• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以5-甲基-3-吡唑甲酸為配體的鈷(Ⅱ)、鎳(Ⅱ)配合物的合成、晶體結(jié)構(gòu)和性質(zhì)

    2016-12-06 09:05:19程美令王沈唐李志鵬劉琦常州大學(xué)石油化工學(xué)院江蘇省綠色催化材料和技術(shù)重點(diǎn)實(shí)驗(yàn)室常州364南京大學(xué)配位化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室南京003
    關(guān)鍵詞:吡唑配位甲酸

    程美令 王沈 唐李志鵬 劉琦,(常州大學(xué)石油化工學(xué)院,江蘇省綠色催化材料和技術(shù)重點(diǎn)實(shí)驗(yàn)室,常州364)(南京大學(xué)配位化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京003)

    以5-甲基-3-吡唑甲酸為配體的鈷(Ⅱ)、鎳(Ⅱ)配合物的合成、晶體結(jié)構(gòu)和性質(zhì)

    程美令*,1王沈1唐李志鵬1劉琦*,1,2
    (1常州大學(xué)石油化工學(xué)院,江蘇省綠色催化材料和技術(shù)重點(diǎn)實(shí)驗(yàn)室,常州213164)
    (2南京大學(xué)配位化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京210023)

    以5-甲基-3-吡唑甲酸(H2MPCA)為主配體,橋聯(lián)配體4,4′-聯(lián)吡啶(4,4′-bpy)和吡嗪(pyz)為輔助配體,合成了2個(gè)新的配合物{[Co(HMPCA)2(4,4′-bpy)]2·5H2O}n(1)和{[Ni(HMPCA)2(pyz)]·5H2O}n(2),并用元素分析、紅外光譜、X射線單晶衍射結(jié)構(gòu)分析、熱重分析等對(duì)其進(jìn)行了表征。配合物1屬于正交晶系,空間群為Pccn,配合物2屬于單斜晶系,空間群為P2/c。在1和2中,金屬離子都位于一個(gè)扭曲的八面體配位環(huán)境中,分別由4,4′-聯(lián)吡啶(1)和吡嗪(2)兩端的氮原子橋聯(lián)2個(gè)相鄰的金屬離子,形成一維鏈狀聚合物??疾炝伺浜衔?和2的熱穩(wěn)定性、熒光性能和磁性。

    鈷;鎳;5-甲基-3-吡唑甲酸;晶體結(jié)構(gòu);熒光;磁性

    0 Introduction

    In the past decades,the design and construction ofthesupramolecularcomplexesconstructedby coordination bonds and/or other weak cooperative interactions have become a very attractive research fieldincoordinationchemistryandmaterials chemistry[1-4].The interest comes from the outstanding topologicalstructuresanduniquepotential applications in many fields,such as gas storage[5-8], heterogeneouscatalysis[9-10],sensors[11],lithium-ion batteries[12-14].Synthesis of supramolecular complexes through self-assembly is a complicated process,highly influenced by a lot of factors,such as the nature of organic ligands,the coordination geometry of metal ions,metal-ligand ratio,pH value,solvent system, temperature,template agents and counteranions. There is no doubt that selection and reasonable use of characteristic ligands is the key point in the construction of complexes[15-20].Recently,N-heterocyclic carboxylic acids with good coordination capacities in multicoordination modes by the N and O donor atoms on the N-heterocyclic rings and the carboxyl groups,are increasingly used in construction of complexes.The nitrogen atoms and carboxylic oxygen atoms can not only coordinate to metals,but also act as a donor and/ oracceptorinhydrogenbondinteractionsfor assemblingthecomplexintohigh-dimensional supramolecular networks.For example,organic ligand 5-methyl-1H-pyrazole-3-carboxylic acid(H2MPCA)has been widely used to synthesize various supramolecular architectures containing transition and main group metal ions,in which,H2MPCA ligand hasboth bridging and chelating coordination modes to bind metal centers[21-25].On the other hand,the chelate N ancillary ligands,such as 2,2′-bipyridine(2,2′-bpy) and 1,10-phenanthroline(phen),were also utilized in thesynthesisprocesses,whichcanadjustthe coordination structures by occupying the terminal position[23].As we all known,bipyridine(4,4′-bpy)[26]and pyrazine(pyz)[25]are good candidates for molecular building blocks,due to their rod-like rigidity and length.But,the researches of using these bridging N ancillary ligands to construct H2MPCA containing complexes have been less explored,only two 1D coordination polymers,{[Cu2(4,4′-bpy)2(2,2′-bpy)(MPCA)2]· 6H2O}n[21]and{[Co(HMPCA)2(pyz)]·5H2O}nwere reported[25].As the continuation of our research in constructing functional metal complexes containing N-heterocyclic carboxylic acids[22-25,27-30],we carried out the reactions of H2MPCA with corresponding metal salts and bridging N ancillary 4,4′-bpy and pyz,and isolated two new complexes,{[Co(HMPCA)2(4,4′-bpy)]2·5H2O}n(1)and{[Ni(HMPCA)2(pyz)]·5H2O}n(2).In this paper,thesynthesis,crystalstructures, photoluminescentandmagneticpropertiesofthe coordination polymers 1 and 2 were described.

    1 Experimental

    1.1Materials and methods

    All solvents and starting materials for synthesis werepurchasedcommerciallyandwereusedas received.H2MPCAwaspreparedfollowingthe literature method[31].The elemental analysis(C,H and N)was performed on a Perkin-Elmer 2400 SeriesⅡelement analyzer.FTIR spectra were recorded on a Nicolet 460 spectrophotometer in the form of KBr pellets in the range of 4 000~400 cm-1.Single-crystal X-ray diffraction measurements of 1 and 2 were carried out with a Bruker Smart ApexⅡCCD diffractometer at 296(2)K.Thermogravimetric analysis (TGA)experiments were carried out on a Dupont thermal analyzer from room temperature to 800℃at a heating rate of 10℃·min-1under N2atmosphere. Powder X-ray diffraction(PXRD)determinations were performed on an X-ray diffractometer(D/max 2500 PC,Rigaku)with Cu Kα radiation(0.154 06 nm).The operating voltage and current were 60 kV and 300 mA,respectively.The luminescent spectra of the solid samples were recorded with a Cary Eclipse spectrometer.The magnetic susceptibility measurements for crystalline sample were measured over the temperature range of 1.8~300 K with a Quantum Design MPMS-XL7 SQUID magnetometer using an applied magnetic field of 2 000 Oe.Data were corrected for the diamagnetic contribution calculated from Pascalconstants.

    1.2Preparation of{[Co(HMPCA)2(4,4′-bpy)]2· 5H2O}n(1)

    To a solution containing H2MPCA(0.025 2 g,0.2 mmol)and 4,4′-bpy·2H2O(0.076 8 g,0.4 mmol)in DMF(2.0 mL)was added a solution of Co(OAc)2· 4H2O(0.024 9 g,0.1 mmol)in MeOH(4.0 mL).The resulting solution was stirred for 30 min,followed by being placed into 15 mL Teflon-lined autoclave under autogenous pressure and heated at 120℃for 24 h,then the solution was cooled to the ambient temperature at the rate of 5℃·h-1.After filtration,the product was washed with deionized water and then dried,and red crystals of 1(0.026 5 g,52%,based on H2MPCA) suitable for X-ray diffraction analysis were obtained. Anal.Calcd.for C40H44Co2N12O13(%):C,47.16;H,4.35; N,16.50;Found(%):C,46.01;H,4.82;N,16.07.IR spectrum(cm-1,KBr pellet):3 431(s),3 182(m),3 132 (m),3 084(m),2920(m),2 854(m),1 681(s),1 605 (vs),1 535(m),1 495(m),1 420(s),1 383(m),1 343 (s),1 293(s),1 217(w),1 191(w),1 089(w),1 067(w), 1 027(m),1 013(m),818(m),796(m),688(w),634 (m),576(w),528(w),455(w).

    1.3Preparationof{[Ni(HMPCA)2(pyz)]·5H2O}n(2)

    To a solution containing H2MPCA(0.025 2 g,0.2 mmol)and pyz(0.016 0 g,0.2 mmol)in deionized water (5.0 mL)was added a solution of Ni(OAc)2·4H2O (0.049 9 g,0.2 mmol)in deionized water(5.0 mL).The resulting solution was stirred for 30 min,followed by being placed into 25 mL Teflon-lined autoclave under autogenous pressure and heated at 180℃for 24 h,then is was cooled to the ambient temperature at the rate of 5℃·h-1.After filtration,the product was washed with deionized water and then dried,and blue crystals of 2 (0.028 7g,60%,based on H2MPCA)suitable for X-ray diffraction analysis were obtained.Anal.Calcd.for C14H24NiN6O9(%):C,35.10;H,5.05;N,17.54;Found (%):C,35.01;H,5.31;N,17.23.IR spectrum(cm-1, KBr pellet):3 379(m),3 200(m),3 140(m),3 110(m), 2 969(w),2 850(w),1 610(vs),1 493(w),1 418(s), 1 324(m),1 281(s),1 212(m),1 118(w),1 160(w), 1 050(m),1 025(m),843(w),794(m),688(w),563 (w),483(m),446(w).

    1.4X-ray crystallography

    Single-crystal X-ray diffraction measurements of 1 and 2 were carried out with a Bruker Smart ApexⅡCCD diffractometer at 296(2)K(1)and 293(2)K (2).Intensities of reflections were measured using graphite-monochromatizedMoKαradiation(λ= 0.071 073 nm)with the φ-ω scans mode in the range of 2.809°~28.071°(1)and 2.433°~27.631°(2).The structure was solved by direct methods using the SHELXS program of the SHELXTL package and refined with SHELXL[32].For 1,the lattice water molecule(O4)was fixed with constrained parameters and refined with an occupancy factor of 0.25.In the case of 2,two free water molecules bearing O3 and O4 atoms were found to be disordered over two positions with an occupancy ratio of 0.5/0.5 for O(3)/O (3A)and O(4)/O(4A).Another lattice water molecule (O5)wasfixedwithconstrainedparametersand refined with an occupancy factor of 0.5.Anisotropic thermal factors were assigned to all the non-hydrogen atoms.Hydrogen atoms on O4 atom in 1 were not located.All other hydrogen atoms attached to C were placedgeometricallyandallowedtorideduring subsequent refinement with an isotropic displacement parameter fixed at 1.2 times Ueqof the parent atoms. H atoms bonded to O or N atoms were first located in difference Fourier maps and then placed in the calculatedsitesandincludedintherefinement. Crystallographicdataparametersforstructural analyses are summarized in Table 1.

    CCDC:1445391,1;1445392,2.

    Table 1Crystal structure parameters of the compounds 1 and 2

    Continued Table 1

    2 Results and discussion

    2.1IR spectrum

    The IR spectra of complexes 1 and 2 reflect the binding patterns of H2MPCA,4,4′-bpy and pyz(Fig.S1 in supplementary materials).The strong and broad absorption band around 3 200~3 600 cm-1region is assigned as characteristic peak of OHvibration, indicating that water molecules exist in the complexes. The absorption peak between 1 690 cm-1and 1 730 cm-1is not observed,showing all carboxylic groups are deprotonated.The strong peaks at 1 605 cm-1(1),1 610cm-1(2),and 1 420 cm-1(1),1 418 cm-1(2)are the νas(COO-)andνs(COO-)stretching mode of the coordinated HMPCA-ligand,respectively[33-35].For complex 1,the weak absorption at 3 000 cm-1is the νas(C-H)bent vibration of 4,4′-bpy.For complex 2,the absorbances between 1 050 and 1 212 cm-1are assignable to pyz bands[36].

    Fig.1Coordination environment of Co(Ⅱ)ion in 1 with thermal ellipsoid at 30%probability level

    2.2Crystal structures of 1 and 2

    X-ray crystal structure analysis reveals that 1 crystallizes in the orthorhombic system space group Pccn.The asymmetric unit of 1 contains a half of Co(Ⅱ)ion,one HMPCA-anion,half of a 4,4′-bpy,one and a half lattice water molecules.The coordination sphere of Co(Ⅱ)is defined by two carboxylate oxygen atoms,two nitrogen atoms from two HMPCA-anions, and two nitrogen atoms from two 4,4′-bpy ligands, leading to a hexa-coordinated octahedral geometry. The equatorial position are occupied by O1,O1A,N1, and N1A atoms,proved by that the sum of the bond anglesof O1A-Co1-N1A(78.48(11)°),N1-Co1-O1 (78.48(11)°),N1-Co1-O1A(101.52(11)°)and O1-Co1-N1A(101.52(11)°)is equal to 360°,and N3 and N3A atoms are located in the axial positions(Fig.1 and Table 2).As a bidentate ligand,the HMPCA-anion chelates one Co(Ⅱ)atom with pyrazole N atom and carboxyl O atom to form a five membered ring.As shown in Fig.2,two crystallographically equivalent ions,Co1 and Co1A are linked by two N atoms(N3 and N3A)from 4,4′-bpy in a bridging fashion, generating an infinite 1D chain.The length of Co-O1 bond is 0.207 6(3)nm,and the Co-N bonds are in the range of 0.214 4(3)~0.216 5(3)nm,which are close to those Co-O(Co1-O1 0.211 6(5)nm),Co-N(Co1-N1 0.208 2(5)nm)in the reported Co(Ⅱ)complex[CoCl4(Athpp)2]·2H2O(Athpp=3-amino-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole)[37].The average bond length of Co-N is longer than that of Co-O,showing that the strength of cobalt ion coordinated with nitrogen atoms are weaker than that of oxygen atoms from HMPCA-ligands in 1.By the function of the hydrogen bond O3-H3X…O2C(Symmetry codes:C:x,1+y,-1+z) and O3-H3Y…O1D(Symmetry codes:D:1-x,1/2+y, 3/2-z),the solvent water molecules are embedded in the chain.Finally,these 1D chains are extended into 3D structure by the N2-H2…O2B(Symmetry codes: B:x,1/2-y,-1/2+z)hydrogen-bonding interactions (Fig.3).

    2 crystallizes in the monoclinic system space group P2/c.The asymmetric unit of 2 contains half of one Ni(Ⅱ)ion,one HMPCA-anion,half of one pyz,

    Table 2Selected bond lengths(nm)and angles(°)for the compounds 1 and 2

    Table 3Hydrogen bond parameters(°)for the compound 1

    Fig.2One-dimension chain of 1

    Fig.3Three-dimension structure of 1

    two and half free water molecules.As illustrated in Fig.4,Ni(Ⅱ)ion is located in a distorted octahedral geometry,coordinating with two N atoms(N1,N1A), two O atoms(O1,O1A)from two chelating HMPCA-anions,and two N atoms(N3,N4)from two pyz ligands.The equatorial position are occupied by O1, O1A,N1,and N1A atoms,proved by that the sum of the bond angles of O1A-Ni1-N1A(79.85(7)°),N1-Ni1-O1(79.85(7)°),N1-Ni1-O1A(100.15(7)°)and O1-Ni1-N1A(100.15(7)°)is equal to 360°,and N3 and N4 atoms are located in the axial positions(Table 2).The length of Ni-O bond are 0.207 04(18)nm,and the Ni-N bonds are in the range of 0.206 19(19)~0.216 6(3)nm, which are close to those Ni-O(Ni1-O1 0.209 80(13) nm),Ni-N(Ni1-N1 0.206 82(14)nm)in the reported Ni(Ⅱ)complex[Ni(HMPCA)2(ImH)2]·2H2O[24].Theaverage bond length of Ni-N is longer than that of Ni-O,showing that the strength of Ni(Ⅱ)ion coordinated with nitrogen atoms are weaker than that of oxygen atoms from HMPCA-ligands in 2.Adjacent Ni(Ⅱ)centers are linked by one pyz ligand in a bridging mode to form an infinite 1D chain(Fig.5),in which the Ni1…Ni1B separation is 0.709 2(2)nm.Five halves of solvent water molecules(O3,O3A,O4,O4A and O5)are not discussed about the hydrogen bond interactions.

    Fig.4Coordination environment of Ni(Ⅱ)ion in 2 with thermal ellipsoid at 30%probability level

    Fig.5One-dimension chain government of the coordination compound 2

    2.3Thermogravimetric analysis

    So as to examine the thermal stability of the compounds 1 and 2,the thermogravimetric analysis were carried out from ambient temperature up to 800℃(Fig.S2).For 1,the first weight loss of 8.89% between 50 and 206℃is attributed to the loss of lattice water molecules(Calcd.8.84%).The second degradation stage is in the range of 206~230℃with weight loss of 30.76%,corresponding to the loss of 4,4′-bpy molecules(Calcd.30.66%).The third degradation stage is in the range of 230~460℃, corresponding to the loss of HMPCA-ligands,and the remaining material finally degrades to CoO(Calcd. 14.71%,Found 14.96%).For 2,the first weight loss of 8.02%between 110 and 224℃is attributed to the loss of two lattice water molecules(Calcd.7.52%). The second degradation stage is in the range of 224~356℃with weight loss of 26.20%,corresponding to the loss of three lattice water molecules and one pyz molecule(Calcd.27.99%).Above 356℃,theremaining material decomposes gradually.

    2.4Powder X-ray diffraction

    ThePXRDpatternsoftitlecomplexesare measured at room temperature for checking the phase purity of the complexes(Fig.S3).The operating voltage and current were 60 kV and 300 mA,respectively. PeaksoftheexperimentalandsimulatedPXRD patterns are in accordance with each other,indicating the superior phase purity of the complexes.The dissimilarities in intensity may be on account of the preferredorientationofthecrystallinepowder samples.

    2.5Fluorescence properties

    The solid-state fluorescence of two complexes andfreeH2MPCAwereinvestigatedatroom temperature(Fig.S4).The strongest emission peaks for 1 and 2,and free ligand all appear at ca.425 nm (λex=376 nm).According to the position and band shape,the emission bands for 1 and 2 are very similar to that of the free ligand,indicating that the emission bands of complexes 1 and 2 may be attributable to the internal charge transfer(π→π*/n→π*transitions)of the ligand.

    2.6Magnetic properties

    Fig.6Temperature dependence of χMT((Ⅱ))and χM-1(○)for(1)

    Fig.7Temperature dependence of χMT((Ⅱ))and χM-1(○)for(2)

    With an applied magnetic field of 2 000 Oe,the variable-temperature(1.8~300K)magneticsusceptibility data were collected for a crystal sample of complexes 1 and 2(Fig.6,7).For complex 1,the experimental χMT value is 2.497 emu·K·mol-1,which is much larger than the spin-only value of 1.875 emu·K·mol-1for an uncoupled high-spin cobalt(Ⅱ)ion(with S=3/2), indicating that an important orbital contribution is involved.The χMT value is different from the value of 2.972 emu·K·mol-1for the complex{[Co(HMPCA)2(pyz)]·5H2O}n[25]and that of 2.985 emu·K·mol-1for the complex[Co(pyz)(H2O)4](NO3)2·2H2O[36],also different from the value of 2.1 emu·K·mol-1for[Co (acac)2(pyz)][38].AsshowninFig.6,whenthe temperatureislowered,theχMTvaluedecreases continuously to 1.443 emu·K·mol-1at 1.8 K.Such behavior suggests the existence of antiferromagnetic interaction behavior even if the single-ion effects, such as spin-orbit coupling,distortion from regular stereochemistry,electron delocalization,and crystal field mixing of excited states into the ground state, may also be present[39].The Curie-Weiss law(χM=C/ (T-θ))was used to fit the magnetic susceptibilities between 300 and 1.8 K.According to the fitting result,Curie constant of C=2.59 emu·K·mol-1and Weiss constant of θ=-8.67 K can be obtained, indicating further that a antiferromagnetic coupling between Co(Ⅱ)ions.For complex 2,the experimental χMT value at 300 K is 1.327 emu·K·mol-1,which is higher than that expected for spin-only value of Ni(Ⅱ)ion(1.0 emu·K·mol-1with g=2.0)(Fig.7).As the temperature lowers to 1.8 K,the χMT value increases slowly to a maximum of about 1.405 emu·K·mol-1at 30 K,then decreases rapidly to a value of 0.524 emu· K·mol-1at 1.8 K.This behavior suggests that ferromagnetic interactions are operating in 2 in the high-temperature region of 30~300 K,which origins frommagneticexchangeinteractionsNi(Ⅱ)ions between pyz ligand within the 1D chain.Similarferromagnetic interactions also exist in reported nickle complexes[Ni(SCN)2(pyrazine)2]nand[Ni(SCN)2(pyrazine)2][40].The sharp decrease of χMT value at lowertemperaturesmaybeaconsequenceof interchains antiferromagnetic interactions in the 3D lattice,which favor a long-range antiferromagnetic ordering.The magnetic susceptibilities above 30 K follow the Curie-Weiss law χM=C/(T-θ)with Curie constant of 1.32 emu·K·mol-1and Weiss constant of 1.935 K.The positive θ value also reveal the presence offerromagneticinteractionin2inthehightemperature region.The magnetic susceptibilities of 30~2 K follow the Curie-Weiss law with Curie constant of 1.548 emu·K·mol-1and Weiss constant of -3.482 K.The negative θ value also reveal the presence of antiferromagnetic interaction in 2 in the low-temperature region.

    3 Conclusions

    In summary,we have successfully synthesized two new complexes with infinite 1D chains,{[Co (HMPCA)2(4,4′-bpy)]2·5H2O}n(1)and{[Ni(HMPCA)2(pyz)]·5H2O}n(2)by the reaction of H2MPCA and N ancillary ligands with M(OAc)2·4H2O(M=Co,Ni) respectively.The emission bands of complexes 1 and 2 may be attributable to the intraligand π→π*/n→π* transitions.Magnetic properties of the complexes show that 1 exists the interaction of anti-ferromagnetism betweentwoadjacentmetalionsand2exists ferromagneticinteractioninthehigh-temperature region and antiferromagnetic interaction in the lowtemperature region.

    Supporting information is available at http://www.wjhxxb.cn

    References:

    [1]Cook T R,Zheng Y R,Stang P J.Chem.Rev.,2013,113(1): 734-777

    [2]Hu X Y,Xiao T X,Lin C,et al.Acc.Chem.Res.,2014,47 (7):2041-2051

    [3]Liu Q,Liu X X,Shi C D,et al.Dalton Trans.,2015,44: 19175-19184

    [4]Liu X X,Shi C D,Zhai C W,et al.ACS Appl.Mater. Interfaces,2016,8(7):4585-4591

    [5]Santra A,Senkovska I,Kaskel S,et al.Inorg.Chem.,2013, 52(13):7358-7366

    [6]Gipson T J,Beobide G,Castillo O,et al.Cryst.Growth Des., 2014,14(8):4019-4029

    [7]Hu S,He K H,Zeng M H,et al.Inorg.Chem.,2008,47(12): 5218-5224

    [8]Chatterjee B,Noveron C J,Resendiz E J M,et al.J.Am. Chem.Soc.,2004,126(34):10645-10656

    [9]Brown J C,Miller M G,Johnson W M,et al.J.Am.Chem. Soc.,2011,133(31):11964-11966

    [10]Hagen M C,Ludovic V P,Gábor L,et al.Organometallics, 2005,24(8):1819-1831

    [11]Gong Y N,Huang Y L,Jiang L,et al.Inorg.Chem., 2014,53(18):9457-9459

    [12]Ke F S,Wu Y S,Deng H.J.Solid State Chem.,2015,223: 109-121

    [13]Nagarathinam M,Saravanan K,Phua E J U,et al.Angew. Chem.,2012,124(24):5968-5972

    [14]Liu Q,Yu L L,Jiang L,et al.Inorg.Chem.,2013,52(6): 2817-2822

    [15]Hong M C,Zhao Y J,Su W P,et al.Angew.Chem.Int.Ed., 2000,39(14):2468-2470

    [16]Abrahams B F,Batten S R,Granna M J,et al.Angew. Chem.Int.Ed.,1999,38(10):1475-1477

    [17]Noro S,Kitaura R,Kondo M,et al.J.Am.Chem.Soc., 2002,124(11):2568

    [18]Dong Y B,Jiang Y Y,Li J,et al.J.Am.Chem.Soc., 2007,129(15):4520-4521

    [19]Wu S T,Long L S,Huang R B,et al.Cryst.Growth Des., 2007,7(9):1746-1752

    [20]BurrowsAD,CassarK,FriendRMW,etal. CrystEngComm,2005,7(89):548-550

    [21]Hu F L,Yin X H,Mi Y,et al.Inorg.Chem.Commun., 2009,12(7):628-631

    [22]Cheng M L,Han W,Liu Q,et al.J.Coord.Chem.,2014,67 (2):215-226

    [23]TANG Li-Zhi-Peng(唐李志鵬),YANG Ming-Wei(楊明煒), CHENG Mei-Ling(程美令),et al.Chinese J.Inorg.Chem. (無(wú)機(jī)化學(xué)學(xué)報(bào)),2015,31(3):603-610

    [24]HAN Wei(韓偉),CHENG Mei-Ling(程美令),LIU Qi(劉琦), et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2012,29(9): 1997-2004

    [25]REN Yan-Qiu(任艷秋),HAN Wei(韓偉),CHENG Mei-Ling (程美令),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2014,30(11):2635-2644

    [26]Du M,Zhang Z H,Guo W,et al.Cryst.Growth Des.,2009,9(4):1655-1657

    [27]Chen L T,Tao F,Wang L D,et al.Z.Anorg.Allg.Chem., 2013,639(3/4):552-557

    [28]Su S,Cheng M L,Ren Y Q,et al.Transition Met.Chem., 2014,39(5):559-566

    [29]Xia Q H,Ren Y Q,Cheng M L,et al.J.Coord.Chem., 2015,68(10):1688-1704

    [30]Wang L D,Tao F,Cheng M L,et al.J.Coord.Chem., 2012,65(6):923-933

    [31]Crane J D,Fox O D,Sinn E.J.Chem.Soc.,Dalton Trans., 1999(9):1461-1465

    [32]Sheldrick G M.SHELXS-97,Program for X-ray Crystal Structure Determination,University of G?ttingen,Germany, 1997.

    [33]Zhu E J,Liu Q,Chen Q,et al.J.Coord.Chem.,2009,62 (15):2449-2456

    [34]Liu Q,Li Y Z,Song Y,et al.J.Solid State Chem.,2004,177 (12):4701-4705

    [35]Nakamoto K.Infrared and Raman Spectra of Inorganic and Coordination Compounds.4th Ed.New York:Wiley,1986.

    [36]Holman K T,Hassan H H,Samih I,et al.Polyhedron, 2005,24(2):221-228

    [37]CHU Zhao-Jing(儲(chǔ)兆晶),BAI Xiao-Guang(白曉光),WANG Yu-Cheng(王玉成),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2014,30(4):945-951

    [38]Ma B Q,Gao S,Yi T,et al.Polyhedron,2001,20(11):1255-1261

    [39]Kahn O.Molecular Magnetism.Weinheim:VCH,1993.

    [40]Wriedt M,Je? I,N?ther C.Eur.J.Inorg.Chem.2009:1406-1413

    Syntheses,Crystal Structures and Properties of Cobalt(Ⅱ)and Nickel(Ⅱ)Complexes Based on 5-Methyl-1H-pyrazole-3-carboxylic Acid Ligand

    CHENG Mei-Ling*,1WANG Shen1TANG Li-Zhi-Peng1LIU Qi*,1,2
    (1School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University,Changzhou,Jiangsu 213164,China)
    (2State Key Laboratory of Coordination Chemistry,Nanjing University,Nanjing 210023,China)

    Two new 1D chain-typed coordination polymers,{[Co(HMPCA)2(4,4′-bpy)]2·5H2O}n(1)and {[Ni(HMPCA)2(pyz)]·5H2O}n(2)(H2MPCA=5-methyl-1H-pyrazole-3-carboxylic acid,4,4′-bpy=4,4′-bipyridine,pyz= pyrazine),have been synthesized and characterized by elemental analysis,IR spectra,single crystal X-ray diffraction and thermogravimetric analysis.Complex 1 crystallizes in the orthorhombic system,space group Pccn, and 2 crystallizes in the monoclinic system,space group P2/c.In 1 and 2,metal ions are both located in an octahedral geometry,coordinated by two nitrogen atoms and two oxygen atoms from two HMPCA-anions,and linked by two nitrogen atoms from 4,4′-bpy ligands(1)and pyz ligands(2),respectively,forming a 1D chaintyped coordination polymer.The thermal stability,luminescent properties and magnetic properties of them have also been investigated.CCDC:1445391,1;1445392,2.

    cobalt(Ⅱ);nickel(Ⅱ);5-methyl-1H-pyrazole-3-carboxylic acid;crystal structure;photoluminescence;magnetic properties

    圖分類號(hào):O614.81+2;O614.81+3A

    1001-4861(2016)08-1457-10

    10.11862/CJIC.2016.184

    2016-04-01。收修改稿日期:2016-06-02。

    國(guó)家自然科學(xué)基金(No.21101018,20971060)、江蘇省高校自然科學(xué)研究面上項(xiàng)目(No.13KJB150001)、南京大學(xué)配位化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開放課題和江蘇省先進(jìn)催化與綠色制造協(xié)同創(chuàng)新中心創(chuàng)新型人才支持項(xiàng)目資助。

    *通信聯(lián)系人。E-mail:chengmeiling01@163.com;liuqi62@163.com;Tel:0519-86330185;會(huì)員登記號(hào):S060018987P。

    猜你喜歡
    吡唑配位甲酸
    蕓苔素內(nèi)酯與吡唑醚菌酯在小麥上的應(yīng)用技術(shù)
    [Zn(Hcpic)·(H2O)]n配位聚合物的結(jié)構(gòu)與熒光性能
    蕓苔素內(nèi)酯與吡唑醚菌酯在玉米上的應(yīng)用技術(shù)
    德不配位 必有災(zāi)殃
    甲酸治螨好處多
    甲酸鹽鉆井液完井液及其應(yīng)用之研究
    新型多氟芳烴-并H-吡唑并[5,1-α]異喹啉衍生物的合成
    兩個(gè)具stp三維拓?fù)錁?gòu)型的稀土配位聚合物{[Ln2(pda)3(H2O)2]·2H2O}n(Ln=Nd,La)
    基于環(huán)己烷甲酸根和2,2′-聯(lián)吡啶配體的雙核錳(Ⅱ)配合物的合成與表征
    光氣法合成二乙二醇雙氯甲酸酯
    河南科技(2014年12期)2014-02-27 14:10:32
    另类亚洲欧美激情| 狠狠婷婷综合久久久久久88av| 国产亚洲av高清不卡| 久久综合国产亚洲精品| 如日韩欧美国产精品一区二区三区| 日韩精品免费视频一区二区三区| 五月天丁香电影| 一本色道久久久久久精品综合| 免费观看人在逋| h视频一区二区三区| 国产老妇伦熟女老妇高清| 夜夜夜夜夜久久久久| 免费观看人在逋| 国产成人系列免费观看| 亚洲午夜精品一区,二区,三区| 制服人妻中文乱码| 成人国产av品久久久| 久久热在线av| 久久香蕉激情| 国产欧美亚洲国产| 久久精品国产亚洲av香蕉五月 | 一区二区三区四区激情视频| 多毛熟女@视频| 亚洲精品久久久久久婷婷小说| 国产欧美亚洲国产| 精品国产一区二区三区四区第35| 亚洲专区国产一区二区| 国产精品一区二区免费欧美 | 国产精品熟女久久久久浪| 熟女少妇亚洲综合色aaa.| 久久av网站| 国产欧美日韩一区二区三区在线| 午夜视频精品福利| 亚洲国产毛片av蜜桃av| 国产又色又爽无遮挡免| 国产精品二区激情视频| 午夜免费观看性视频| 国产xxxxx性猛交| 久久国产精品男人的天堂亚洲| 热re99久久精品国产66热6| 飞空精品影院首页| 国产欧美日韩一区二区三区在线| 在线亚洲精品国产二区图片欧美| 国产精品一二三区在线看| 国产精品久久久久成人av| 50天的宝宝边吃奶边哭怎么回事| 十分钟在线观看高清视频www| 亚洲国产精品一区二区三区在线| 黄片小视频在线播放| 亚洲伊人色综图| 少妇 在线观看| 丝袜美足系列| 国产精品亚洲av一区麻豆| 久久天躁狠狠躁夜夜2o2o| 91麻豆精品激情在线观看国产 | 日日摸夜夜添夜夜添小说| bbb黄色大片| 国产免费福利视频在线观看| 宅男免费午夜| 成人av一区二区三区在线看 | 精品人妻1区二区| 色老头精品视频在线观看| 久久人人爽av亚洲精品天堂| 两性夫妻黄色片| www.av在线官网国产| 在线观看人妻少妇| 亚洲精品第二区| 五月天丁香电影| 免费日韩欧美在线观看| 美女福利国产在线| 色视频在线一区二区三区| 夫妻午夜视频| 国产麻豆69| 这个男人来自地球电影免费观看| 国产一区二区三区综合在线观看| 欧美精品高潮呻吟av久久| 热re99久久精品国产66热6| 国产老妇伦熟女老妇高清| netflix在线观看网站| 天堂8中文在线网| 老司机午夜福利在线观看视频 | 国产亚洲一区二区精品| 亚洲欧美清纯卡通| 91九色精品人成在线观看| 正在播放国产对白刺激| 老司机午夜福利在线观看视频 | 国产成人系列免费观看| 午夜精品国产一区二区电影| 国产精品1区2区在线观看. | 热re99久久精品国产66热6| 高清欧美精品videossex| 亚洲国产精品一区三区| av网站在线播放免费| 国产一区二区在线观看av| 欧美日韩成人在线一区二区| 美女大奶头黄色视频| 亚洲精品日韩在线中文字幕| 少妇裸体淫交视频免费看高清 | 久久久久精品人妻al黑| 国产有黄有色有爽视频| 国产伦理片在线播放av一区| 另类亚洲欧美激情| 日本欧美视频一区| av线在线观看网站| 女人高潮潮喷娇喘18禁视频| 人妻 亚洲 视频| 精品亚洲乱码少妇综合久久| 动漫黄色视频在线观看| 九色亚洲精品在线播放| 日韩免费高清中文字幕av| 少妇 在线观看| 性色av一级| 美女国产高潮福利片在线看| 午夜91福利影院| 50天的宝宝边吃奶边哭怎么回事| 免费久久久久久久精品成人欧美视频| 热99re8久久精品国产| 91国产中文字幕| 日韩大码丰满熟妇| 美女大奶头黄色视频| 69av精品久久久久久 | 精品一品国产午夜福利视频| 亚洲国产毛片av蜜桃av| 精品人妻1区二区| 天天躁夜夜躁狠狠躁躁| 亚洲熟女毛片儿| 亚洲欧美日韩另类电影网站| 五月天丁香电影| 国产免费一区二区三区四区乱码| 国产99久久九九免费精品| 高清av免费在线| 亚洲成国产人片在线观看| 又大又爽又粗| 最近中文字幕2019免费版| 精品国产一区二区三区四区第35| 99久久人妻综合| 下体分泌物呈黄色| 91大片在线观看| 人妻久久中文字幕网| 后天国语完整版免费观看| 91av网站免费观看| 久久久精品免费免费高清| 纯流量卡能插随身wifi吗| 老司机影院成人| xxxhd国产人妻xxx| 国产激情久久老熟女| 国产熟女午夜一区二区三区| 免费女性裸体啪啪无遮挡网站| 热99久久久久精品小说推荐| 成人国产一区最新在线观看| 亚洲成国产人片在线观看| 汤姆久久久久久久影院中文字幕| 亚洲精品国产精品久久久不卡| 老汉色av国产亚洲站长工具| 国产亚洲av片在线观看秒播厂| 国产精品国产三级国产专区5o| 老司机在亚洲福利影院| 国产成人免费无遮挡视频| 中文字幕最新亚洲高清| 操美女的视频在线观看| 国产极品粉嫩免费观看在线| 欧美精品人与动牲交sv欧美| 国产精品一区二区在线观看99| 午夜福利一区二区在线看| 好男人电影高清在线观看| 亚洲av成人一区二区三| 色播在线永久视频| 正在播放国产对白刺激| 一本色道久久久久久精品综合| 欧美日韩福利视频一区二区| 99香蕉大伊视频| 亚洲精品日韩在线中文字幕| 欧美精品一区二区大全| 91av网站免费观看| 日韩三级视频一区二区三区| 美女中出高潮动态图| 亚洲国产欧美日韩在线播放| 纯流量卡能插随身wifi吗| 国产一级毛片在线| 下体分泌物呈黄色| 国产精品熟女久久久久浪| 搡老熟女国产l中国老女人| 国产高清videossex| 中文欧美无线码| 欧美在线一区亚洲| 免费在线观看完整版高清| 欧美日韩中文字幕国产精品一区二区三区 | 黄色毛片三级朝国网站| 人人澡人人妻人| 亚洲精品久久午夜乱码| www.熟女人妻精品国产| 一本—道久久a久久精品蜜桃钙片| 午夜福利在线观看吧| 国产男女超爽视频在线观看| 他把我摸到了高潮在线观看 | 满18在线观看网站| 亚洲成人免费av在线播放| 久热爱精品视频在线9| 少妇人妻久久综合中文| 久久这里只有精品19| 亚洲天堂av无毛| 国产麻豆69| 日本vs欧美在线观看视频| 亚洲国产av新网站| 国产精品成人在线| 国产成人一区二区三区免费视频网站| 国产精品亚洲av一区麻豆| 老司机午夜福利在线观看视频 | 三上悠亚av全集在线观看| 亚洲午夜精品一区,二区,三区| 又紧又爽又黄一区二区| 精品福利观看| 国精品久久久久久国模美| 国产高清国产精品国产三级| 国产熟女午夜一区二区三区| 汤姆久久久久久久影院中文字幕| 91av网站免费观看| 成年人黄色毛片网站| 日韩有码中文字幕| 波多野结衣一区麻豆| 成人黄色视频免费在线看| 美女主播在线视频| 亚洲av男天堂| 国产精品成人在线| 午夜福利影视在线免费观看| 亚洲精品久久久久久婷婷小说| 永久免费av网站大全| 亚洲av国产av综合av卡| 狠狠狠狠99中文字幕| 国产一区二区三区在线臀色熟女 | 国产97色在线日韩免费| 日本一区二区免费在线视频| 嫁个100分男人电影在线观看| 久久免费观看电影| 国产一区二区三区在线臀色熟女 | 久久久国产欧美日韩av| 另类精品久久| 国产日韩欧美视频二区| 热re99久久国产66热| 亚洲情色 制服丝袜| 欧美大码av| 美女扒开内裤让男人捅视频| 婷婷丁香在线五月| 一本色道久久久久久精品综合| 久久ye,这里只有精品| 国产成人a∨麻豆精品| 美女福利国产在线| 精品卡一卡二卡四卡免费| 国产1区2区3区精品| 一级毛片电影观看| 色综合欧美亚洲国产小说| 成人国产av品久久久| 麻豆乱淫一区二区| 五月天丁香电影| 女性被躁到高潮视频| 女人爽到高潮嗷嗷叫在线视频| 日日夜夜操网爽| 天堂8中文在线网| 视频区图区小说| 久9热在线精品视频| 国产精品偷伦视频观看了| 欧美精品人与动牲交sv欧美| 亚洲av欧美aⅴ国产| 久久精品人人爽人人爽视色| 日韩熟女老妇一区二区性免费视频| 亚洲av美国av| 欧美亚洲日本最大视频资源| av在线老鸭窝| 午夜精品国产一区二区电影| 午夜免费成人在线视频| 日韩免费高清中文字幕av| 热99国产精品久久久久久7| 国产无遮挡羞羞视频在线观看| 三上悠亚av全集在线观看| 亚洲av成人不卡在线观看播放网 | 19禁男女啪啪无遮挡网站| 少妇被粗大的猛进出69影院| 国产精品久久久人人做人人爽| av视频免费观看在线观看| 日韩精品免费视频一区二区三区| 免费黄频网站在线观看国产| 国产无遮挡羞羞视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 搡老岳熟女国产| 久热这里只有精品99| 大陆偷拍与自拍| 免费看十八禁软件| 欧美在线一区亚洲| 精品欧美一区二区三区在线| 精品国内亚洲2022精品成人 | 男女之事视频高清在线观看| 国产精品成人在线| 中文欧美无线码| 亚洲熟女精品中文字幕| 亚洲五月婷婷丁香| 中文字幕人妻熟女乱码| 一级,二级,三级黄色视频| a级毛片在线看网站| 精品国产乱码久久久久久男人| 国产在线免费精品| 国产精品香港三级国产av潘金莲| 少妇 在线观看| 久久久久久免费高清国产稀缺| 国产精品国产三级国产专区5o| 热re99久久精品国产66热6| 老司机靠b影院| 国产日韩欧美在线精品| 日韩视频在线欧美| 精品视频人人做人人爽| 国产成人系列免费观看| 91成人精品电影| 亚洲第一青青草原| 深夜精品福利| av有码第一页| 最近最新中文字幕大全免费视频| 丝袜人妻中文字幕| 男人操女人黄网站| 国产成人欧美在线观看 | 日韩有码中文字幕| 十分钟在线观看高清视频www| 欧美日韩亚洲国产一区二区在线观看 | 国产成人a∨麻豆精品| a级毛片黄视频| 亚洲精品成人av观看孕妇| 国产精品熟女久久久久浪| 日韩免费高清中文字幕av| 中文字幕精品免费在线观看视频| 欧美乱码精品一区二区三区| 精品国产超薄肉色丝袜足j| 亚洲成人免费电影在线观看| 老司机靠b影院| 女人高潮潮喷娇喘18禁视频| 日韩精品免费视频一区二区三区| 欧美黑人欧美精品刺激| 国产亚洲欧美在线一区二区| 少妇裸体淫交视频免费看高清 | 国产成人av教育| 久久久国产一区二区| 黑人欧美特级aaaaaa片| 久久精品国产综合久久久| 国产老妇伦熟女老妇高清| 免费在线观看影片大全网站| 天堂俺去俺来也www色官网| 纯流量卡能插随身wifi吗| 美女午夜性视频免费| 亚洲精品美女久久久久99蜜臀| 黄频高清免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成国产人片在线观看| 久久午夜综合久久蜜桃| 高清欧美精品videossex| 无遮挡黄片免费观看| 欧美黑人精品巨大| 色94色欧美一区二区| 欧美亚洲 丝袜 人妻 在线| 美女扒开内裤让男人捅视频| 亚洲 欧美一区二区三区| 在线 av 中文字幕| 飞空精品影院首页| 一个人免费看片子| 日韩熟女老妇一区二区性免费视频| 满18在线观看网站| 欧美另类亚洲清纯唯美| 国产精品久久久久久精品古装| 国产一卡二卡三卡精品| 黄频高清免费视频| 国产成人免费观看mmmm| 秋霞在线观看毛片| 日韩欧美一区二区三区在线观看 | 国产精品熟女久久久久浪| 狠狠精品人妻久久久久久综合| 午夜免费观看性视频| 蜜桃在线观看..| 国产成人精品在线电影| 久久久久久久久久久久大奶| 十分钟在线观看高清视频www| 亚洲精品久久午夜乱码| 狂野欧美激情性bbbbbb| 国产无遮挡羞羞视频在线观看| 精品亚洲成a人片在线观看| 亚洲精品美女久久av网站| 久久久久国内视频| 少妇人妻久久综合中文| 黄色毛片三级朝国网站| 丰满饥渴人妻一区二区三| 精品亚洲成a人片在线观看| 国产精品久久久久久精品古装| 精品人妻1区二区| www.999成人在线观看| 亚洲性夜色夜夜综合| 深夜精品福利| 99国产综合亚洲精品| 黄片小视频在线播放| 成人亚洲精品一区在线观看| 久久99一区二区三区| 最新在线观看一区二区三区| 久久国产精品人妻蜜桃| 50天的宝宝边吃奶边哭怎么回事| 久久国产精品影院| 1024香蕉在线观看| 成年人黄色毛片网站| 免费久久久久久久精品成人欧美视频| 精品一区二区三区av网在线观看 | 少妇的丰满在线观看| 国产亚洲一区二区精品| 亚洲精品在线美女| 午夜免费成人在线视频| 捣出白浆h1v1| 欧美精品一区二区大全| 最新在线观看一区二区三区| 啦啦啦中文免费视频观看日本| 久久久久国产精品人妻一区二区| 性色av一级| 午夜福利一区二区在线看| 国产精品.久久久| 亚洲精品久久久久久婷婷小说| 亚洲精品日韩在线中文字幕| 亚洲国产av影院在线观看| 成人影院久久| 777久久人妻少妇嫩草av网站| 婷婷色av中文字幕| 国产精品久久久人人做人人爽| 黄色视频不卡| 亚洲av国产av综合av卡| 制服诱惑二区| 亚洲精品乱久久久久久| 色视频在线一区二区三区| 不卡av一区二区三区| 国产日韩欧美视频二区| 青春草视频在线免费观看| 国产一区二区三区在线臀色熟女 | 麻豆av在线久日| 狂野欧美激情性xxxx| 黄色毛片三级朝国网站| 欧美日韩黄片免| 一区福利在线观看| 国产亚洲精品久久久久5区| 视频区图区小说| 丰满迷人的少妇在线观看| 老熟妇乱子伦视频在线观看 | 天天躁日日躁夜夜躁夜夜| 国产精品国产三级国产专区5o| 国产淫语在线视频| 人人妻人人澡人人爽人人夜夜| 久久久久久亚洲精品国产蜜桃av| 国产成人免费无遮挡视频| 午夜视频精品福利| 成人av一区二区三区在线看 | 大香蕉久久成人网| svipshipincom国产片| 日韩 亚洲 欧美在线| 涩涩av久久男人的天堂| 亚洲成人国产一区在线观看| 捣出白浆h1v1| 国产一区二区三区在线臀色熟女 | 久久久水蜜桃国产精品网| 捣出白浆h1v1| 国产亚洲精品久久久久5区| 母亲3免费完整高清在线观看| 一区二区三区精品91| 欧美日韩视频精品一区| 午夜老司机福利片| 人人妻人人添人人爽欧美一区卜| 亚洲欧美日韩高清在线视频 | 久久久欧美国产精品| 精品人妻熟女毛片av久久网站| 90打野战视频偷拍视频| 母亲3免费完整高清在线观看| 18禁裸乳无遮挡动漫免费视频| 久久久久网色| 久久久欧美国产精品| 91国产中文字幕| 免费在线观看日本一区| 国产精品影院久久| 中文字幕人妻丝袜制服| 成人三级做爰电影| 亚洲国产精品成人久久小说| 国产真人三级小视频在线观看| 超色免费av| 亚洲精品久久午夜乱码| 亚洲国产毛片av蜜桃av| 久久久久久久久久久久大奶| 人人妻人人澡人人看| 女人爽到高潮嗷嗷叫在线视频| av线在线观看网站| 成年人免费黄色播放视频| 日本一区二区免费在线视频| 精品少妇内射三级| 日韩制服丝袜自拍偷拍| 中文字幕人妻丝袜一区二区| 国产精品偷伦视频观看了| 青春草亚洲视频在线观看| 纯流量卡能插随身wifi吗| 天天添夜夜摸| 欧美一级毛片孕妇| 97精品久久久久久久久久精品| 欧美av亚洲av综合av国产av| 免费女性裸体啪啪无遮挡网站| 黑人欧美特级aaaaaa片| 亚洲精品一区蜜桃| 国产成人精品久久二区二区91| 久久99热这里只频精品6学生| 999久久久国产精品视频| 少妇裸体淫交视频免费看高清 | 久久久国产欧美日韩av| 国产精品自产拍在线观看55亚洲 | 搡老乐熟女国产| 韩国高清视频一区二区三区| 成人免费观看视频高清| 亚洲成国产人片在线观看| 热99国产精品久久久久久7| 80岁老熟妇乱子伦牲交| 成人黄色视频免费在线看| 国产亚洲精品一区二区www | 国产又色又爽无遮挡免| av超薄肉色丝袜交足视频| 国产一区二区 视频在线| 999精品在线视频| 国产精品九九99| 欧美一级毛片孕妇| 国产亚洲一区二区精品| 日本黄色日本黄色录像| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费鲁丝| 欧美+亚洲+日韩+国产| 欧美日韩亚洲综合一区二区三区_| 国产成人啪精品午夜网站| 国产老妇伦熟女老妇高清| 国产av一区二区精品久久| 男女边摸边吃奶| 丁香六月欧美| 日本五十路高清| cao死你这个sao货| 欧美大码av| 九色亚洲精品在线播放| h视频一区二区三区| 1024视频免费在线观看| 青春草亚洲视频在线观看| 国产精品免费视频内射| av有码第一页| 成人国语在线视频| 亚洲精品成人av观看孕妇| 国产三级黄色录像| 爱豆传媒免费全集在线观看| 亚洲欧美精品综合一区二区三区| 亚洲国产精品999| 操美女的视频在线观看| 日韩免费高清中文字幕av| 国产主播在线观看一区二区| 最黄视频免费看| 久久久久网色| 一本一本久久a久久精品综合妖精| 国产成人av教育| 一区二区三区乱码不卡18| 日韩三级视频一区二区三区| 亚洲欧洲日产国产| 成人国产一区最新在线观看| 国产成人精品久久二区二区91| 天堂8中文在线网| 日韩中文字幕欧美一区二区| 亚洲九九香蕉| 中文字幕最新亚洲高清| 免费少妇av软件| 久久久国产成人免费| a 毛片基地| 国产成人精品在线电影| 亚洲人成电影免费在线| 手机成人av网站| 视频在线观看一区二区三区| 亚洲欧美日韩高清在线视频 | 国产精品国产三级国产专区5o| 日本a在线网址| 人人澡人人妻人| 亚洲精品一二三| 日韩制服骚丝袜av| 建设人人有责人人尽责人人享有的| 在线精品无人区一区二区三| 成人国产av品久久久| 美女高潮喷水抽搐中文字幕| 18禁黄网站禁片午夜丰满| 亚洲av电影在线观看一区二区三区| 动漫黄色视频在线观看| 国产伦人伦偷精品视频| 看免费av毛片| 国产精品香港三级国产av潘金莲| 成人手机av| 啦啦啦中文免费视频观看日本| 天天影视国产精品| 久久香蕉激情| 精品国产国语对白av| 五月开心婷婷网| 午夜成年电影在线免费观看| 日韩制服丝袜自拍偷拍| 黄频高清免费视频| 国产99久久九九免费精品| 亚洲成人免费av在线播放| 大香蕉久久成人网| 夜夜骑夜夜射夜夜干| 久久中文看片网| 亚洲精品乱久久久久久| 亚洲精品中文字幕在线视频| 欧美精品人与动牲交sv欧美| 国产精品免费大片| 午夜福利视频在线观看免费| 少妇人妻久久综合中文| 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕| 97精品久久久久久久久久精品| 国产一区二区三区av在线| 一级a爱视频在线免费观看| 一二三四社区在线视频社区8| 亚洲精品乱久久久久久| 国产又爽黄色视频| 亚洲伊人久久精品综合| 动漫黄色视频在线观看|