(肖偉),TAO Bai-Long(陶白龍),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2014, 30(2):257-263

    [23]Xu T G,Xu D J.J.Coord.Chem.,2005,58(5):437-442

    [24]JIN Chao(金超),WANG Yin-Ge(王銀歌),QIAN Hui-Fen(錢惠芬),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2015, 31(2):413-419

    [25]Gao H L,Yi L,Zhao B,et al.Inorg.Chem.,2006,45(15): 5980-5988

    [26]Singh U P,Tyagi S,Sharma C L,et al.Dalton Trans.,2002 (23):4464-4470

    [27]LakowiczJR.WeberG.Biochemisty,1973,12(21):4161-4170

    Syntheses,Crystal Structures and DNA-Binding of Two Copper(Ⅱ)Complexes Constructed by 4-Methyl-1,2,3-thiadiazol-5-carboxylic Acid

    HU Wei-Ji1WU Da-Ling1SHEN Jin-Bei1ZHAO Guo-Liang*,1,2
    (1College of Chemistry and Life Science,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)
    (2Xingzhi College,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    Two copper complexes[Cu(MTC)2(H2O)2]n(1)and[Cu2(MTC)2(Phen)2(H2O)4](MTC)2(2)were synthesized by 4-methyl-1,2,3-thiadiazol-5-carboxylic acid(HMTC,C4H4N2O2S)and 1,10-phenanthroline(Phen),and structurally characterized by elemental analysis,IR spectra,TG,PXRD and single crystal X-ray diffraction method.The single crystal X-ray diffraction reveals that the complex 1 formed a 1D chain coordination ploymer and crystallized in monoclinic with space group P21/c.Central Cu2+was five-coordinated forming a distorted pentahedron coordination geometry.The complex 2 was a binuclear structure,which was bridged by two oxygen atoms from two coordinated water,and crystallized in triclinic with space group P1.Central Cu2+was six-coordinated forming a distorted octahedron coordination geometry.In addition,the interaction of complexes and ligand with DNA were also studied by ethidium bromide fluorescence probe.The interaction of complex 2 with DNA was stronger than complex 1.CCDC:825716,1;1435439,2.

    copper complex;4-methyl-1,2,3-thiadiazol-5-carboxylic acid;crystal structure;DNA-binding

    O614.121

    A

    1001-4861(2016)08-1467-09

    10.11862/CJIC.2016.183

    2016-04-18。收修改稿日期:2016-06-29。

    浙江省公益性技術(shù)應(yīng)用研究計(jì)劃項(xiàng)目(No.2014C32014)。

    *通信聯(lián)系人。E-mail:sky53@zjnu.cn

    猜你喜歡
    噻二唑浙江師范大學(xué)晶體結(jié)構(gòu)
    浙江師范大學(xué)行知學(xué)院手繪作品選登
    1,3,4-噻二唑取代的氮唑類化合物的合成及體外抗真菌活性
    LiBa0.95-yBO3∶0.05Tb3+,yBi3+熒光粉的制備及熒光性質(zhì)
    化學(xué)軟件在晶體結(jié)構(gòu)中的應(yīng)用
    于昕卉作品
    Application of “Process Approach” in Middle School English Writing-Teaching
    1,3,4-噻二唑類衍生物在農(nóng)藥活性方面的研究進(jìn)展
    1,3,4-噻二唑衍生物的合成與應(yīng)用
    鎳(II)配合物{[Ni(phen)2(2,4,6-TMBA)(H2O)]·(NO3)·1.5H2O}的合成、晶體結(jié)構(gòu)及量子化學(xué)研究
    含能配合物Zn4(C4N6O5H2)4(DMSO)4的晶體結(jié)構(gòu)及催化性能
    免费在线观看视频国产中文字幕亚洲| 女生性感内裤真人,穿戴方法视频| 日本与韩国留学比较| 老司机深夜福利视频在线观看| 制服人妻中文乱码| 欧美黄色淫秽网站| 欧美乱妇无乱码| 国产精品 国内视频| 琪琪午夜伦伦电影理论片6080| 亚洲狠狠婷婷综合久久图片| 九九热线精品视视频播放| 午夜a级毛片| 国产高清激情床上av| 日韩欧美精品v在线| ponron亚洲| 亚洲中文字幕日韩| 又黄又粗又硬又大视频| 在线国产一区二区在线| 亚洲 欧美一区二区三区| 色尼玛亚洲综合影院| 桃色一区二区三区在线观看| 欧美日韩福利视频一区二区| 国产亚洲av嫩草精品影院| 欧美成人性av电影在线观看| 观看美女的网站| 国产一区二区三区在线臀色熟女| 十八禁网站免费在线| 香蕉av资源在线| 欧美在线黄色| 伊人久久大香线蕉亚洲五| 国产视频一区二区在线看| 亚洲va日本ⅴa欧美va伊人久久| 熟妇人妻久久中文字幕3abv| 国产激情偷乱视频一区二区| 久久人妻av系列| 熟女少妇亚洲综合色aaa.| 性欧美人与动物交配| 欧美色视频一区免费| a级毛片在线看网站| 最近最新中文字幕大全免费视频| 亚洲性夜色夜夜综合| 90打野战视频偷拍视频| 老汉色av国产亚洲站长工具| 在线免费观看的www视频| 精品乱码久久久久久99久播| 草草在线视频免费看| 日本 av在线| 午夜视频精品福利| 国产爱豆传媒在线观看| 91九色精品人成在线观看| 九色国产91popny在线| 亚洲人与动物交配视频| 俄罗斯特黄特色一大片| 99久久久亚洲精品蜜臀av| 色老头精品视频在线观看| 又黄又爽又免费观看的视频| 久久久久久久久中文| 脱女人内裤的视频| 日本在线视频免费播放| 欧美中文日本在线观看视频| 国产麻豆成人av免费视频| 久久精品91无色码中文字幕| 亚洲七黄色美女视频| 我要搜黄色片| 国产亚洲欧美在线一区二区| 色综合亚洲欧美另类图片| 亚洲片人在线观看| 白带黄色成豆腐渣| 韩国av一区二区三区四区| 成人一区二区视频在线观看| 午夜精品一区二区三区免费看| 国产单亲对白刺激| 国产日本99.免费观看| 日韩有码中文字幕| 在线观看免费午夜福利视频| 1024手机看黄色片| 这个男人来自地球电影免费观看| 亚洲国产精品成人综合色| 91av网站免费观看| 国产午夜精品久久久久久| 深夜精品福利| 国产精品精品国产色婷婷| 欧美在线一区亚洲| 不卡一级毛片| 久久久久国产精品人妻aⅴ院| 黑人操中国人逼视频| 丁香六月欧美| 久久午夜综合久久蜜桃| 国产精品 欧美亚洲| 精品99又大又爽又粗少妇毛片 | 久久久久久大精品| 天堂动漫精品| 亚洲av成人av| 欧美黄色片欧美黄色片| 日韩欧美一区二区三区在线观看| 美女大奶头视频| 亚洲国产精品999在线| 久久久国产欧美日韩av| 久久欧美精品欧美久久欧美| 久久久久久九九精品二区国产| 精品一区二区三区视频在线观看免费| 在线a可以看的网站| 亚洲人成网站在线播放欧美日韩| 婷婷精品国产亚洲av| 国产黄片美女视频| www日本在线高清视频| 久久久久国产精品人妻aⅴ院| 日本熟妇午夜| 亚洲欧美日韩东京热| 老司机深夜福利视频在线观看| 欧美乱色亚洲激情| 亚洲无线观看免费| 亚洲国产日韩欧美精品在线观看 | 亚洲欧洲精品一区二区精品久久久| 丰满人妻熟妇乱又伦精品不卡| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久久久久久久| 国产高清videossex| 欧美一级a爱片免费观看看| 欧美绝顶高潮抽搐喷水| av在线蜜桃| 国产野战对白在线观看| 国产高清激情床上av| 婷婷六月久久综合丁香| 五月玫瑰六月丁香| 免费高清视频大片| 欧美在线一区亚洲| 桃红色精品国产亚洲av| 久9热在线精品视频| 99热6这里只有精品| 久久久久性生活片| 久久久久性生活片| 日本黄色片子视频| 女人被狂操c到高潮| 中文字幕精品亚洲无线码一区| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美日韩高清专用| 亚洲五月天丁香| 19禁男女啪啪无遮挡网站| 欧美黄色片欧美黄色片| 国产欧美日韩精品亚洲av| 亚洲熟妇熟女久久| 波多野结衣高清作品| 一二三四社区在线视频社区8| 亚洲精品美女久久久久99蜜臀| 国产一区二区激情短视频| 成年女人永久免费观看视频| 国产一区二区在线av高清观看| 国产一区二区在线av高清观看| 噜噜噜噜噜久久久久久91| 亚洲性夜色夜夜综合| 我要搜黄色片| 欧美成人性av电影在线观看| 99久久无色码亚洲精品果冻| 午夜免费激情av| 久9热在线精品视频| 无人区码免费观看不卡| 欧美色欧美亚洲另类二区| 很黄的视频免费| 天堂影院成人在线观看| 国产亚洲精品综合一区在线观看| 91九色精品人成在线观看| 成年版毛片免费区| 三级国产精品欧美在线观看 | 我要搜黄色片| 亚洲国产精品成人综合色| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品久久久com| 可以在线观看的亚洲视频| 免费在线观看亚洲国产| 国产成人av激情在线播放| 在线a可以看的网站| 麻豆久久精品国产亚洲av| 18禁观看日本| 色在线成人网| 久久99热这里只有精品18| 亚洲熟妇熟女久久| 欧美性猛交╳xxx乱大交人| 91av网站免费观看| 桃红色精品国产亚洲av| 1024手机看黄色片| 久久精品影院6| 国内精品美女久久久久久| 91字幕亚洲| 欧美又色又爽又黄视频| 亚洲片人在线观看| 亚洲熟妇熟女久久| 叶爱在线成人免费视频播放| 在线观看免费视频日本深夜| 精品福利观看| 亚洲国产高清在线一区二区三| 欧美一区二区精品小视频在线| 精品人妻1区二区| 18禁黄网站禁片免费观看直播| 免费电影在线观看免费观看| 国产精品九九99| 国产高清有码在线观看视频| 麻豆av在线久日| 男人和女人高潮做爰伦理| 久9热在线精品视频| 精品熟女少妇八av免费久了| 亚洲第一欧美日韩一区二区三区| 99国产精品99久久久久| 国产精品野战在线观看| 欧美日本视频| 在线观看66精品国产| 亚洲七黄色美女视频| 久久久精品欧美日韩精品| 中亚洲国语对白在线视频| 性色avwww在线观看| 欧美成狂野欧美在线观看| 国产单亲对白刺激| 亚洲天堂国产精品一区在线| 亚洲最大成人中文| 亚洲真实伦在线观看| 欧美一区二区国产精品久久精品| 别揉我奶头~嗯~啊~动态视频| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av| 丁香欧美五月| 一个人免费在线观看电影 | 三级男女做爰猛烈吃奶摸视频| 香蕉av资源在线| 女同久久另类99精品国产91| 欧美日韩综合久久久久久 | 国产三级在线视频| 中文字幕人妻丝袜一区二区| 精品欧美国产一区二区三| 欧美极品一区二区三区四区| 91老司机精品| 亚洲国产精品合色在线| 黄色 视频免费看| 国产又色又爽无遮挡免费看| 99精品欧美一区二区三区四区| 午夜福利在线观看吧| e午夜精品久久久久久久| 亚洲精品456在线播放app | 亚洲色图av天堂| 精品国产三级普通话版| 久久久久久久精品吃奶| 国产又黄又爽又无遮挡在线| 麻豆久久精品国产亚洲av| 亚洲av日韩精品久久久久久密| 亚洲一区高清亚洲精品| 国产精品1区2区在线观看.| 男女下面进入的视频免费午夜| 亚洲精华国产精华精| 国产综合懂色| 国产精品久久久久久久电影 | 国产av在哪里看| 欧美日韩中文字幕国产精品一区二区三区| 久久久久国内视频| 国产97色在线日韩免费| 久久久久久久久中文| 好男人电影高清在线观看| 90打野战视频偷拍视频| 狂野欧美激情性xxxx| 757午夜福利合集在线观看| 亚洲av成人不卡在线观看播放网| 久久中文看片网| 久久久色成人| svipshipincom国产片| 99国产精品一区二区三区| 亚洲 国产 在线| 欧美黄色片欧美黄色片| 欧美黑人巨大hd| 欧美黄色淫秽网站| 麻豆一二三区av精品| 黑人巨大精品欧美一区二区mp4| avwww免费| 久久天躁狠狠躁夜夜2o2o| www.熟女人妻精品国产| 黄色日韩在线| 久久99热这里只有精品18| 国产成人影院久久av| 亚洲天堂国产精品一区在线| 全区人妻精品视频| 99在线人妻在线中文字幕| 91在线精品国自产拍蜜月 | aaaaa片日本免费| 特级一级黄色大片| 国产一区在线观看成人免费| 成人无遮挡网站| 一级毛片女人18水好多| 日韩精品青青久久久久久| 全区人妻精品视频| 97超视频在线观看视频| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区av网在线观看| av在线蜜桃| 亚洲精品国产精品久久久不卡| 欧美日韩一级在线毛片| 怎么达到女性高潮| 午夜福利在线观看免费完整高清在 | 亚洲国产日韩欧美精品在线观看 | 欧美+亚洲+日韩+国产| 国产一区二区激情短视频| 99热6这里只有精品| 免费看光身美女| 婷婷六月久久综合丁香| 精品久久久久久久末码| 久久伊人香网站| 三级男女做爰猛烈吃奶摸视频| 久久久成人免费电影| 精品熟女少妇八av免费久了| 亚洲av片天天在线观看| 日韩人妻高清精品专区| 日韩欧美免费精品| 国产精品亚洲av一区麻豆| 日韩精品中文字幕看吧| 少妇丰满av| 免费大片18禁| 欧美中文综合在线视频| 国产精品亚洲一级av第二区| 亚洲片人在线观看| 国产精品女同一区二区软件 | 亚洲一区高清亚洲精品| 天堂av国产一区二区熟女人妻| 久久精品91蜜桃| 亚洲激情在线av| 69av精品久久久久久| 精品久久久久久成人av| 精品国内亚洲2022精品成人| 亚洲电影在线观看av| 久久精品aⅴ一区二区三区四区| 99久久无色码亚洲精品果冻| 亚洲男人的天堂狠狠| 一个人看的www免费观看视频| 久久精品aⅴ一区二区三区四区| 天天躁日日操中文字幕| 国产精品永久免费网站| 老汉色∧v一级毛片| 国产一区二区三区在线臀色熟女| 女人被狂操c到高潮| 日本成人三级电影网站| 黄色女人牲交| 国产精品自产拍在线观看55亚洲| 精品99又大又爽又粗少妇毛片 | 日日夜夜操网爽| 黄色 视频免费看| 免费电影在线观看免费观看| 男女视频在线观看网站免费| 老司机午夜福利在线观看视频| 国产激情偷乱视频一区二区| 精品国产超薄肉色丝袜足j| 99久久精品热视频| 久久久久久久精品吃奶| 久久精品国产99精品国产亚洲性色| 看黄色毛片网站| 日韩免费av在线播放| 五月玫瑰六月丁香| 免费观看的影片在线观看| 在线播放国产精品三级| 国产精品国产高清国产av| 97人妻精品一区二区三区麻豆| 久久中文字幕人妻熟女| 很黄的视频免费| 中文字幕高清在线视频| 午夜福利高清视频| 国产成人福利小说| 国产欧美日韩一区二区精品| 久久热在线av| 国产亚洲av高清不卡| 丰满的人妻完整版| 日本 欧美在线| 日本三级黄在线观看| 欧美激情久久久久久爽电影| 女人高潮潮喷娇喘18禁视频| 久久久精品欧美日韩精品| 非洲黑人性xxxx精品又粗又长| 成人精品一区二区免费| 18禁观看日本| 久久久久久国产a免费观看| 可以在线观看的亚洲视频| 日日夜夜操网爽| 国产爱豆传媒在线观看| 九九热线精品视视频播放| 精品无人区乱码1区二区| 亚洲av片天天在线观看| 国产av在哪里看| 亚洲九九香蕉| 国产69精品久久久久777片 | 久久香蕉国产精品| 国产美女午夜福利| 中文字幕av在线有码专区| 人人妻,人人澡人人爽秒播| 国产精品自产拍在线观看55亚洲| aaaaa片日本免费| 亚洲一区二区三区不卡视频| 亚洲欧美日韩无卡精品| 日本免费a在线| 成熟少妇高潮喷水视频| 久久久久国产精品人妻aⅴ院| 99re在线观看精品视频| 99久久无色码亚洲精品果冻| 欧美国产日韩亚洲一区| 一级黄色大片毛片| 精品乱码久久久久久99久播| 香蕉国产在线看| 国产激情欧美一区二区| 18禁观看日本| 99国产综合亚洲精品| 欧美丝袜亚洲另类 | 无限看片的www在线观看| 丰满人妻一区二区三区视频av | 国产不卡一卡二| 99久久无色码亚洲精品果冻| 黄色丝袜av网址大全| 日韩中文字幕欧美一区二区| 99精品欧美一区二区三区四区| 欧美日韩一级在线毛片| 久久久久久久久中文| 午夜福利18| 久久久久久久精品吃奶| av黄色大香蕉| 三级国产精品欧美在线观看 | 亚洲在线自拍视频| 精品电影一区二区在线| 亚洲狠狠婷婷综合久久图片| 日本黄色片子视频| 欧美激情久久久久久爽电影| 欧美午夜高清在线| 精品欧美国产一区二区三| 人人妻人人看人人澡| 精品久久久久久,| 亚洲av第一区精品v没综合| 久久伊人香网站| 国产午夜福利久久久久久| 国产三级黄色录像| e午夜精品久久久久久久| 日韩精品中文字幕看吧| 免费电影在线观看免费观看| 国产真实乱freesex| 中文资源天堂在线| 日韩 欧美 亚洲 中文字幕| 在线观看午夜福利视频| 欧美最黄视频在线播放免费| 欧美又色又爽又黄视频| 岛国在线免费视频观看| 级片在线观看| 久久久久久九九精品二区国产| 听说在线观看完整版免费高清| 久久久久国产一级毛片高清牌| 在线a可以看的网站| 床上黄色一级片| 成人鲁丝片一二三区免费| 人妻丰满熟妇av一区二区三区| 老熟妇乱子伦视频在线观看| 日韩 欧美 亚洲 中文字幕| 观看美女的网站| 美女高潮的动态| 亚洲成av人片在线播放无| 欧美又色又爽又黄视频| 露出奶头的视频| 中文字幕精品亚洲无线码一区| 亚洲成av人片在线播放无| 久久欧美精品欧美久久欧美| 亚洲av电影在线进入| 非洲黑人性xxxx精品又粗又长| 亚洲中文日韩欧美视频| 国产精品影院久久| 淫秽高清视频在线观看| 国产日本99.免费观看| 亚洲av片天天在线观看| 伊人久久大香线蕉亚洲五| 午夜福利免费观看在线| 午夜精品久久久久久毛片777| 两人在一起打扑克的视频| 9191精品国产免费久久| 欧美不卡视频在线免费观看| 无遮挡黄片免费观看| 欧美成人性av电影在线观看| 精品午夜福利视频在线观看一区| 曰老女人黄片| 一进一出好大好爽视频| 亚洲五月婷婷丁香| 成人一区二区视频在线观看| 日韩免费av在线播放| 天天添夜夜摸| 狂野欧美激情性xxxx| 国产黄片美女视频| 99re在线观看精品视频| 丝袜人妻中文字幕| 免费观看精品视频网站| 午夜福利18| 欧美色视频一区免费| 欧美日韩瑟瑟在线播放| 99在线人妻在线中文字幕| 法律面前人人平等表现在哪些方面| 动漫黄色视频在线观看| 国内毛片毛片毛片毛片毛片| 久久国产精品人妻蜜桃| 91av网一区二区| 最新在线观看一区二区三区| 午夜福利高清视频| 别揉我奶头~嗯~啊~动态视频| 欧美一区二区国产精品久久精品| 久久精品国产99精品国产亚洲性色| 亚洲一区二区三区色噜噜| 欧美在线一区亚洲| 在线观看舔阴道视频| 亚洲精品美女久久久久99蜜臀| www.熟女人妻精品国产| 亚洲国产精品sss在线观看| 亚洲人成电影免费在线| 黄色日韩在线| 少妇裸体淫交视频免费看高清| 国产精品电影一区二区三区| 他把我摸到了高潮在线观看| 女人被狂操c到高潮| 老汉色∧v一级毛片| 麻豆av在线久日| 老司机深夜福利视频在线观看| 国产亚洲欧美在线一区二区| 一本精品99久久精品77| av欧美777| xxxwww97欧美| 1000部很黄的大片| 国产成人影院久久av| 成人国产综合亚洲| 国产精品精品国产色婷婷| 亚洲欧美日韩高清在线视频| 色综合欧美亚洲国产小说| 国内少妇人妻偷人精品xxx网站 | 亚洲午夜理论影院| 最近视频中文字幕2019在线8| 精品国产乱子伦一区二区三区| 日本 av在线| 成熟少妇高潮喷水视频| 精品久久久久久成人av| 波多野结衣高清无吗| 后天国语完整版免费观看| 熟女电影av网| 久久精品91无色码中文字幕| 亚洲最大成人中文| 午夜亚洲福利在线播放| 免费在线观看日本一区| 他把我摸到了高潮在线观看| 欧美3d第一页| av中文乱码字幕在线| 亚洲专区国产一区二区| 久久亚洲真实| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久毛片微露脸| 啦啦啦观看免费观看视频高清| 久久精品国产清高在天天线| 精品午夜福利视频在线观看一区| 99国产极品粉嫩在线观看| 午夜视频精品福利| a在线观看视频网站| 国语自产精品视频在线第100页| 少妇裸体淫交视频免费看高清| 波多野结衣巨乳人妻| 日韩三级视频一区二区三区| 国产aⅴ精品一区二区三区波| av欧美777| 婷婷丁香在线五月| 无遮挡黄片免费观看| 亚洲欧美激情综合另类| 18禁观看日本| av女优亚洲男人天堂 | 淫秽高清视频在线观看| 国产精品电影一区二区三区| 五月玫瑰六月丁香| 真实男女啪啪啪动态图| 欧美午夜高清在线| 亚洲精品乱码久久久v下载方式 | 色在线成人网| 色视频www国产| 国产av在哪里看| 精品一区二区三区四区五区乱码| 亚洲成人久久性| 久9热在线精品视频| 色哟哟哟哟哟哟| 亚洲成av人片免费观看| 黑人巨大精品欧美一区二区mp4| 欧美黑人巨大hd| 国产精品1区2区在线观看.| 亚洲国产欧美一区二区综合| 757午夜福利合集在线观看| 亚洲欧美一区二区三区黑人| 亚洲自偷自拍图片 自拍| 久久中文字幕一级| 欧美乱码精品一区二区三区| 国产精品爽爽va在线观看网站| 美女被艹到高潮喷水动态| 亚洲精品粉嫩美女一区| 窝窝影院91人妻| 亚洲中文av在线| 国产1区2区3区精品| 久久久久久久午夜电影| 一区二区三区国产精品乱码| 欧美性猛交黑人性爽| 午夜日韩欧美国产| 嫩草影院精品99| 欧美日韩国产亚洲二区| 制服丝袜大香蕉在线| 亚洲va日本ⅴa欧美va伊人久久| 日本a在线网址| 亚洲最大成人中文| 欧美zozozo另类| 亚洲午夜精品一区,二区,三区| 欧美黑人巨大hd| 黑人巨大精品欧美一区二区mp4| 高清毛片免费观看视频网站| 精品国产超薄肉色丝袜足j| 真人一进一出gif抽搐免费| 久久久久久九九精品二区国产| 女警被强在线播放| av中文乱码字幕在线| 久久精品国产99精品国产亚洲性色| 91av网一区二区| 午夜成年电影在线免费观看| a级毛片在线看网站| 99久久精品一区二区三区|