• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聚多巴胺功能化的四氧化三鈷納米復(fù)合材料的制備及電催化性能

    2016-12-06 09:05:16王海寧潘伯廣孫昭馮濤濤齊譽(yù)洪成林石河子大學(xué)化學(xué)化工學(xué)院新疆兵團(tuán)化工綠色過程重點(diǎn)實(shí)驗(yàn)室省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地石河子832003
    關(guān)鍵詞:辣根電催化過氧化物

    王海寧 潘伯廣 孫昭 馮濤濤 齊譽(yù)洪成林(石河子大學(xué)化學(xué)化工學(xué)院,新疆兵團(tuán)化工綠色過程重點(diǎn)實(shí)驗(yàn)室-省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地,石河子832003)

    聚多巴胺功能化的四氧化三鈷納米復(fù)合材料的制備及電催化性能

    王海寧潘伯廣孫昭馮濤濤齊譽(yù)*洪成林*
    (石河子大學(xué)化學(xué)化工學(xué)院,新疆兵團(tuán)化工綠色過程重點(diǎn)實(shí)驗(yàn)室-省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地,石河子832003)

    通過簡單的自聚合反應(yīng)在四氧化三鈷表面包覆聚多巴胺膜,聯(lián)合使用納米鉑和辣根過氧化物酶用于電催化還原過氧化氫。結(jié)果表明,聚多巴胺的使用增強(qiáng)后續(xù)納米鉑的負(fù)載量和辣根過氧化物酶的生物活性;四氧化三鈷、納米鉑和辣根過氧化物酶的多重信號放大作用,大大增強(qiáng)了該復(fù)合材料的催化活性,提高了過氧化氫傳感器的靈敏度。優(yōu)化實(shí)驗(yàn)條件下,傳感器對過氧化氫的檢測范圍為0.1~700 μmol·L-1,檢測限為0.08 μmol·L-1。

    Co3O4;聚多巴胺;多重信號放大;電催化;H2O2

    0 Introduction

    Hydrogen peroxide(H2O2),as a kind of commonly used oxidizer and reductant,has been widely used in food industry,clinical diagnostics,pharmacy,environmental monitoring,etc[1-3].H2O2plays an important role in the living cells depending on the extent,timing, and location of its production.The disorder of H2O2concentration iscloselyconnectedwithoxidative stress reaction in injury,aging and disease[4].Therefore,accuratelydetectionforH2O2atlowlevel becomesincreasinglyimportant.Electrochemicalsensors are sensitive and efficient since they can analyze biological sample by direct conversion into an electricalsignal[5].Nanomaterials have stimulated intense research over past decades due to their high biocompatibility and large surface area[6-8].

    Metal nanoparticles(NPs)and metallic oxides NPs are increasingly applied in the studies of catalysis, semiconductor,energy storage,and semiconductor as a result of their high surface reaction activity and catalytic activity[9-13].As a significant transition metal oxide,Co3O4NPs have been reported and applied incatalysis,electrochemicalsensorsandenergy storage[14-17].Compared with CoO and Co2O3,Co3O4exhibit more broad application prospects in electrochemistry because of its extremely high electrocatalytic activity and theoretical specific capacitance[18-19]. Cheng et al.reported that Co3O4directly grown on Ni foam has superior mass transport property,as well as this strategy is low in cost and facile in preparation[20]. Mu et al.reported that Co3O4NPs exhibited peroxidase -like activity and catalase-like activity[21].However, small molecules like Co3O4nanoparticles usually show poor stability and are easy to aggregate,as a result of the active sites decreased[22-24].

    To solve this problem,some research groups wrapped some filming materials around the small molecules,and achieved initial success[24-25].Liu et al. reported porphyrinfunctionalized chain-like Co3O4NPs exhibited higher stability and catalytic activity than those of pure Co3O4NPs[23].Dong et al.reported a novel organic-inorganic hybrid material polypyrrole-Co3O4with good stability was successfully synthesized[26]. Lee et al.reported a very good film-forming biomaterial dopamine[27].Dopamine,as an important catecholamine neurotransmitter with excellent self-polymerizing ability and biocompatibility,has received great attention on filming material in the past few years[28-29]. The stable polydopamine(PDA)film formed by covalentpolymerizationandnon-covalentselfassemblydopamineiseasilylinkedwithmany materials such as metallic nanoparticles and biological molecules through the residual catechol groups on the film surface[30-32].

    In this paper,we reported the synthesis of PDA bio-functionalized Co3O4NPs and its application in the electrocatalysis on H2O2.The Co3O4NPs were coveredinPDAfilmbyself-polymerizationof dopamine.With the residual catechol groups on the PDAfilmsurface,uniformlydispersedplatinum nanoparticles(Pt NPs)could be simply and steadily deposited on PDA-Co3O4.Then,the introduction of horseradish peroxidase(HRP)further enhanced the electrocatalytic activity of the nanocomposites.By taking advantages of the excellent biocompatibility, film forming ability of PDA,and high electrocatalytic activity of Co3O4NPs,as well as the combined effect of Co3O4,Pt NPs and HRP,the fabricated Co3O4-PDAPt nanocomposite exhibited excellent electrocatalysis on H2O2.

    1 Experimental

    1.1Chemicals and materials

    Cobaltous nitrate(Co(NO3)2·6H2O),polyethylene glycol(PEG),butyl alcohol,chloroplatinic acid(H2PtCl6·6H2O),sodium borohydride(NaBH4),and dopamine were purchased from Alfa Aesar,while horseradish peroxidase(HRP)was from Jianglaibio Co.Ltd. (Shanghai,China).Allotherchemicalswereof analytical grade and used as received without further purification.Phosphatebuffersolution(PBS)of various pH values were prepared by mixing the 0.067 mol·L-1stock solutions of KH2PO4and Na2HPO4at specific ratios.All solutions were established with ultrapure water.

    1.2Apparatus

    Cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and I-t curves were performed using a Potentiostat/Galvanostat Model 283 electrochemical workstation(Ametek,USA).The threeelectrode system consisted of a bare or modified gold electrode(GE)which was used as a working electrode, a saturated calomel electrode(SCE)as a reference electrodeandaPtwirecounterelectrode.The transmission electron microscope(TEM)images were obtained with a H600 transmission electron microscope (Hitachi Instruments,Japan).X-ray powder diffraction(XRD)measurements were performed on a Bruker D8 advanced X-ray diffractometer with Cu Kα irradiation (λ=0.154 06 nm)at 40 kV and 40 mA in the scanning 2θ range of 10°and 90°.Fourier-transform infrared(FT-IR)spectroscopic were determined using a Nicolet Avatar 360 FTIR spectrometer.

    1.3Synthesis of PDA functionalized Co3O4NPs

    Co3O4NPsweresimplysynthesizedby hydrothermal method.In brief,5.0 mL of 1.5 mol·L-1Co(NO3)2solution was added into a sample vial.Then, 7.5 mL of 5%(w/w)PEG and 7.5 mL butyl alcohol were added into the vial with vigorous magnetic stirring.Next,a certain amount of NaOH solution was added into the vial drop by drop and the color of the suspension changed into blue.Then a certain amount of H2O2was dropped slowly and the color further changed into brown-black.The obtained suspension was transferred into a 50 mL Teflon-lined stainless steel autoclave.The autoclave was maintained at 160℃for 10 h after it was tightly sealed.Then,the autoclave was cooled down to room temperature and the black precipitation was washed three times with water and anhydrous ethanol respectively,and then the Co3O4NPs colloid was obtained.The Co3O4NPs colloid was first to be ultrasonically treated for 10 min toensureCo3O4NPsdispersedinthesolution. Subsequently,40 mL pH 7.0 PBS containing 1.5 mg· mL-1fresh dopamine was added.After that,the solution was violently stirred in ice-water bath for 6 h. Finally,the precipitate was washed with water and then the functionalized Co3O4NPs(Co3O4-PDA)were obtained.

    The loading of Pt NPs on Co3O4-PDA(Co3O4-PDA-Pt)was synthesized by in situ deposition.Firstly, the obtained Co3O4-PDA solution was dispersed in 4.0 mL of 0.1%(w/w)H2PtCl6with vigorous magnetic stirring and then 0.1 mL of 0.1 mol·L-1fresh NaBH4solution was dripped slowly and vigorous stirred for 0.5 h.After centrifugation,the solution was washed with water and then Co3O4-PDA-Pt nanocomposite was obtained.Forinvestigatingtheelectrocatalytic properties,Co3O4-Pt,PDA-Pt and Co3O4-PDA were also prepared by the same method.

    1.4Fabrication of the modified electrodes

    10 μL of the Co3O4-PDA-Pt suspension was dipped onto the cleaned bare GE surface to dry at 4℃for 4 h.After the Co3O4-PDA-Pt modified electrode was dried,15 μL of 1 mg·mL-1HRP solution was dipped onto the resulting electrode and then it was maintained upon water for 6 h at 4℃.Finally,the modified electrode was carefully rinsed with water to remove the physically absorbed HRP,then GE/Co3O4-PDA-Pt/HRP was obtained.The schematic representation of the preparation process of GE/Co3O4-PDA-Pt/ HRP modified electrode is shown in Scheme 1.GE/ Co3O4,GE/Co3O4-Pt,GE/Co3O4-PDA/HRP,and GE/ PDA-Pt/HRP were also prepared by the same process.

    Scheme 1Schematic representation of the preparation of GE/Co3O4-PDA-Pt/HRP

    2 Results and discussion

    2.1Characterization of Co3O4-PDA-Pt

    The morphology and size of Co3O4-PDA-Pt nanocomposites were characterized by TEM.Fig.1(a)gives the image of Co3O4NPs.It can be seen that the diameter of them was about 30 nm.Compared with the Co3O4NPs,the diameter of Co3O4-PDA increased and obvious layer structure can be seen in Fig.1(b). This indicated that the PDA film was successfully coated on the surface ofCo3O4NPs.Withthe abundant amine groups and residual catechol groups of the PDA film,Pt NPs could be linked simply and steadily on the nanocomposite by in situ reduction.As shown in Fig.1(c),a large amount of Pt NPs were uniformly distributed on the Co3O4-PDA surface.

    Theas-synthesisednanocompositesarealso determined by XRD and FT-IR.The pattern for the as-prepared Co3O4NPs(Fig.2A(a))exhibited the diffraction peaks at 2θ=19.01°,31.34°,36.91°, 38.73°,44.90°,59.55°,65.36°and 77.22°,which corresponded to(111),(220),(311),(222),(440), (422),(511),(440)and(531)crystal planes and all of which coincided with those for Co3O4cubic(PDF#42-1467,Fig.2A(b)).No impurity peaks were observed, which indicates the high purity of the final products. Fig.2B shows the FT-IR spectra of the as-prepared nanocomposites.As shown in Fig.2B(a),two strong bands at 667 and 565 cm-1appeared,which are assigned to the stretching vibrations of the metaloxygen bond[33].The peak at 667 cm-1is attributed to Co-O vibration in tetrahedral hole in which Co is Co2+, and the another peak at 565 cm-1can be attributed to Co-O vibration in octahedral hole in which Co is Co3+[34-35].This indicated that Co3O4NPs were successfully prepared.Compared with the Co3O4NPs,PDA coated Co3O4NPs showed additional three absorption peaks around 1 296,1 602 and 3 421 cm-1(Fig.2B (b)).The absorption peaks at 1 296 and 1 602 cm-1are attributed to the C-N stretching vibration and phenylicC=C stretching vibrations[36-37].The absorption peaks at 3 421 cm-1is from catechol-OH groups[36].

    Fig.1TEM images of Co3O4NPs(a),Co3O4-PDA(b)and Co3O4-PDA-Pt(c)

    Fig.2(A)XRD pattern of Co3O4NPs:(a)experimental,(b)PDF#42-1467;(B)FT-IR spectra:(a)Co3O4NPs,(b)Co3O4-PDA

    2.2Electrochemical characteristics of different modified electrodes

    The electrochemical characteristics of different modifiedelectrodeswereinvestigatedbycyclic voltammetry(CVs)which was carried out at 50 mV· s-1in 0.067 mol·L-1PBS(pH 7.0)containing 0.1 mol· L-1KCl and 5.0 mmol·L-1K3[Fe(CN)6].The CVs of different modified electrodes are shown in Fig.3.As shown in Fig.3a,a pair of well-defined redox peaks corresponding to K3[Fe(CN)6]were observed at the bare GE.After the electrode was modified with the Co3O4-PDAnanocomposite,thepeakscurrent decreased slightly(Fig.3b),which should be caused by the weak conductivity of PDA.After the Co3O4-PDA was loaded with Pt NPs,the Co3O4-PDA-Pt modified electrode exhibited a strongly enhancement to redox peaks current,which was mainly from the large surface area and excellent conductivity of Pt NPs(Fig.3c).ComparedwithFig.3c,afterthe adsorption of HRP,the peaks current decreased obviously(Fig.3d),which was mainly from the weak conductivity of macromolecular zymoprotein.

    Fig.3CVs of different electrodes at 50 mV·s-1in 0.067 mol·L-1PBS(pH 7.0)containing 0.1 mol·L-1KCl and 5.0 mmol·L-1K3[Fe(CN)6]

    Electrochemical impedance spectroscopy(EIS) can also provide useful information on the impedance changes on the electrode surface during the process of electrodes modification.Fig.4 exhibited the impedance of different modified electrodes in 0.1 mol·L-1KCl solution containing 5.0 mmol·L-1K3[Fe(CN)6].As is shown in Fig.4,the Nyquist plot of impedance spectra includes a semicircle portion and a linear portion.The semicircle at high frequency region relates to the electron transfer limited process,and the Warburg linear at low frequencies region relates to the diffusion process[38-39].The semicircle diameter of EIS spectrum equals to the electron-transfer resistance(Ret).It can be seen that the resistance for GE/Co3O4-PDA(Fig.4b) was larger than that at bare GE(Fig.4a),which should also be due to the inhibition effect of PDA biopolymer film for electron transfer.Compared with the Co3O4-PDA modified electrode,the Co3O4-PDA-Pt modified electrode exhibited smaller Ret(Fig.4c).The reason might be the enhancer for electron transfer of Pt NPs. When HRP was immobilized onto the GE/Co3O4-PDAPt surface the resistance of the modified electrode decreased(Fig.4d),which was attributed to the inhibition effect of the enzyme biomacromolecules for electron transfer.The results are also consistent with the previous CVs′(Fig.3).

    Fig.4EIS of different modified electrodes in 5.0 mmol· L-1K3[Fe(CN)6]solution

    2.3Optimization of working potential

    Fig.5Influence of different working potential on current response of GE/Co3O4-PDA-Pt/HRP: (A)current-time curves;(B)corresponding calibration curves

    The performance of the electrochemical biosensor usually relates to the working potential.Fig.5 showed the current response to successive addition of 10 μmol· L-1H2O2of GE/Co3O4-PDA-Pt/HRP at the working potential in the range from 0 to-0.40 V.Curves in Fig.5A display typical current-time curves at different working potential for successive addition of 10 μmol· L-1H2O2,and the corresponding calibration curves were shown in Fig.5B.Moreover,in order to compare the influence of working potential more clearly,the slope vs working potential curve was presented in the inset of Fig.5B.It was found that the slope continuouslyincreasedwiththeincreasingofworking potential,and the highest current response appeared at-0.4 V.However,too high working potential results in interference from the matrix species.Therefore, considering the sensitivity of sensor,-0.30 V was chosen for the working potential in the further work.

    2.4Electrocatalytic property towards H2O2

    To investigate the catalytic activities of different nanocomposites to H2O2,different modified electrodes were tested by CV in 0.1 mol·L-1KCl solution containing 5.0 mmol·L-1K3[Fe(CN)6]and 10 μmol·L-1H2O2at 50 mV·s-1(Fig.6).Compared with Co3O4NPs modified electrode(Fig.6(a)),Co3O4NPs loaded with Pt NPs modified electrode exhibited larger reduction peak current due to the strong catalytic activity of Pt NPs to H2O2(Fig.6(b)).Fig.6(c)shows that GE/Co3O4-PDA-Pt exhibited larger reduction peak current than GE/Co3O4-Pt,which might be because the introduction of PDA enhances the load of Pt NPs.Due to the efficient catalytic performance of bio-enzyme,the reduction peak current was further increased after HRP was immobilized onto the GE/Co3O4-PDA-Pt surface(Fig.6(d)).

    Fig.6CVs of different modified electrodes at 50 mV·s-1in 0.067 mol·L-1PBS(pH 7.0)with 10 μmol·L-1H2O2

    Comparative experiments were carried out using different modified electrodes by successively adding H2O2to a continuously stirred PBS(pH 7.0)solution at working potential of-0.30 V to further investigate theelectrocatalyticpropertiesofCo3O4-PDA-Pt nanocomposite(Fig.7).As can be seen,GE/Co3O4-PDA-Pt/HRP had the highest current response(Fig.7B (d)).Compared with GE/Co3O4-PDA/HRP(Fig.7B(a)) and GE/PDA-Pt/HRP(Fig.7B(b)),the current response ofGE/Co3O4-PDA-Pt/HRPtoH2O2isgreatly enhanced,which might be ascribed to the excellent conductivity of Pt NPs.Through this conductivity, Co3O4can play its catalytic role better.Due to the efficient catalytic performance of HRP,the currentresponse of GE/Co3O4-PDA-Pt/HRP(Fig.7B(d))was larger than that of GE/Co3O4-PDA-Pt(Fig.7B(c)). Based on these results,we confirmed that the combined effect of Co3O4,Pt and HRP made the nanocomposite exhibit excellent electrocatalytic properties.

    Fig.7Current response to successive addition of 10 μmol·L-1H2O2of different modified electrodes: (A)current-time curves;(B)corresponding calibration curves

    Fig.8Current response to H2O2additions on GE/Co3O4-PDA-Pt/HRP

    Fig.8 showed the typical current-time curves at GE/Co3O4-PDA-Pt/HRP with successive additions of H2O2at-0.30 V.A linear detection range from 0.1 to 700 μmol·L-1with a detection limit(LOD)of 0.08 μmol·L-1was observed.The regression equation is I/ μA=2.867×105cH2O2/(mol·L-1)+19.47(R2=0.998 2).The GE/Co3O4-PDA-Pt/HRPbiosensorexhibitedhigher sensitivity of 1 014.6 μA·L·mmol-1·cm-2than those of polyaniline-graphene composited thin film electrode (325.4 μA·L·mmol-1·cm-2)[40],hierarchical porous Co3O4electrode(389.7 μA·L·mmol-1·cm-2)[15]and Pd-TiO2electrode(554 μA·L·mmol-1·cm-2)[41],and nanoporous Ag@BSA/Au electrode(101.3 μA·L·mmol-1· cm-2)[42].Theresults indicatedthatthe fabricated Co3O4-PDA-Pt nanocomposite modified electrode H2O2sensor exhibited high sensitivity and wide dynamic measurement range,which mainly due to the high electrocatalyticactivityofCo3O4NPs,excellent biocompatibility,film forming ability of PDA and the synergies in Co3O4,Pt NPs and HRP.

    3 Conclusions

    This work reported that PDA bio-functionalized Co3O4NPs were successfully synthesized through a simple and cost-effective strategy and first applied to the research of electrocatalysis on H2O2.Co3O4NPs,as a new peroxidase-like,were wrapped with PDA by a simple self-polymerization in mild basic solution.It was found that the introduction of PDA film enhanced the stabilities of Co3O4NPs and Pt NPs and the combined effect of Co3O4and Pt NPs greatly improved the electrocatalytic properties of Co3O4-PDA-Pt nanocomposite.Thehighelectrocatalyticactivityand stabilityoftheproposednanocompositeprovide potentialapplicationsforelectrochemicalsensors, catalysis,and fuel cells.

    Acknowledgements:ThisworkwassupportedbyScientific Research Foundation for Changjiang Scholars of Shihezi University,the National Natural Science Foundation of China(Grant No.21065009),Bingtuan Innovation Team in Key Areas(Grant No.2015BD003),and the Key Project of Chinese Ministry of Education(Grant No.210251).

    References:

    [1]Guo H,Aleyasin H,Dickinson B C,et al.Cell Biosci.,2014,4: 1

    [2]Kuo C C,Lan W J,Chen C H.Nanoscale,2014,6:334-341

    [3]Perathoner S,Centi G.Top Catal.,2005,33:207-224

    [4]Van de Bittner G C,Dubikovskaya E A,Bertozzi C R,et al. Proc.Nat.Acad.Sci.U.S.A.,2010,107:21316-21321

    [5]Yagati A K,Choi J W.Electroanalysis,2014,26:1259-1276

    [6]Liang W,Yi W,Li S,et al.Clin.Biochem.,2009,42:1524-1530

    [7]Luo X,Morrin A,Killard A J,et al.Electroanalysis,2006,18: 319-326

    [8]Chen H,Jiang C,Yu C,et al.Biosens.Bioelectron.,2009,24: 3399-3411

    [9]Kleijn S E F,Lai S,Koper M,et al.Angew.Chem.Int.Ed., 2014,53:3558-3586

    [10]Daniel M C,Astruc D.Chem.Rev.,2004,104:293-346

    [11]Guo S,Wang E.Anal.Chim.Acta,2007,598:181-192

    [12]Meyer J,Hamwi S,Krger M,et al.Adv.Mater.,2012,24: 5408-5427

    [13]Kumar D R,Manoj D,Santhanalakshmi J.Sens.Actuators B,2013,188:603-612

    [14]Kim H,Park D W,Woo H C,et al.Appl.Catal.,B,1998,19: 233-243

    [15]Han L,Yang D P,Liu A.Biosens.Bioelectron.,2015,63: 145-152

    [16]Pan L,Zhao H,Shen W,et al.J.Mater.Chem.,A,2013,1: 7159-7166

    [17]Srinivasan V,Weidner J W.J.Power Sources,2002,108:15-20

    [18]Cao D,Chao J,Sun L,et al.J.Power Sources,2008,179:87-91

    [19]Gao Y,Chen S,Cao D,et al.J.Power Sources,2010,195: 1757-1760

    [20]Cheng K,Cao D,Yang F,et al.J.Power Sources,2014,253: 214-223

    [21]Mu J,Wang Y,Zhao M,et al.Chem.Commun.,2012,48: 2540-2542

    [22]Yang H,Zhang X,Tang A,et al.Chem.Lett.,2004,33:826-827

    [23]Liu Q,Zhu R,Du H,et al.Mater.Sci.Eng.C,2014,43:321 -329

    [24]Hong C,Yuan R,Chai Y,et al.Electroanalysis,2008,20: 2185-2191

    [25]Sun Z,Luo Z,Gan C,et al.Biosens.Bioelectron.,2014,59: 99-105

    [26]Dong S,Peng L,Liu D,et al.Bioelectrochemistry,2014,98: 87-93

    [27]Lee H,Rho J,Messersmith P B.Adv.Mater.,2009,21:431-434

    [28]Hong S,Kim K Y,Wook H J,et al.Nanomedicine,2011,6: 793-801

    [29]Lee H,Dellatore S M,Miller W M,et al.Science,2007,318: 426-430

    [30]Hong S,Na Y S,Choi S,et al.Adv.Funct.Mater.,2012,22: 4711-4717

    [31]Wang G,Huang H,Zhang G,et al.Langmuir,2010,27:1224 -1231

    [32]Wang Y,Liu L,Li M,et al.Biosens.Bioelectron.,2011,30: 107-111

    [33]Yin J,Cao H,Lu Y.J.Mater.Chem.,2012,22:527-534

    [34]Khalaji A D,Fejfarova K,Dusek M,et al.J.Mol.Struct., 2014,1071:6-10

    [35]Mu J,Zhang L,Zhao M,et al.J.Mater.Chem.A,2013,378: 30-37

    [36]Martín M,Salazar P,Villalonga R,et al.J.Mater.Chem.B, 2014,2:739-746

    [37]Yan L,Bo X,Zhu D,et al.Talanta,2014,120:304-311

    [38]Kaar C,Dalkiran B,Erden P E,et al.Appl.Surf.Sci.,2014, 311:139-146

    [39]Hong C,Yuan R,Chai Y,et al.Electroanalysis,2008,20: 989-995

    [40]Ameen S,Akhtar M S,Shin H S.Sens.Actuators B,2012, 173:177-183

    [41]Yi Q,Niu F,Yu W.Thin Solid Films,2011,519:3155-3161 [42]Liu Q,Zhang T,Yu L,et al.Analyst,2013,138:5559-5562

    Preparation and Electrocatalytic Properties of Polydopamine Functionalized Co3O4Nanocomposite

    WANG Hai-NingPAN Bo-GuangSUN ZhaoFENG Tao-TaoQI Yu*HONG Cheng-Lin*
    (School of Chemistry and Chemical Engineering,Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region,Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan,Shihezi University,Shihezi,Xinjiang 832003,China)

    Polydopamine(PDA)bio-functionalized Co3O4nanoparticles(NPs)were successfully synthesised and first applied to the research of electrocatalysis on H2O2.Co3O4NPs,as a peroxidase-like,were wrapped with PDA by a simple self-polymerization in mild basic solution.Then,uniformly dispersed platinum nanoparticles(Pt NPs) were deposited on PDA-Co3O4.It is found that the introduction of PDA film enhanced the load of Pt NPs,and the combined effect of Co3O4,Pt NPs and horseradish peroxidase(HRP)amplified the electrical signal of H2O2sensor. Under optimal conditions,a wide linear detection range from 0.1 to 700 μmol·L-1with a detection limit of 0.08 μmol·L-1was observed.

    Co3O4;polydopamine;multiple signal amplification;electrocatalysis;H2O2

    TB333

    A

    1001-4861(2016)08-1441-08

    10.11862/CJIC.2016.190

    2016-03-26。收修改稿日期:2016-06-24。

    國家自然科學(xué)基金(No.21065009)、教育部重點(diǎn)資助項(xiàng)目(No.210251)和兵團(tuán)重點(diǎn)領(lǐng)域創(chuàng)新團(tuán)隊(duì)計(jì)劃(No.2015BD003)資助。

    *通信聯(lián)系人。E-mail:hcl_tea@shzu.edu.cn,qy01_tea@shzu.edu.cn

    猜你喜歡
    辣根電催化過氧化物
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    銀納米團(tuán)簇的過氧化物模擬酶性質(zhì)及應(yīng)用
    Co3O4納米酶的制備及其類過氧化物酶活性
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    我愛我的狗!
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    過氧化物交聯(lián)改性PE—HD/EVA防水材料的研究
    中國塑料(2016年3期)2016-06-15 20:30:00
    提高有機(jī)過氧化物熱穩(wěn)定性的方法
    金葵:走向世界的小小辣根
    辣根的栽培技術(shù)
    大片电影免费在线观看免费| 国产亚洲午夜精品一区二区久久| 日韩熟女老妇一区二区性免费视频| 亚洲精品中文字幕在线视频 | 久久国产精品男人的天堂亚洲 | 午夜日本视频在线| 欧美成人午夜免费资源| 大香蕉97超碰在线| av不卡在线播放| 丝袜脚勾引网站| 毛片一级片免费看久久久久| 一区二区三区乱码不卡18| 中文字幕精品免费在线观看视频 | av专区在线播放| 精品视频人人做人人爽| 国产成人一区二区在线| 国产精品久久久久久久久免| 最新的欧美精品一区二区| 中文资源天堂在线| 亚洲欧美日韩卡通动漫| 中国三级夫妇交换| 搡老乐熟女国产| 成人国产av品久久久| 99久久人妻综合| 青春草视频在线免费观看| 欧美变态另类bdsm刘玥| 高清午夜精品一区二区三区| 汤姆久久久久久久影院中文字幕| 日本wwww免费看| 高清av免费在线| 另类亚洲欧美激情| .国产精品久久| 久久久久久久久久久久大奶| 99热国产这里只有精品6| 我的女老师完整版在线观看| 欧美 亚洲 国产 日韩一| 精品久久久精品久久久| 在线亚洲精品国产二区图片欧美 | 91久久精品电影网| 免费av中文字幕在线| 中文乱码字字幕精品一区二区三区| 涩涩av久久男人的天堂| 大陆偷拍与自拍| 日韩不卡一区二区三区视频在线| 能在线免费看毛片的网站| 精品久久久久久电影网| 国产成人免费无遮挡视频| 在线免费观看不下载黄p国产| 超碰97精品在线观看| 黑人高潮一二区| 国产有黄有色有爽视频| 人人妻人人澡人人爽人人夜夜| 老司机影院毛片| 人妻夜夜爽99麻豆av| 男人舔奶头视频| 久久精品久久久久久噜噜老黄| 多毛熟女@视频| 简卡轻食公司| a级片在线免费高清观看视频| 日韩av在线免费看完整版不卡| 中文精品一卡2卡3卡4更新| 一本大道久久a久久精品| 乱系列少妇在线播放| 欧美性感艳星| 日本午夜av视频| 亚洲一级一片aⅴ在线观看| 有码 亚洲区| 嫩草影院新地址| 午夜福利视频精品| videossex国产| 97精品久久久久久久久久精品| 精品人妻一区二区三区麻豆| 免费看不卡的av| 国产有黄有色有爽视频| 如日韩欧美国产精品一区二区三区 | 日韩亚洲欧美综合| 精品亚洲乱码少妇综合久久| 久热久热在线精品观看| 青春草视频在线免费观看| 国产黄片美女视频| 亚洲精品日韩在线中文字幕| 99久久精品热视频| 国产精品欧美亚洲77777| 一区二区三区免费毛片| 国产视频内射| 高清毛片免费看| 18+在线观看网站| 亚洲经典国产精华液单| 最新的欧美精品一区二区| 精品久久久久久久久av| 久久人人爽av亚洲精品天堂| 最近手机中文字幕大全| 中文在线观看免费www的网站| 人妻制服诱惑在线中文字幕| 成人毛片60女人毛片免费| 男女边摸边吃奶| 街头女战士在线观看网站| 高清av免费在线| av在线播放精品| 国产 精品1| 欧美 亚洲 国产 日韩一| 亚洲婷婷狠狠爱综合网| av国产精品久久久久影院| 亚洲国产精品一区三区| av免费在线看不卡| 国产欧美日韩综合在线一区二区 | 亚洲综合精品二区| 久久精品国产亚洲网站| 99热全是精品| 久久国产精品男人的天堂亚洲 | 高清av免费在线| 99九九在线精品视频 | 免费看光身美女| 夫妻性生交免费视频一级片| 久久99一区二区三区| 少妇被粗大猛烈的视频| 多毛熟女@视频| 国产高清有码在线观看视频| 91精品国产国语对白视频| 性色avwww在线观看| 午夜福利网站1000一区二区三区| 国产成人精品无人区| 91午夜精品亚洲一区二区三区| 天堂俺去俺来也www色官网| 国产精品久久久久久精品古装| 夜夜爽夜夜爽视频| 亚洲av二区三区四区| 在线观看免费日韩欧美大片 | 成年美女黄网站色视频大全免费 | 欧美日韩在线观看h| 日韩中文字幕视频在线看片| 六月丁香七月| 亚洲精品中文字幕在线视频 | 国产成人精品无人区| 视频区图区小说| 国国产精品蜜臀av免费| 国语对白做爰xxxⅹ性视频网站| 久久久久久久国产电影| 国产伦理片在线播放av一区| 成人毛片a级毛片在线播放| 午夜av观看不卡| 最黄视频免费看| 国产亚洲午夜精品一区二区久久| 男男h啪啪无遮挡| 欧美 亚洲 国产 日韩一| 中文字幕免费在线视频6| 丝袜喷水一区| 亚洲国产精品999| 成人亚洲精品一区在线观看| 汤姆久久久久久久影院中文字幕| 99久久中文字幕三级久久日本| 国产精品女同一区二区软件| 久久国内精品自在自线图片| 国产乱人偷精品视频| 男女免费视频国产| 成人影院久久| 极品少妇高潮喷水抽搐| 亚洲精品日韩在线中文字幕| 毛片一级片免费看久久久久| 久久久欧美国产精品| 亚洲精品日韩av片在线观看| 免费观看的影片在线观看| av专区在线播放| 亚洲熟女精品中文字幕| 99久国产av精品国产电影| 欧美高清成人免费视频www| 亚洲精品日韩av片在线观看| a 毛片基地| 十八禁网站网址无遮挡 | 中文字幕亚洲精品专区| 欧美日韩综合久久久久久| 精品久久国产蜜桃| 蜜桃久久精品国产亚洲av| 国产av精品麻豆| 激情五月婷婷亚洲| 亚洲人成网站在线播| 亚洲av日韩在线播放| 久久综合国产亚洲精品| 夜夜爽夜夜爽视频| 精品国产一区二区久久| 精品一区二区三区视频在线| 精品人妻熟女毛片av久久网站| 女人精品久久久久毛片| 丰满饥渴人妻一区二区三| 国产精品.久久久| xxx大片免费视频| 国产日韩欧美视频二区| 肉色欧美久久久久久久蜜桃| 青青草视频在线视频观看| 99久久人妻综合| av.在线天堂| 精品一区在线观看国产| 欧美日韩亚洲高清精品| 美女大奶头黄色视频| 亚洲精品久久午夜乱码| av在线app专区| 男女啪啪激烈高潮av片| 亚洲成人手机| 99re6热这里在线精品视频| 亚洲av男天堂| 国产无遮挡羞羞视频在线观看| 波野结衣二区三区在线| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av天美| 纵有疾风起免费观看全集完整版| 美女福利国产在线| av视频免费观看在线观看| 国内揄拍国产精品人妻在线| 中文乱码字字幕精品一区二区三区| 久久精品国产亚洲av涩爱| 亚洲国产精品专区欧美| 99热全是精品| 国产有黄有色有爽视频| 啦啦啦视频在线资源免费观看| 欧美一级a爱片免费观看看| 久久99精品国语久久久| 中文乱码字字幕精品一区二区三区| 国产成人freesex在线| 亚洲av福利一区| 国产无遮挡羞羞视频在线观看| 全区人妻精品视频| 一区二区三区四区激情视频| 中文字幕久久专区| 亚洲国产av新网站| 国产无遮挡羞羞视频在线观看| 日本-黄色视频高清免费观看| 99九九线精品视频在线观看视频| 精品亚洲成a人片在线观看| 久久99蜜桃精品久久| 日韩欧美精品免费久久| 国产探花极品一区二区| 国产男女内射视频| 亚洲人成网站在线播| av网站免费在线观看视频| 啦啦啦中文免费视频观看日本| 欧美一级a爱片免费观看看| 69精品国产乱码久久久| 亚洲精品成人av观看孕妇| 欧美最新免费一区二区三区| 丰满迷人的少妇在线观看| 中文字幕人妻熟人妻熟丝袜美| 午夜日本视频在线| 国产精品嫩草影院av在线观看| 国产成人freesex在线| 自拍欧美九色日韩亚洲蝌蚪91 | 国产毛片在线视频| 亚洲av.av天堂| 韩国高清视频一区二区三区| 国产免费一级a男人的天堂| 啦啦啦中文免费视频观看日本| 精品一品国产午夜福利视频| 亚洲自偷自拍三级| 乱码一卡2卡4卡精品| 国产精品成人在线| 国产亚洲精品久久久com| 九草在线视频观看| 美女xxoo啪啪120秒动态图| 一个人免费看片子| www.色视频.com| 啦啦啦啦在线视频资源| 永久免费av网站大全| 亚洲高清免费不卡视频| 日韩在线高清观看一区二区三区| 国产男女内射视频| 精品久久久噜噜| 五月伊人婷婷丁香| 另类精品久久| 国产成人精品无人区| 国产精品久久久久久av不卡| 欧美人与善性xxx| 又粗又硬又长又爽又黄的视频| 美女视频免费永久观看网站| 免费高清在线观看视频在线观看| 久久久久精品性色| 肉色欧美久久久久久久蜜桃| 午夜老司机福利剧场| 人人妻人人爽人人添夜夜欢视频 | 免费黄网站久久成人精品| 国产黄色免费在线视频| 高清欧美精品videossex| 不卡视频在线观看欧美| 成人18禁高潮啪啪吃奶动态图 | 99re6热这里在线精品视频| 有码 亚洲区| 在线观看人妻少妇| 日日撸夜夜添| 十八禁高潮呻吟视频 | 涩涩av久久男人的天堂| 99久久精品热视频| 自线自在国产av| 国产精品无大码| 大香蕉97超碰在线| 欧美三级亚洲精品| 亚洲国产最新在线播放| 日日摸夜夜添夜夜添av毛片| 丰满乱子伦码专区| 国产免费又黄又爽又色| 亚洲国产精品专区欧美| 亚洲精品一区蜜桃| 亚洲熟女精品中文字幕| 建设人人有责人人尽责人人享有的| 寂寞人妻少妇视频99o| 久久韩国三级中文字幕| 看免费成人av毛片| 国产高清有码在线观看视频| 不卡视频在线观看欧美| 精品少妇久久久久久888优播| 国产精品国产av在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲不卡免费看| 国产午夜精品久久久久久一区二区三区| 乱系列少妇在线播放| 夜夜看夜夜爽夜夜摸| 啦啦啦视频在线资源免费观看| 久久av网站| 国产男女内射视频| 午夜免费观看性视频| 国产精品秋霞免费鲁丝片| 免费看av在线观看网站| 久久99精品国语久久久| 建设人人有责人人尽责人人享有的| 国内少妇人妻偷人精品xxx网站| 大香蕉97超碰在线| 国产成人精品久久久久久| 一级毛片我不卡| 亚洲经典国产精华液单| 王馨瑶露胸无遮挡在线观看| 成人亚洲精品一区在线观看| 91精品伊人久久大香线蕉| 欧美人与善性xxx| 中国国产av一级| 欧美97在线视频| 日日撸夜夜添| 乱码一卡2卡4卡精品| 男女啪啪激烈高潮av片| 亚洲va在线va天堂va国产| 国产男女超爽视频在线观看| 一区二区三区乱码不卡18| 伦理电影大哥的女人| 亚洲色图综合在线观看| 三级经典国产精品| 亚洲成人手机| 亚洲成色77777| 卡戴珊不雅视频在线播放| 99re6热这里在线精品视频| 99九九线精品视频在线观看视频| 欧美人与善性xxx| 18禁在线播放成人免费| 一个人看视频在线观看www免费| 日韩强制内射视频| a级片在线免费高清观看视频| 亚洲欧洲精品一区二区精品久久久 | 水蜜桃什么品种好| 亚洲av中文av极速乱| 最近2019中文字幕mv第一页| 91午夜精品亚洲一区二区三区| 精品人妻熟女av久视频| 日韩av不卡免费在线播放| 国产精品一区www在线观看| 日本黄大片高清| 夜夜骑夜夜射夜夜干| 黑丝袜美女国产一区| 一二三四中文在线观看免费高清| 精品酒店卫生间| 91久久精品国产一区二区成人| www.av在线官网国产| 久久6这里有精品| 国产一区二区三区综合在线观看 | 欧美少妇被猛烈插入视频| 男人添女人高潮全过程视频| 亚洲内射少妇av| 成年女人在线观看亚洲视频| a级毛片免费高清观看在线播放| 久久狼人影院| 多毛熟女@视频| 少妇被粗大的猛进出69影院 | 波野结衣二区三区在线| 亚洲精品色激情综合| 美女主播在线视频| 夜夜骑夜夜射夜夜干| 成年人免费黄色播放视频 | 最后的刺客免费高清国语| 少妇的逼水好多| 桃花免费在线播放| 国产日韩欧美视频二区| 高清午夜精品一区二区三区| 久久影院123| 日本91视频免费播放| 日本与韩国留学比较| 日韩亚洲欧美综合| 岛国毛片在线播放| √禁漫天堂资源中文www| 亚洲不卡免费看| 日本与韩国留学比较| 五月天丁香电影| 国产欧美亚洲国产| 精品久久久久久久久av| 高清在线视频一区二区三区| 少妇人妻一区二区三区视频| 亚洲国产精品成人久久小说| av天堂中文字幕网| 久久午夜福利片| av天堂中文字幕网| 在现免费观看毛片| 欧美精品人与动牲交sv欧美| 丰满饥渴人妻一区二区三| 久久99精品国语久久久| 久久久久久久大尺度免费视频| 欧美日韩精品成人综合77777| 狠狠精品人妻久久久久久综合| 日韩中字成人| 亚洲精品一区蜜桃| 日韩大片免费观看网站| 欧美97在线视频| 夫妻午夜视频| 麻豆成人av视频| 久久97久久精品| 黄色一级大片看看| 国模一区二区三区四区视频| 九草在线视频观看| 观看美女的网站| 尾随美女入室| 91久久精品国产一区二区成人| 久久久国产精品麻豆| 性色avwww在线观看| 成年美女黄网站色视频大全免费 | 人妻少妇偷人精品九色| 男女边摸边吃奶| 乱系列少妇在线播放| 九九在线视频观看精品| 精品少妇内射三级| 欧美xxⅹ黑人| 免费在线观看成人毛片| 亚洲熟女精品中文字幕| 久久久久久久久久久丰满| 国产精品国产三级国产av玫瑰| 永久免费av网站大全| 亚洲欧美一区二区三区国产| 亚洲真实伦在线观看| 国产精品蜜桃在线观看| 日本wwww免费看| 国产色爽女视频免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线| 在线 av 中文字幕| 亚洲av国产av综合av卡| 妹子高潮喷水视频| 精品久久久久久久久亚洲| 自线自在国产av| 97超视频在线观看视频| 久久精品熟女亚洲av麻豆精品| 丰满乱子伦码专区| 日韩,欧美,国产一区二区三区| 国产成人a∨麻豆精品| 国产成人精品福利久久| 最后的刺客免费高清国语| 成人毛片60女人毛片免费| 日韩精品免费视频一区二区三区 | 亚洲激情五月婷婷啪啪| 国产精品蜜桃在线观看| 18禁裸乳无遮挡动漫免费视频| 秋霞伦理黄片| 久久午夜综合久久蜜桃| 三级经典国产精品| 成年人午夜在线观看视频| 男女啪啪激烈高潮av片| 18禁动态无遮挡网站| 色吧在线观看| 人人妻人人看人人澡| 校园人妻丝袜中文字幕| 亚洲成人av在线免费| 曰老女人黄片| 一区在线观看完整版| av黄色大香蕉| 日韩av免费高清视频| 日韩成人伦理影院| 一区二区三区四区激情视频| 高清午夜精品一区二区三区| 亚洲精品成人av观看孕妇| av福利片在线| 国产乱人偷精品视频| 精品一区二区免费观看| 亚洲精品乱码久久久v下载方式| 欧美区成人在线视频| 欧美精品一区二区免费开放| 下体分泌物呈黄色| 国产熟女欧美一区二区| 亚洲婷婷狠狠爱综合网| 女性生殖器流出的白浆| 各种免费的搞黄视频| 内射极品少妇av片p| 少妇的逼好多水| 日韩一区二区视频免费看| 男女边吃奶边做爰视频| 国产成人午夜福利电影在线观看| 我要看日韩黄色一级片| 久久婷婷青草| 在线观看三级黄色| 精品一区二区三卡| 97在线视频观看| 97超碰精品成人国产| 国产精品免费大片| 大又大粗又爽又黄少妇毛片口| 777米奇影视久久| 一级毛片aaaaaa免费看小| 精品久久久久久久久av| 少妇被粗大的猛进出69影院 | 一级av片app| 日韩精品有码人妻一区| 在线观看www视频免费| 美女主播在线视频| 国产深夜福利视频在线观看| 国内揄拍国产精品人妻在线| 乱人伦中国视频| 一区二区av电影网| 十八禁高潮呻吟视频 | 亚洲美女搞黄在线观看| 少妇人妻久久综合中文| 久久久a久久爽久久v久久| 亚洲综合色惰| 夜夜爽夜夜爽视频| a级毛片免费高清观看在线播放| 18+在线观看网站| 成人漫画全彩无遮挡| 在线精品无人区一区二区三| 校园人妻丝袜中文字幕| 亚洲成色77777| 性色avwww在线观看| 永久网站在线| 国产精品嫩草影院av在线观看| 亚洲激情五月婷婷啪啪| 性色av一级| av免费观看日本| 国产精品久久久久久精品古装| 亚洲av成人精品一二三区| 99热这里只有是精品50| 日韩av免费高清视频| 久久这里有精品视频免费| 一本色道久久久久久精品综合| h视频一区二区三区| 精品久久国产蜜桃| 亚洲国产精品999| 日本爱情动作片www.在线观看| 欧美最新免费一区二区三区| 国产老妇伦熟女老妇高清| 亚洲精品乱码久久久久久按摩| 韩国av在线不卡| 亚洲精品亚洲一区二区| 日韩一区二区三区影片| 成人黄色视频免费在线看| 亚洲婷婷狠狠爱综合网| 久久久国产精品麻豆| 亚洲av免费高清在线观看| 精品人妻偷拍中文字幕| 狂野欧美激情性bbbbbb| 亚洲精品日韩av片在线观看| 国产乱人偷精品视频| 桃花免费在线播放| 日韩一区二区视频免费看| 观看美女的网站| 看十八女毛片水多多多| 毛片一级片免费看久久久久| 久久久久久久久久人人人人人人| 18禁在线无遮挡免费观看视频| 国产成人精品无人区| 97精品久久久久久久久久精品| 日本av免费视频播放| 青春草国产在线视频| 少妇被粗大猛烈的视频| 亚洲美女搞黄在线观看| 久久久国产一区二区| av在线app专区| 欧美国产精品一级二级三级 | 国产亚洲最大av| 国产伦理片在线播放av一区| av在线播放精品| 一级毛片黄色毛片免费观看视频| 久久久久国产精品人妻一区二区| 五月伊人婷婷丁香| 日本91视频免费播放| 黑人猛操日本美女一级片| 国产伦在线观看视频一区| 亚洲精品久久午夜乱码| 国产成人精品福利久久| 高清不卡的av网站| 在线天堂最新版资源| 在线 av 中文字幕| 久久久亚洲精品成人影院| 亚洲精品第二区| 中文欧美无线码| 自线自在国产av| 黑人高潮一二区| 赤兔流量卡办理| 国产黄片视频在线免费观看| 亚洲成色77777| 国内精品宾馆在线| 美女大奶头黄色视频| 性色av一级| 精品国产一区二区久久| 国产成人精品一,二区| av天堂久久9| 国产精品.久久久| 国内精品宾馆在线| freevideosex欧美| 纯流量卡能插随身wifi吗| 丰满人妻一区二区三区视频av| 日韩一区二区视频免费看| 视频中文字幕在线观看| 免费av不卡在线播放| 国语对白做爰xxxⅹ性视频网站| 久久99一区二区三区| 色视频www国产| freevideosex欧美| 国产精品久久久久久精品电影小说|