周 瑜,劉佳佳,張盼盼,屈 洋,張驥如飛,朱明旗,馮佰利
(1西北農林科技大學農學院/旱區(qū)作物逆境生物學國家重點實驗室,陜西楊凌 712100;2黑龍江八一農墾大學/國家雜糧工程技術中心,黑龍江大慶 163319;3陜西省寶雞市農業(yè)科學研究所,陜西岐山 722400)
糜子葉片防御酶系及抗氧化物質對黑穗病菌脅迫的響應
周 瑜1,劉佳佳1,張盼盼2,屈 洋3,張驥如飛1,朱明旗1,馮佰利1
(1西北農林科技大學農學院/旱區(qū)作物逆境生物學國家重點實驗室,陜西楊凌 712100;2黑龍江八一農墾大學/國家雜糧工程技術中心,黑龍江大慶 163319;3陜西省寶雞市農業(yè)科學研究所,陜西岐山 722400)
【目的】黑穗病是威脅糜子產(chǎn)量的重要病害,防治黑穗病最有效的方法是種植抗病品種。本研究測定黑穗病菌脅迫對糜子葉片防御酶系活性及抗氧化物質含量的影響,篩選鑒定糜子黑穗病抗性的生理生化指標,為選育抗黑穗病的糜子品種提供理論支撐?!痉椒ā恳圆煌幼淤Y源為材料,田間種植條件下采用種子飽和接種法接種黑穗病菌,2012—2013年進行糜子黑穗病抗性鑒定,篩選不同抗性的糜子品種。2014年研究不同抗性糜子苗期(SS)、拔節(jié)期(ES)、抽穗期(HS)、灌漿期(FS)葉片防御酶系及抗氧化物質對黑穗病菌脅迫的響應,防御酶系測定苯丙氨酸解氨酶(PAL)、抗壞血酸過氧化物酶(APX)、谷胱甘肽還原酶(GR)活性,抗氧化物質測定抗壞血酸(AsA)、還原型谷胱甘肽(GSH)含量?!窘Y果】經(jīng)連續(xù)兩年糜子黑穗病抗性鑒定,黑虼蚤(R1)、驢駝川(R2)和小麥糜子(R3)平均發(fā)病率分別為0、0和0.73%,為抗病品種;黃硬黍(S1)、寧04-262(S2)和Ym0965(S3)平均發(fā)病率分別為19.71%、19.86%和32.28%,為感病品種。接種糜子黑穗病菌后,感病品種糜子葉片PAL活性變化幅度大于抗病品種,表現(xiàn)在拔節(jié)期PAL活性為3 610.8 U·g-1FW,顯著高于抗病品種的2 520.7 U·g-1FW,而灌漿期為2 425.0 U·g-1FW,顯著低于抗病品種的2946.0 U·g-1FW。抗、感品種糜子葉片APX活性均呈先降低后升高的變化趨勢,拔節(jié)期顯著最低;感病品種糜子葉片APX活性在抽穗期和灌漿期(分別為461.1 U·g-1FW和516.7 U·g-1FW)顯著高于抗病品種(分別為361.5 U·g-1FW和428.2 U·g-1FW)。2類品種葉片GR活性變化呈先升高后降低趨勢,抽穗期GR活性顯著高于其他3個時期;且抽穗期感病品種葉片GR活性顯著高于抗病品種,其中感病和抗病品種糜子葉片平均GR活性分別為271.9和167.4 U·g-1FW。糜子受黑穗病菌脅迫后,6個品種葉片AsA含量在147.7—344.8 μg·g-1FW范圍內波動,無明顯規(guī)律,且抗、感品種間無顯著差異??共∑贩N糜子葉片GSH含量從苗期到抽穗期顯著降低后到灌漿期又顯著升高,而感病品種糜子葉片GSH含量從苗期到抽穗期顯著降低后到灌漿期并無顯著變化,并且灌漿期抗病品種葉片GSH含量為984.7 μg·g-1FW,顯著高于感病品種的676.0 μg·g-1FW?!窘Y論】不同糜子品種對黑穗病的抗性不同,黑穗病菌脅迫可引起糜子葉片防御酶活性及抗氧化物質含量變化,拔節(jié)期和灌漿期PAL活性、抽穗期和灌漿期APX活性、抽穗期GR活性、灌漿期GSH含量在抗病品種和感病品種間存在顯著差異,可作為鑒定糜子對黑穗病抗性的生理生化指標。
糜子;黑穗??;防御酶系;抗氧化物質
【研究意義】糜子(Panicum miliaceum L.)生育期短、耐旱、耐瘠薄,生育時期與降雨季節(jié)相吻合,水分利用效率較高,在干旱半干旱地區(qū)糧食生產(chǎn)和種植業(yè)結構調整中具有重要意義[1-2]。糜子營養(yǎng)豐富、藥食同源,在現(xiàn)代功能性食品開發(fā)中具有很大潛力[3-4],消費量不斷增加。但是在中國糜子的主要生產(chǎn)地區(qū),黑穗病是威脅糜子產(chǎn)量的重要因素,發(fā)病率一般在5%—10%,病情嚴重的地區(qū)發(fā)病率高達40%[5],嚴重影響糜子產(chǎn)量。目前,糜子主產(chǎn)地區(qū)多采用藥劑拌種和輪作等農藝措施防治糜子黑穗病,但是選育抗病品種是最經(jīng)濟有效的防治途徑[6]。糜子品種抗病性的選擇主要是通過品種育成后進行抗病性鑒定,其在選育過程中沒有進行相關的抗病性生理生化指標的鑒定,因此,糜子品種選育對主要病害的抗性沒有針對性。確定抗病品種對糜子黑穗病侵染保護機制的生理生化指標,對糜子抗黑穗病品種選育具有重要意義?!厩叭搜芯窟M展】植物可通過自身物理或化學的屏障、防御基因的表達和相關酶的激活實現(xiàn)對病害的抗性[7-10]。研究表明,當植物受到病原菌侵染后,酚類氧化酶的活性會發(fā)生變化,與植物的抗病性密切相關[10-11]。苯丙氨酸解氨酶(phenylalanice ammonia lyase, PAL)是一種常見的酚類氧化酶,是苯丙烷代謝途徑的關鍵酶和限速酶,催化L-苯丙氨酸產(chǎn)生肉桂酸,肉桂酸是重要的次級代謝產(chǎn)物,是酚類、植保素、木質素合成前體,因此,PAL能發(fā)揮重要的抗病作用[7,9,13-14]。另外,病原菌脅迫[15-16]如同非生物脅迫[17-20]都會導致植物體內活性氧的產(chǎn)生和消除平衡遭到破壞,對細胞造成傷害,為減輕活性氧的傷害,植物體內存在一系列復雜的防御體系,包括超氧化物歧化酶(superoxide dismutase,SOD)、過氧化物酶(peroxidase,POD)、抗壞血酸過氧化物酶(ascorbate peroxidase,APX)、谷胱甘肽還原酶(glutathione reductase,GR)等抗氧化保護酶系及抗壞血酸(ascorbate,AsA)、還原型谷胱甘肽(reduced glutathione,GSH)等抗氧化物質,抗氧化保護酶系和抗氧化物質協(xié)同作用,在直接和間接消除活性氧毒害中發(fā)揮重要作用。SOD是應對活性氧脅迫的第一道防線[21],它催化超氧陰離子形成過氧化氫和氧氣,產(chǎn)生的過氧化氫進而由POD等酶清除[22]。張驥如飛等[23]研究發(fā)現(xiàn),糜子接種黑穗病菌后苗期葉片SOD活性升高,POD活性變化規(guī)律不同,并且SOD活性和POD活性與黑穗病發(fā)病率呈負相關關系。APX、GR、AsA、GSH是抗壞血酸——谷胱甘肽循環(huán)中清除活性氧的重要物質,該循環(huán)中,APX是第一個關鍵酶,它利用AsA作為電子供體催化氧化還原反應來消除過氧化氫,AsA生成脫氫抗壞血酸(dehydroascorbate,DHA),GSH與DHA反應生成AsA和氧化型谷胱甘肽(oxidised glutathione,GSSG);GR是該循環(huán)中最后一個關鍵酶,它消耗NADPH催化GSSG再生成GSH[24-25]。此外,作為重要的抗氧化劑,AsA和GSH可以直接清除活性氧[26-27],還有研究表明AsA可參與信號轉導誘導植物抗病性[28-29],GSH是維持細胞氧化還原平衡的重要成分,參與誘導防衛(wèi)基因的表達[15]。【本研究切入點】目前,關于糜子黑穗病的研究停留在抗病資源的鑒定和防治方法方面,對糜子黑穗病抗性的生理生化機制和關鍵生理指標尚不明確。針對糜子接種黑穗病菌后葉片防御酶活性及抗氧化物質含量的研究報道較少,尤其是PAL、APX、GR活性的變化及AsA、GSH含量的變化尚未見報道?!緮M解決的關鍵問題】本研究以不同糜子資源為材料,田間種植條件下采用種子飽和接種法接種黑穗病菌冬孢子,進行黑穗病抗性鑒定,篩選不同抗性糜子品種,進而研究其不同生育時期葉片防御酶PAL、APX、GR活性變化及抗氧化物質AsA、 GSH含量變化,探究糜子黑穗病的抗性機制,篩選鑒定糜子黑穗病抗性的生理生化指標,為糜子抗黑穗病品種選育提供依據(jù)。
1.1 材料
供試糜子材料為小雜糧課題組從國內外收集的430份糜子資源及區(qū)域試驗品種。供試病原菌為糜子黑穗病菌冬孢子,采于山西大同田間發(fā)病植株,將冬孢子堆采下后陰干保存,拌種前過篩。
1.2 試驗設計
試驗于2012—2014年在西北農林科技大學農作一站進行,采用種子飽和接種法接種黑穗病菌冬孢子。2012—2013年對糜子資源進行田間黑穗病抗性鑒定,篩選出6個抗病差異顯著的品種,于2014年進行生理指標測定,即在糜子生長的苗期、拔節(jié)期、抽穗期、灌漿期取樣,每個重復隨機選擇3株糜子剪取整株葉片混合,樣品置于冰盒帶回實驗室后保存于-40℃冰箱。試驗均在大田條件下種植,3次重復。
1.3 酶液提取
酶液提取時隨機選取已混合的糜子葉片,擦干表面水分,去除主脈,剪碎混勻,稱取約0.5 g,在預冷的研缽中加液氮研磨,加入預冷緩沖液在冰浴中研磨成勻漿后定容(PAL的提取采用0.1 mol·L-1硼酸緩沖液,定容至10 mL;APX的提取采用50 mmol·L-1的PBS緩沖液,內含1 mmol·L-1的EDTA和1 mmol·L-1的AsA,定容至5 mL;GR的提取采用0.1 mol·L-1的Tricine-NaOH緩沖液,定容至5 mL),在4℃下10 000 r/min離心15 min,上清液即為待測酶液,于4℃保存?zhèn)溆谩?/p>
1.4 PAL活性測定
參照高俊鳳[30]的方法。反應體系為4 mL,包括0.02 mol·L-1L-苯丙氨酸1.0 mL、0.1 mol·L-1硼酸緩沖液(pH8.8)2.0 mL、稀釋10倍的酶液1.0 mL,搖勻后置于30℃恒溫水浴中保溫反應60 min,之后加入6 mol·L-1HCl溶液0.2 mL終止反應,在290 nm波長處測定吸光度A290nm值。以反應液每小時A290nm增加0.01為一個酶活單位(U),結果表示為U·g-1FW。
1.5 APX活性測定
采用抗壞血酸氧化法[31]。取酶液0.1 mL,依次加入50 mmol·L-1的PBS緩沖液(pH7.0)1.8 mL、15mmol·L-1的AsA溶液0.1 mL、0.3 mmol·L-1的H2O21 mL。對照以0.1 mL的蒸餾水代替酶液。加入0.3 mmol·L-1的H2O2后立即用分光光度計測定10—60 s內A290nm值的變化。以1 min內A290nm值變化0.01定義為1個酶活單位(U),結果表示為U·g-1FW。
1.6 GR活性測定
采用輔酶Ⅱ法[31]稍作改變。反應體系為3 mL,依次加入1 mmol·L-1的NADPH溶液 0.3 mL、0.1mol·L-1的Tricine-NaOH緩沖液1.8 mL、稀釋10倍的酶液0.6 mL、5 mmol·L-1的GSSG溶液0.3 mL,測定A340nm值的變化。以1 min內A340nm值變化0.01定義為1個酶活單位(U),結果表示為U·g-1FW。
1.7 AsA含量測定
采用二聯(lián)吡啶法[31]并稍作改變。首先制作標準曲線,即配制不同濃度梯度的AsA標準液(0、0.1、0.2、0.3、0.4、0.5、0.6和0.7 mmol·L-1),分別取不同濃度的AsA標準液20 μL于不同的試管,之后分別加入150 mmol·L-1的NaH2PO4溶液200 μL、H2O 200 μL,混勻,30 s后再加入10%的TCA溶液400 μL、44% H3PO4溶液400 μL、4% 2,2-二聯(lián)吡啶溶液400 μL、3% FeCl3溶液200 μL,混勻后在37℃水浴中保溫反應60 min,測定A525nm值。結果以AsA濃度為橫坐標,A525nm值為縱坐標繪制標準曲線。AsA提取時將糜子葉片去除葉脈后剪碎混勻,稱取約0.5 g,在預冷的研缽中加液氮研磨,加入5%三氯乙酸5 mL,研磨成勻漿,之后15 000 r/min離心10 min,上清液定容至5 mL即為提取液。AsA含量測定時取提取液0.25 mL,測定方法同上,測定A525nm值根據(jù)標準曲線計算AsA含量,結果表示為μg·g-1FW。
1.8 GSH含量測定
采用DTNB法[31]稍作改變。首先配制不同濃度梯度的GSH標準液(0、0.02、0.04、0.06、0.08、0.10和0.12 mmol·L-1),取各標準液0.25 mL,分別加入150 mmol·L-1的NaH2PO4緩沖液2.6 mL,混勻后再分別加入DTNB試劑0.15 mL,搖勻后,30℃保溫反應5 min,測定A412nm值,測定結果以GSH濃度為橫坐標,A412nm值為縱坐標繪制標準曲線。GSH的提取方法同AsA的提取方法。GSH含量測定時取提取液0.25 mL,反應液加入方法同上,測定A412nm值,根據(jù)標準曲線計算GSH含量,結果表示為μg·g-1FW。
1.9 數(shù)據(jù)處理
試驗數(shù)據(jù)采用Excel 2003軟件進行統(tǒng)計,SPSS 22.0軟件進行方差分析,SigmaPlot 12.5軟件制圖。
2.1 糜子品種黑穗病抗性的鑒定
經(jīng)過連續(xù)2年糜子黑穗病抗性鑒定,篩選出不同抗性的6個糜子品種,其中,黑虼蚤(R1)、驢駝川(R2)、小麥糜子(R3)平均發(fā)病率分別為0、0和0.73%,為抗病品種;黃硬黍(S1)、寧04-262(S2)、Ym0965(S3)平均發(fā)病率分別為19.71%、19.86%和32.28%,為感病品種(表1)。
2.2 黑穗病菌脅迫對糜子葉片防御酶活性的影響
糜子接種黑穗病菌后,抗、感品種葉片PAL活性呈現(xiàn)出明顯不同的變化趨勢,且同組品種同一時期的測定值相近(圖1-A)。苗期各品種糜子葉片PAL活性在1 384.6—1 436.1 U·g-1FW范圍內,處于較低水平,且抗、感品種間無顯著差異,到拔節(jié)期2類品種PAL活性均顯著升高,感病品種平均升高到3 610.8 U·g-1FW,顯著高于抗病品種(平均為2 520.7 U·g-1FW),之后感病品種 PAL活性顯著降低,而抗病品種仍為升高趨勢,最終在灌漿期感病品種PAL活性平均降至2 425.0 U·g-1FW,顯著低于抗病品種(平均為2 946.0 U·g-1FW)。
表1 糜子品種黑穗病發(fā)病率與抗性水平Table 1 The smut incidence and resistance level of broomcorn millet cultivars
圖1 黑穗病菌脅迫對糜子葉片防御酶活性的影響Fig. 1 Effects of smut fungus stress on defensive enzymes activity in broomcorn millet
由圖1-B可知,黑穗病菌脅迫下抗、感品種糜子葉片APX活性均呈先降低后升高的變化趨勢,拔節(jié)期APX活性顯著最低。苗期和拔節(jié)期2類品種間APX活性無顯著差異,到抽穗期和灌漿期感病品種葉片APX活性顯著高于抗病品種,其中感病品種葉片平均APX活性分別為461.1和516.7 U·g-1FW,抗病品種為361.5和428.2 U·g-1FW。
接種黑穗病菌后2類品種糜子葉片GR活性均呈先升高后降低趨勢,抽穗期GR活性顯著高于其他3個時期,并且感病品種GR活性變化幅度大于抗病品種??埂⒏衅贩N糜子葉片GR活性顯著差異出現(xiàn)在抽穗期,此時抗病品種平均GR活性為167.4 U·g-1FW,顯著低于感病品種(271.9 U·g-1FW)。
2.3 黑穗病菌脅迫對糜子葉片抗氧化物質含量的影響
糜子接種黑穗病菌后,苗期到灌漿期各品種葉片AsA含量在147.7—344.8 μg·g-1FW范圍內波動,無明顯規(guī)律,并且抗、感品種間差異不顯著(圖2-A)。
黑穗病菌脅迫導致抗病品種糜子葉片GSH含量從苗期到抽穗期顯著降低,抽穗期到灌漿期又顯著升高,而感病品種葉片GSH含量從苗期到抽穗期顯著降低后,抽穗期到灌漿期并無顯著變化。灌漿期抗病品種葉片平均GSH含量為984.7 μg·g-1FW顯著高于感病品種(平均為676.0 μg·g-1FW,圖2-B)。
圖2 黑穗病菌脅迫對糜子葉片抗氧化物質含量的影響Fig. 2 Effects of smut fungus stress on antioxidant content in broomcorn millet
關于PAL活性變化與植物抗病性的研究有很多報道。宋培玲等[32]研究發(fā)現(xiàn)油菜幼苗接種黑脛病菌后,PAL活性變化與油菜抗病性呈正相關;王萱[33]研究成株期辣椒與白粉病菌互作,認為辣椒白粉病抗性與PAL活性呈正相關關系;賀字典等[34]研究成株期玉米與黑穗病菌互作發(fā)現(xiàn),抗病品種PAL活性升高幅度大于感病品種;劉麗等[35]研究發(fā)現(xiàn)拔節(jié)期玉米接種紋枯病菌后,高耐材料PAL活性表現(xiàn)為下降,高感材料PAL活性變化不明顯;張淑珍等[36]研究大豆幼苗與疫霉根腐病菌互作發(fā)現(xiàn)抗、感品種PAL活性變化幅度均較小。因此,PAL活性與植物抗病性的關系可能會因不同寄主和病原菌組合而改變,也可能會因為取樣時期的不同而存在差異。與前人只研究某一時期PAL活性與抗病性關系不同,本試驗測定了糜子接種黑穗病菌后整個生育期內PAL活性的變化,探究PAL活性變化與抗病性關系。本試驗中,抗病品種PAL活性雖然在拔節(jié)期顯著低于感病品種,但最終在灌漿期顯著高于感病品種,原因可能是感病品種在病原菌侵染后PAL活性迅速增加,然而隨著生育進程的推進,感病品種由于自身缺乏抗性基因座引起PAL活性逐漸降低,PAL的保護作用明顯減弱,最終在糜子黑穗病發(fā)病關鍵時期(灌漿期)喪失活力,導致黑穗病發(fā)生。反之,抗病品種存在抗性基因座,隨著生育進程的推進,PAL的保護作用逐漸增強,最終在灌漿期達到峰值,有效地防止糜子黑穗病的發(fā)生。
關于APX活性變化與植物抗病性的關系存在不同的觀點。劉麗等[35]研究拔節(jié)期玉米與紋枯病菌互作時發(fā)現(xiàn)APX活性與抗病性呈正相關;關西貞等[37]研究小麥近等基因系與白粉病菌互作后認為感病品系葉片APX活性在后期顯著升高,高于抗病品系;劉會寧等[38]研究葡萄與黑痘病菌互作后認為APX活性與抗病性呈正相關還是負相關沒有定論。本試驗中,糜子接種黑穗病菌后抗、感品種在苗期和拔節(jié)期APX活性變化沒有顯著差異,但是到抽穗期和灌漿期感病品種葉片APX活性均顯著高于抗病品種,與關西貞等[37]的觀點相近。原因可能是糜子黑穗病發(fā)生后導致上部葉片叢生,不能正常抽穗,引起庫源關系發(fā)生變化,前人研究認為庫的缺失或庫源比增大會減緩葉片的衰老[39-40],而葉片的衰老最終會導致APX活性降低[41],因此,導致抗病品種葉片APX活性低于感病品種。也可能是感病品種糜子發(fā)生黑穗病后穗部被充滿病菌孢子的菌瘤所取代,導致糜子生理代謝失衡,活性氧積累加劇,引起應激反應,從而誘導APX活性大幅度提高。
GR是抗壞血酸——谷胱甘肽循環(huán)中最后一個關鍵酶,在應對氧化脅迫中具有重要作用。本試驗接種黑穗病菌后,抗病品種和感病品種糜子葉片GR活性呈先升高后降低的趨勢,與謝曉娜等[42]的研究結果一致。并且感病品種GR活性升高幅度大于抗病品種,特別是在抽穗期,感病品種葉片GR活性顯著高于抗病品種,可能是因為感病品種對黑穗病菌脅迫更敏感,導致活性氧積累更多,通過誘導GR活性的提高來應對逆境脅迫,符合關西貞等[37]的觀點。
陳利鋒等[43]和馬雪瑞等[44]認為對AsA與植物抗病性的關系存在3種不同的意見,一是AsA有利于抗病,抗病品種AsA積累;二是AsA可抑制抗病性的表達,感病品種積累較多的AsA;三是AsA與植物的抗病性無關。本試驗中,糜子接種黑穗病菌后,抗、感病品種之間AsA含量變化無明顯區(qū)別,由此推測,AsA可能與糜子對黑穗病的抗性無關,與WORKMAN等[45]在馬鈴薯黑斑病和軟腐病的研究結果基本一致。
作為重要的抗氧化物質,GSH在應對活性氧脅迫中有重要作用。本試驗中糜子受黑穗病菌脅迫后苗期到抽穗期GSH含量呈降低趨勢,與植物受到其他脅迫后GSH含量變化趨勢類似[15,46-47]。然而,抽穗期到灌漿期抗病品種葉片GSH含量顯著升高而感病品種卻沒有顯著變化,與余文英等[48]研究甘薯與瘡痂病菌互作時GSH含量變化趨勢一致,這說明抗病品種能夠維持較高水平的GSH含量來有效抵御黑穗病菌脅迫。值得一提的是,在抗壞血酸——谷胱甘肽循環(huán)中,GR消耗NADPH將GSSG還原為GSH,以維持較高水平的GSH含量促進該循環(huán)高效運轉,來應對活性氧脅迫[49]。但是本試驗中GR活性的升高或降低并沒有引起GSH含量相應地升高或降低。KU?NIA等[15]研究番茄與霜霉病菌互作時,發(fā)現(xiàn)GR活性與GSH含量呈負相關關系,與本試驗觀點類似。另外,接種黑穗病菌后抗病品種灌漿期葉片GSH含量有顯著升高,可能是因為GSH的生物合成得到提高[50],說明抗病品種能通過GSH生物合成來提高GSH含量,提高對逆境的抵御能力。
不同品種糜子對黑穗病的抗性不同,黑穗病菌脅迫可引起糜子葉片防御酶活性及抗氧化物質含量變化,拔節(jié)期和灌漿期PAL活性、抽穗期和灌漿期APX活性、抽穗期GR活性、灌漿期GSH含量在抗病品種和感病品種間存在顯著差異,可作為鑒定糜子對黑穗病抗性的生理生化指標。AsA含量變化能否作為抗性鑒定指標有待于進一步研究。
[1] 柴巖. 糜子. 北京: 中國農業(yè)出版社, 1999: 68-69. CHAI Y. Broomcorn Millet. Beijing: China Agriculture Press, 1999: 68-69. (in Chinese)
[2] 程炳文. 旱地先鋒作物—糜子. 銀川: 寧夏人民出版社, 2009: 10-11. CHENG B W. Pioneer Dry-land Crop—Broomcorn Millet. Yinchuan: Ningxia People's Press, 2009: 10-11. (in Chinese)
[3] 柴巖, 馮佰利, 王宏巖. 中國黃米食品. 楊凌: 西北農林科技大學出版社, 2012: 85-89. CHAI Y, FENG B L, WANG H Y. Chinese Millet Food. Yangling: Northwest Agriculture and Forestry University of Science and Technology Press, 2012: 85-89. (in Chinese)
[4] 林汝法, 柴巖. 中國小雜糧. 北京: 中國農業(yè)出版社, 2002: 85-90. Lin R F, Chai Y. Minor Grain Crops in China. Beijing: China Agriculture Press, 2002: 85-90. (in Chinese)
[5] 王星玉. 中國黍稷. 北京: 中國農業(yè)出版社, 1996: 59. WANG X Y. Chinese Broomcorn Millet. Beijing: China Agriculture Press, 1996: 59. (in Chinese)
[6] 王綸, 王星玉, 溫琪汾, 趙衛(wèi)紅, 劉金玉. 中國黍稷種質資源抗黑穗病鑒定評價. 植物遺傳資源學報, 2008, 9(4): 497-501. WANG L, WANG X Y, WEN Q F, ZHAO W H, LIU J Y. Identification and evaluation of resistance to dustbrand in Chinese prosomillet germplasm rescources. Journal of Plant Genetic Resources, 2008, 9(4): 497-501. (in Chinese)
[7] NGADZE E, ICISHAHAYO D, COUTINHO T A, WAALS J E. Role of polyphenol oxidaase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Disease, 2012, 96(2): 168-192.
[8] VANITHA S C, NIRANJANA S R, UMESHA S. Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. Journal of Phytopathology, 2009, 157: 552-557.
[9] FORTUNATO A A, DEBONA D, BERNARDELI A M A, RODRIGUES F A. Defence-related enzymes in soybean resistance to target spot. Journal of Phytopathology, 2015, 163: 731-742.
[10] 李唯. 植物生理學. 北京: 高等教育出版社, 2012: 75-76, 401-404. LI W. Phytophysiology. Beijing: Higher Education Press, 2012: 75-76, 401-404. (in Chinese)
[11] ARMAS R, SANTIAGO R, LEGAZ M E, VICENTE C. Levels of phenolic compounds and enzyme activity can be used to screen for resistance of sugarcane to smut (Ustilago sciaminea). AustralasianPlant Pathology, 2007, 36: 32-38.
[12] BAI X H, TENG L H, Lü D Q, QI H Y. Co-treatment of EFF and 1-MCP for enhancing the shelf-life and aroma volatile compounds of oriental sweet melons (Cucumis melo var. makuwa Makino). Journal of Integrative Agriculture, 2014, 13(1): 217-227.
[13] DUAN L, LIU H B, LI X H, XIAO J H, WANG S P. Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiologia Plantarum, 2014, 152(3): 486-500.
[14] ZHANG X B, LIU C J. Multigaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Molecular Plant, 2015, 8: 17-27.
[15] KU?NIA K E, SK?ODOWSKA M. Ascorbae, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. Plant Science, 2001, 160: 723-731.
[16] 馬瑩瑩, 賈嬌, 蘇前富, 孟玲敏, 高潔, 晉齊鳴. 玉米抵御玉蜀黍尾孢菌侵入的生理機制. 植物保護學報, 2015, 42(3): 340-346. MA Y Y, JIA J, SU Q F, MENG L M, GAO J, JIN Q M. The physiological mechanism of corn against Cercospora zeae-maydis infection. Journal of Plant Protection, 2015, 42(3): 340-346. (in Chinese)
[17] TANG B, XU S Z, ZOU X L, ZHENG Y L, QIU F Z. Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging-tolerant and waterlogging-sensitive maize genotypes at seedling stage. Agriculture Science in China, 2010, 9(5): 651-661.
[18] 張盼盼, 馮佰利, 王鵬科, 高小麗, 拓菊梅, 柴巖, 宋慧. 干旱條件下糜子葉片衰老與保護酶活性變化. 干旱地區(qū)農業(yè)研究, 2010, 28(2): 99-103, 108. ZHANG P P, FENG B L, WANG P K, GAO X L, TA J M, CHAI Y, SONG H. Leaf senescence and protective enzyme system of broomcorn millet under drought condition. Agricultural Research in the Arid Areas, 2010, 28(2): 99-103, 108. (in Chinese)
[19] 王國驕, 王嘉宇, 馬殿榮, 苗微, 趙明輝, 陳溫福. 不同耐冷性雜草稻和栽培稻抗氧化系統(tǒng)對冷水脅迫的響應. 中國農業(yè)科學, 2015, 48(8): 1660-1668. WANG G J, WANG J Y, MA D R, MIAO W, ZHAO M H, CHEN W F. Response of antioxidant system to cold water stress in weedy and cultivated rice with different chilling sensitivity. Scientia Agricultura Sinica, 2015, 48(8): 1660-1668. (in Chinese)
[20] MA P, BAI T H, WANG X Q, MA F W. Effects of light intensity on photosynthesis and photoprotective mechanisms in apple under progressive drought. Journal of Integrative Agriculture, 2015, 14(9): 1755-1766.
[21] GAO J J, LI T, YU X C. Gene expression and activities of SOD in cucumber seedlings were related with concentrations of Mn2+, Cu2+, or Zn2+under low temperature stress. Agricultural Science in China, 2009, 8(6): 678-684.
[22] MELONI D A, OLIVA M A, MARTINEZ C A, CAMBRAIA J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 2003, 49(49): 69-76.
[23] 張驥如飛, 周瑜, 楊璞, 王鵬科, 高金鋒, 高小麗, 馮佰利. 糜子感染黑穗病菌后的生理變化及與抗病性關系. 中國農業(yè)大學學報, 2015, 20(3): 108-113. ZHANG J R F, ZHOU Y, YANG P, WANG P K, GAO J F, GAO X L, FENG B L. Study on physiological changes and correlation with resistance level to the head smut of broomcorn millet after an infection with Sphacelotheca destruen. Journal of China Agricultural University, 2015, 20(3): 108-113. (in Chinese)
[24] XU R, YAMADA M, FUJIYAMA H. Lipid peroxidation and antioxidative enzymes of two turfgrass species under salinity stress. Soil Science Society of China, 2013, 23(2): 213-222.
[25] HUANG G Y, WANG Y S, SUN C C, DONG J D, SUN Z X. The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). International Journal of Oceanography and Hydrobiology, 2010, 39(1): 11-25.
[26] MA Y H, MA F W, WANG Y H, ZHANG J K. The responses of the enzymes related with ascorbate-glutathione cycle during drought stress in apple leaves. Acta Physiology Plant, 2011, 33: 173-180.
[27] BLOKHINA O, VIROLAINEN E, FAGERSTEDT K V. Antioxidants,oxidative damage and oxygen deprivation stress: A review. Annals of Botany, 2003(91): 179-194.
[28] KAWANO T, MUTO S. Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture. Journal of Experimental Botany, 2000, 345: 685-693.
[29] 馬春花, 李明軍, 李翠英, 邵建輝, 馬鋒旺. 不同抗性蘋果砧木葉片抗壞血酸代謝對干旱脅迫的響應. 西北植物學報, 2011, 3(8): 1596-1602. MA C H, LI M J, LI C Y, SHAO J H, MA F W. Response of ascorbic acid metabolism in apple rootstocks leaves under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2011, 3(8): 1956-1602. (in Chinese)
[30] 高俊鳳. 植物生理學實驗指導. 北京: 高等教育出版社, 2006: 219-220.GAO J F. Plant physiology Experiment Instruction. Beijing: Higher Education Press, 2006: 219-220. (in Chinese)
[31] 陳建勛. 植物生理學實驗指導. 廣州: 華南理工大學出版社, 2006: 70-71, 75-77. CHEN J X. Plant Physiology Experiment Instruction. Guangzhou: South China University of Technology Press, 2006: 70-71, 75-77. (in Chinese)
[32] 宋培玲, 張鍵, 郝麗芬, 皇甫海燕, 袁喜麗, 包玉英, 李子欽. 不同抗性油菜品種接種黑脛病菌防御酶活性變化研究. 華北農學報, 2015, 30(2): 110-115. SONG P L, ZHANG J, HAO L F, HUANGFU H Y, YUAN X L, BAO Y Y, LI Z Q. Changes in activities of defense enzymes in different rapeseed cultivars infected by Leptosphaeria biglobosa. Acta Agriculturae Boreali-Sinica, 2015, 30(2): 110-115. (in Chinese)
[33] 王萱. 辣椒白粉病抗性與苯丙氨酸解氨酶活性的關系. 中國農學通報, 2009, 25(3): 193-196. WANG X. Relationship between resistance to leveillula taurica and PAL activity in pepper. Chinese Agricultural Science Bulletin, 2009, 25(3): 193-196. (in Chinese)
[34] 賀字典, 高增貴, 莊敬華, 陳捷, 鄭俊強, 唐樹戈. 玉米絲黑穗病菌對寄主防御相關酶活性的影響. 玉米科學, 2006, 14(2): 150-151, 155. HE Z D, GAO Z G, ZHUANG J H, CHEN J, ZHENG J Q, TANG S Y. Effect of maize head smut pathology (Sphacelotheca reiliana) on the major defensive enzymes of host. Journal of Maize Science, 2006, 14(2): 150-151, 155. (in Chinese)
[35] 劉麗, 馬永毅, 張志明, 冷鵬飛, 潘光堂, 趙茂俊. 玉米不同防衛(wèi)酶系對紋枯病作用的研究. 玉米科學, 2009, 17(3): 99-102, 106. LIU L, MA Y Y, ZHANG Z M, LENG P F, PAN G T, ZHAO M J. Analysis function of different defense enzymes on maize. Journal of Maize Science, 2009, 17(3): 99-102, 106. (in Chinese)
[36] 張淑珍, 靳立梅, 徐鵬飛, 陳維元, 吳俊江, 李文濱, 邱麗娟, 常汝鎮(zhèn). 野生大豆接種大豆疫霉根腐病后苯丙氨酸解氨酶(PAL)活性的變化. 大豆科學, 2009, 28(6): 1044-1048. ZHANG S J, JIN L M, XU P F, CHEN W Y, WU J J, LI W B, QIU L J, CHANG R Z. Response of activity to phytophthora sojae inoculation in glycine soja. Soybean Science, 2009, 28(6): 1044-1048. (in Chinese)
[37] 關西貞, 張衛(wèi)東, 田紀春. 小麥近等基因系與白粉病菌互作的生理指標研究. 華北農學報, 2010, 25(1): 217-221. GUAN X Z, ZHANG W D, TIAN J C. Physiological indicators of near-isogenic wheat lines in interaction with powdery mildew. Acta Agriculturae Boreali-Sinica, 2010, 25(1): 217-221. (in Chinese)
[38] 劉會寧, 唐華程. 葡萄抗黑痘病與3種酶活性的關系. 長江大學學報(自然科學版), 2013, 10(35): 8-12. LIU H N, TANG H C. Relationship between resistance of grape to Sphaceloma ampelinum and 3 enzymes activity. Journal of Yangtze University (Natural Science Edition), 2013, 10(35): 8-12. (in Chinese)
[39] 段留生, 韓碧文, 何鐘佩. 器官間關系對葉片衰老的影響. 植物學通報, 1998, 15(1): 43-49. DUAN L S, HAN B W, HE Z P. The effects of corelation between leaf and other organs on leaf senescence. Chinese Bulletin of Botany, 1998, 15(1): 43-49. (in Chinese)
[40] 黃升謀. 水稻源庫關系與葉片衰老的研究. 江西農業(yè)大學學報, 2001, 23(2): 171-173. HUANG S M. A study on the relationship between the leaf senescence and source sink ratio in hybrid rice. Acta Agriculturae Universitatis Jiangxiensis, 2001, 23(2): 171-173. (in Chinese)
[41] ?PUNDOVá M, SLOUKOVá K, HUNKOVá M, NAU? J. Plant shading increases lipid peroxidation and intensifies senescenceinduced changes in photosynthesis and activities of ascorbate peroxidase and glutathione reductase in wheat. Photosynthetica, 2005, 43(3): 403-409.
[42] 謝曉娜, 張小秋, 梁永檢, 楊麗濤, 李楊瑞. 宿根矮化病菌侵染后甘蔗防御酶活性變化. 南方農業(yè)學報, 2014, 45(9): 1551-1557. XIE X N, ZHANG X Q, LIANG Y J, YANG L T, LI Y R. Changes of defense-related enzyme activities in sugarcane under ratoon stuntiong disease stress. Journal of Southern Agriculture, 2014, 45(9): 1551-1557. (in Chinese)
[43] 陳利鋒, 葉茂炳, 陳永幸, 徐朗萊, 徐雍皋. 抗壞血酸與小麥抗赤霉病性的關系. 植物病理學報, 1997, 27(2): 113-118. CHEN L F, YE M B, CHEN Y X, XU L L, XU Y G. The relationship between ascorbic acid and resistance of wheat to scab. Acta Phytopathologica Sinica, 1997, 27(2): 113-118. (in Chinese)
[44] 馬雪瑞, 段玉璽, 陳立杰, 劉大偉, 王媛媛, 朱曉峰. 2011.利用抗壞血酸揭示小粒黑豆對胞囊線蟲抗性的研究. 大豆科學, 2011, 30(1): 123-126. MA X R, DUAN Y X, CHEN L J, LIU D W, WANG Y Y, ZHU X F. Revealing resistance of Xiaoliheidou to soybean cyst nematode by ascorbic acid. Soybean Science, 2011, 30(1): 123-126. (in Chinese)
[45] WORKMAN M, HOLM D G. Potato clone variation in blackspot and soft rot susceptibility, redox potential, ascorbic acid, dry matter and potassium. American Potato Journal, 1984, 61(12): 726-733.
[46] 丁玲, 吳雪, 杜長霞, 徐艷麗, 樊懷福. 短期干旱脅迫對黃瓜幼苗葉片抗氧化系統(tǒng)的影響. 浙江農林大學學報, 2015, 32(2): 285-290. DING L, WU X, DU C X, XU Y L, FAN H F. An antioxidantsystem in cucumber seedling leaves with short term drought stress. Journal of Zhejiang Agriculture and Forestry, 2015, 32(2): 285-290. (in Chinese)
[47] 王俊力, 王巖, 趙天宏, 曹瑩, 劉玉蓮, 段萌. 臭氧脅迫對大豆葉片抗壞血酸-谷胱甘肽循環(huán)的影響. 生態(tài)學報, 2011, 31(8): 2068-2075. WANG J L, WANG Y, ZHAO T H, CAO Y, LIU Y L, DUAN M. Effects of ozone on AsA-GSH cycle in soybean leaves. Acta Ecologica Sinica, 2011, 31(8): 2068-2075. (in Chinese)
[48] 余文英, 潘延國, 柯玉琴, 艾育芳, 阮妙鴻. 甘薯抗瘡痂病的活性氧代謝研究. 河南科技大學學報(農學版), 2003, 23(3): 1-6. YU W Y, PAN Y G, KE Y Q, AI Y F, RUAN M H. Active oxygen metabolism of sweet potato under the stress of sweet potato scab. Journal of Henan University of Science and Technology (Agricultural Scicence), 2003, 23(3):1-6. (in Chinese)
[49] GILL S S, ANJUM N A, HASANUZZAMAN M, GILL R, TRIVEDI D K, AHMAD I, PEREIRA E, TUTEJA N. Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiology and Biochemistry, 2013, 70(1): 204-212.
[50] MOTOS J R A, VIVANCOS P D, ALVAREZ S, GARCIA M F, BLANCO M J S, HERNANDEZ J A. Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta, 2015, 242: 829-864.
(責任編輯 李莉)
Response of Leaf Defensive Enzymes and Antioxidant to Smut Fungus Stress in Broomcorn Millet
ZHOU Yu1, LIU Jia-jia1, ZHANG Pan-pan2, QU Yang3, ZHANG Ji-ru-fei1, ZHU Ming-qi1, FENG Bai-li1
(1College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi;2Heilongjiang August First Agricultural University/National Coarse Cereals Engineering Research Center, Daqing 163319, Heilongjiang;3Baoji Academy of Agricultural Sciences, Qishan 722400, Shaanxi)
【Objective】 Head smut is an important disease that threats the yield of broomcorn millet seriously and the best way to control the disease is to plant resistant varieties. In order to screen the physiological and biochemical indexes of broomcorn millet for resistance to head smut, the activity of defensive enzymes and content of antioxidant were measured under the smut fungus stress. Furthermore, this will also provide theoretical supports for the breeding of broomcorn millet smut resistant varieties. 【Method】Artificial inoculation of seed saturated inoculation was adopted to infect broomcorn millet and inoculated broomcorn millet plants were planted in field. A field experiment of resistance levels identification to screen the varieties with different resistance was conducted in 2012-2013. In 2014, the broomcorn millet varieties with different resistance levels were used to measure the activity of defensive enzymes and content of antioxidant at seedling stage (SS), elongation stage (ES), heading stage (HS) and filling stage (FS) under the smut fungus stress. The defensive enzymes include the phenylalanine ammonia lyase (PAL), ascorbate peroxide (APX), glutathione reductase (GR) and the antioxidant contained the ascorbate (AsA) and glutathione (GSH). 【Result】 After 2 consecutive years of resistance identification, the average incidence rate of Heigezao (R1), Lvtuochuan (R2) and Xiaomaimizi (R3) were 0, 0 and 0.73%, respectively, indicating that they were disease-resistant varieties; the average incidence rate of Huangyingshu (S1), Ning04-262 (S2) and Yym0965 (S3) was 19.71%, 19.86% and 32.28%, respectively, therefore, they belong to disease-susceptible varieties. With the stress of smut fungus, the PAL activity of susceptible varieties changed greater than that in resistant varieties, since the PAL activity of susceptible varieties was significantly higher at elongation stage (3 610.8 U·g-1FW), but significantly lower at filling stage (2 425.0 U·g-1FW) compared to that (2 520.7 and 2 946.0 U·g-1FW, respectively) of resistant varieties. The APX activity showed the same trend in both kinds of varieties, which was decreased first and then increased; the minimum value appeared at the elongation stage. At heading stage and filling stage, the APX activity of susceptible varieties was 461.1 U·g-1FW and 516.7 U·g-1FW, which was significantly higher than that (361.5 U·g-1FW and 428.2 U·g-1FW) in resistant varieties. The GR activity was increased first and then decreased in all the varieties. At heading stage, the value of GR activity was significantly higher than that of other 3 stages. The difference between the 2 kinds of varieties was that the GR activity of susceptible varieties was obviously higher than that of resistant varieties at heading stage, the value of which was 271.9 U·g-1FW and 167.4 U·g-1FW, respectively. After inoculation with smut fungus, the content of AsA ranged from 147.7 μg·g-1FW to 344.8 μg·g-1FW without obvious regularity in all the varieties. Also there was no significant difference between resistant and susceptible varieties. The GSH content of resistant varieties was decreased significantly from seedling stage to heading stage, and then increased significantly at filling stage. The GSH content of susceptible varieties was also decreased significantly from seedling stage to heading stage, but there was no significant difference compared to filling stage. Therefore, the GSH content was obviously higher in resistant varieties (984.7 μg·g-1FW) than that in susceptible varieties (676.0 μg·g-1FW) at filling stage. 【Conclusion】 Different broomcorn millet varieties have different resistance levels to head smut disease. Smut fungus stress can cause the changes of defensive enzymes activity and antioxidant content in leaves of broomcorn millet. The PAL activity of broomcorn millet leaves at elongation stage and filling stage, APX activity at heading stage and filling stage, GR activity at heading stage, GSH content at filling stage are obviously different between resistant and susceptible varieties, which can be used as the physiological and biochemical indexes to identify head smut resistant germplasms in broomcorn millet.
broomcorn millet; head smut; defense enzymes; antioxidant
2016-03-30;接受日期:2016-06-01
國家“十二五”科技支撐計劃(2014BAD07B03)、國家自然科學基金(31371529)、國家谷子糜子產(chǎn)業(yè)技術體系(CARS-07-A9)、陜西省科技統(tǒng)籌創(chuàng)新工程計劃(2014KTZB02-03)
聯(lián)系方式:周瑜,E-mail:yuzhou@nwsuaf.edu.cn。劉佳佳,E-mail:ljjzl2014@163.com。周瑜和劉佳佳為同等貢獻作者。通信作者馮佰利,E-mail:7012766@163.com