• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical Transmission Properties of Asymmetric Bowtie Nano-Aperture Array

    2016-11-28 03:50:31SUNXinFENGMinWANGBinCAOXueweiWANGYufang
    光散射學(xué)報 2016年3期
    關(guān)鍵詞:基模非對稱偏置

    SUN Xin,FENG Min,WANG Bin,CAO Xue-wei,WANG Yu-fang

    (School of Physics,Nankai University,Tianjin 300071)

    ?

    Optical Transmission Properties of Asymmetric Bowtie Nano-Aperture Array

    SUN Xin,FENG Min,WANG Bin,CAO Xue-wei,WANG Yu-fang*

    (SchoolofPhysics,NankaiUniversity,Tianjin300071)

    We investigated the optical properties of two different asymmetric bowtie nano-aperture (BNA) structures using numerical simulation.For the BNA with its gap displaced,the fundamental resonance is in linear relation with aperture perimeter.And different gap sizes show different sensitivity to gap displacement.For the BNA with one edge geometrically modified,the fundamental resonance can be tuned in linear fashion by changing one geometrical parameter (the height of the remaining parth2).Furthermore,peak splitting of Fabry-Perot-like resonance can also be observed in the study.Both approaches we propose in this work to break the symmetry of BNA can be used flexibly to manipulate the resonances of BNA structure.

    bowtie nano-aperture; extraordinary optical transmission; surface plasmon polaritons; optical resonance

    1 Introduction

    Light concentration,manipulation,and transmission enhancement at nanoscale have attracted numerous attentions in the recent decade.Typically,these novel optical phenomena arise when small geometric characteristics are introduced for the metal nano-structures that can give rise to various kinds of resonances.These resonances often lead to an exotic phenomenon called extraordinary optical transmission (EOT) which has a plethora of potential applications.EOT was discovered by Ebbesen,et al[1]in 1998 and since then has generated great interest among researchers.Lots of work explored various nano-structures that may give rise to EOT phenomenon.Some nano-aperture based structures such as circular apertures,rectangular apertures[2-3],and other apertures of novel shapes[4-7]have been studied.One of the most interesting and prominent structures among them is bowtie nano-aperture (BNA).BNAs have bowtie-shaped profiles.They are usually drilled in the film made of noble metal and arranged in two dimensional array.The film with BNAs on it exhibits large cutoff wavelength,high light concentration and transmission enhancement effects[8-10].In the works above,most of the apertures on the metal films are symmetric.However,some studies also investigated optical properties of asymmetric apertures.Yin,et al[11]studied the influence of introduction of protuberances inside square apertures on the whole structure′s transmission properties.They discovered that for asymmetric square holes,there is an obvious peak splitting phenomenon.This phenomenon originates from a new resonant mode due to the asymmetry of the structure.Here,it is interesting for us to question,how the transmission properties would change when asymmetry is introduced to BNA.In this study,we adopt two approaches to break the symmetry of BNA.Using FDTD simulation,we found that both have interesting effects on the two main resonant modes of the structure.

    2 Model and Simulation

    The structure we study is a free-standing silver film with BNAs on it.BNAs are arranged in two-dimensional array on the film.By "two dimensional",we mean that aperture repeats itself in bothxandydirection with a certain spatial period.Figure 1 (a) is the schematic of a typical BNA structure.We simulated a single computation cell with periodic boundaries around.The cell has square cross-section on x-y plane.The length of the square cross-section is 500 nm.Thus,the entire simulation system is equivalent to a 2D BNA array of 500 nm spatial period.Each BNA on the film has a square outline of length 200 nm.The thickness of the film is also 200 nm.The structure is under normal incidence from+zdirection.The incident light is plane wave and its E-field is polarized alongxdirection.

    Fig.1 (a) Bowtie nano-aperture (BNA) in x-y plane.The outline length of the aperture is 200 nm.The length of the square cross section is 500 nm.Dashed line represents the aperture after gap displacement.(b) BNA with two parts of right edge cut off viewed in x-z plane.The cut length along x directiondis 50 nm.h1 andh3 are the height of the two cut parts,respectively.h2 is the height of the remaining part

    3 Results and Discussions

    3.1 Transmission properties of a typical BNA structure

    Figure 2 is the transmission spectrum of a BNA structure with 50 nm gap.From this figure,we can see that there are three distinguishable peaks on the spectrum.The peak in the near infrared region corresponds to the fundamental resonance.At this resonant mode,the E-field enhanced area is uniform alongzdirection in the gap.It is equivalent to the mode at cutoff wavelength of an equivalent infinitely long waveguide with same profile as BNA[9].The resonant wavelength of fundamental mode is independent of film thickness and is linearly dependent of aperture perimeter[8].The peak located at about 615 nm is the Fabry-Perot-like (FP) resonance whose resonant wavelength is determined by film thickness.We refer to this resonance as FP-1 resonance since there is only one node in the center of the cavity.The two resonances we mentioned here belong to localized resonant mode.The third peak on the spectrum at 500 nm corresponds to the Rayleigh-Wood anomaly (RWA) phenomenon.It is inherently extended surface mode.Both the localized mode and extended surface mode can be identified on a typical nano-structure that exhibits extraordinary optical transmission[12].

    Fig.2 The transmission spectrum of BNA with 50 nm gap size.The peak at 865 nm corresponds to the fundamental resonance.The peak at 615 corresponds to the Fabry-Perot-like resonance.The peak at 505 is attributed to Rayleigh-Wood anomaly (RWA)

    3.2 Displacing gap

    Fig.3 The linear relation of fundamental resonant wavelength with aperture perimeter of 20 nm gap size BNA.The aperture perimeter is changed due to gap displacement.The dots represent the data obtained from our simulations.The gray dashed line is the linear fitting of the actual data

    The FP peaks also red-shift with increasing gap displacement.However,its changing range is not large compared to fundamental peak.For a typical BNA,i.e.20 nm gap,the changing range of FP resonant wavelength is only 56 nm,while the fundamental one can reach 226 nm.Like the fundamental resonance,the FP resonant wavelength can also be well fitted quadratically.But no obvious pattern is discovered among these fitted curves.

    Fig.4 The curves are quadratic fittings with constant terms dropped.The curves in the figure correspond to gap sizes of 20,30,40,and 50 nm,respectively.The curve that grows faster with gap displacement indicates that the BNA is more sensitive to gap displacement.Note that the two curves that correspond to 30 and 40 nm gap are very close to each other.The inset shows a closer look at these two curves from 74 to 75 nm gap displacement

    It is also worth noting that besides the peaks that correspond to fundamental,FP,and RWA resonance,there are also two small peaks in between RWA and FP peak as shown in figure 5.These two peaks appear when both large gap and large displacement are introduced.The peak near RWA peak,once appears,remains at 550 nm while the other one changes its position with displacement of gap.The wavelength of the peak near RWA peak coincides with the FP resonant wavelength of square aperture of 200 nm length (555 nm resonant wavelength).Figure 6 demonstrates the case of maximum displacement for BNA of 75 nm gap size.One node is present in the middle,indicating a FP resonance pattern.Since the field pattern is FP-like and the resonant wavelength is the same as that of the square aperture,we attribute this peak to the FP resonance of square hole.As we know,when the displacement steadily grows larger,the left edge gradually flattens and becomes more like the wall of square aperture.When one side approaches the wall of a square aperture,its characteristic resonance starts to appear.However,there is one difference that the enhanced E-field extends more to the front and rear surface than the square aperture case due to the influence of the right sharp edge.

    Fig.5 The transmission spectrum of BNA of 75 nm gap size and of maximum gap displacement.Two additional peaks (at 550 and 582 nm) appear between RWA peak and FP peak

    Fig.6 The E-field distribution on x-z plane.The BNA is of 75 nm gap size and of maximum gap displacement.The resonant wavelength of this distribution of field is 550 nm.This wavelength is the same as the FP resonant wavelength of square aperture array

    The other peak near FP resonant peak varies with gap displacement for a fixed gap size.Figure 7 is the energy flux density distribution in x-y plane.From this figure,we can clearly observe the enhanced field intensity at two right corners.Large displacement of gap directly leads to acute angles of the two corners.As it has been studied that apertures with acute angles can give rise to another strongly localized resonance -- channel plasmon resonance (CPR)[14].The field of CPR is highly confined at the corner area.And its resonant energy is highly dependent of the angle of corner.When the gap displacement grows larger,the sharp corners start to take effect and finally lead to the presence of another resonance mode that manifests itself as another peak on the transmission spectrum.

    Fig.7 Energy flux density distribution of x-y plane at 582 nm resonance.The gap size is also 75 nm and displacement reaches maximum.One can view that the energy is mainly tunneled through sharp corner area and the right gap edge.This resonance is related to channel plasmon resonance (CPR) and is dependent of the angle of sharp corners

    However,we emphasize again that square hole′s FP resonance and CPR only take place when there is a large displacement of gap.Because displacement leads to flattened edge and sharp corners which are the necessary causes for square hole′s FP resonance and channel plasmon resonance,respectively.

    As we have discussed above,displacing the gap breaks the symmetry with respect to y-z plane and the change of fundamental resonance can be simply understood through change the electric charge oscillation path,though corner effect should be taken into account in order to have a more precise insight into the change of resonant wavelength.For the FP resonance,the charges are mainly centered at two gap edges.With that being said,we mean that the resonance is influenced by both the geometries of two edges.The modification of resonance by geometry change is more complex than that of fundamental resonance.But the resonance of two modes can be both well fitted into quadratic relation,which makes it predictable for other resonant wavelengths when several wavelengths for their corresponding gap displacement are already known.

    3.3 Cutting one edge

    The strategy of breaking the symmetry by displacement of gap is a simple and effective way of modifying BNA structure′s two main resonances.However,change of FP resonance is not quite impressive and its changing pattern is not regular.This irregularity of change indicates that this strategy,though simple as it seems to be for fundamental resonance,may not be an effective way to reduce the complexity in manipulating FP resonance.Perhaps the most effective way to change the FP resonance is just to use a film of different thickness.Changing the film thickness is equivalent to changing the cavity length for FP resonance,hence the change of FP resonant wavelength.And this approach can also isolate the manipulation of FP resonance from that of the fundamental resonance,since fundamental resonance is irrelevant to film thickness.This method apparently does not involve any symmetry breaking.We then question,is there any other way to modify FP resonance by other symmetry breaking strategy? We know that FP resonance is essentially due to the charge oscillation on two gap edges along z direction.And the resonance is defined by two gap edges as a whole.Thus altering the geometry of one edge should be effective.We further investigate the influence of breaking symmetry along z direction on one gap edge.

    Figure 1 (b) presents the changed geometry viewed in x-z plane.Two parts of right edge are cut off.The length of the cut part alongxdirection d is 50 nm.The height of top and bottom parts cut off areh1 andh3,respectively.The height of the remaining part ish2.his the thickness of the film:h=h1+h2+h3.

    We first seth2 to be 50 nm and keep it constant while increaseh1 from 0 to 75 nm.With increasingh1 and constanth2,the remaining block on the cut edge moves from top to center,gradually restoring the symmetry with respect to x-y plane.Note that,according to our simulation results (not shown here),whether illuminated from top or from bottom,the structure we study in this section has the same transmission spectrum.Thus,it is sufficient to stoph1 at 75 nm.Figure 8 (a) depicts the transmission spectra for differenth1 which is represented by y axis.From the spectra,we can see that the position of the fundamental peak remains unchanged with increasingh1 while FP resonance splits into two peaks.The FP peak of longer wavelength gradually blue-shifts with increasingh1 and finally merge into the other FP peak whenh1 grows large enough.The position of the FP peak of shorter wavelength,surprisingly,does not change at all withh1.

    To understand the different dependence of the three resonant peaks mentioned above on geometry,we studied another case.In this case,we gradually decreaseh2 while always keepsh1 equals toh3.For convenience,we refer to this case as symmetric case since the symmetry with respect to x-y plane is maintained.And we refer to the case studied above in this section as asymmetric case.The result is shown in figure 8 (b).Thexaxis represents wavelength and the y representsh1.We can see from this figure that the position of fundamental resonance changes linearly withh1 and apparently also withh2.Comparing to the previous case in which the resonant position does not change whenh2 is kept constant.We can conclude that the wavelength of fundamental resonance is linearly connected withh2.As for FP resonance,different from the previous case where there is a peak split,a gradual transition from one FP resonance to the other can be observed.Whenh1 is zero,the aperture is a common BNA (20 nm gap size) whose FP resonant wavelength is 665 nm.Then,with increasingh1,this peak starts to blue-shift.Whenh1 becomes larger than 40 nm,the peak position stops changing and remains constant at about 610 nm.

    Fig.8 Transmission spectra of structures for two cut-edge approaches.(a)h2 is kept 50 nm.The position of fundamental peak remains constant,while FP peak splits into two separate peaks.(b)h1 is kept equal toh3 in this case.With increasingh1 (also decreasingh2),the position of fundamental peak changes linearly,while the FP peak experiences a gradual transition

    In the extreme case whereh2 is zero,the FP resonant wavelength is 610 nm.This wavelength is exactly the same as the FP resonant wavelength that is irrelevant toh2 in the second case whenh1 is larger than 40 nm.Thus,we categorize this resonance as FP resonance.We know that for a typical BNA structure,its FP resonance is inherently due to the local charge oscillation along two gap edges.In the all cases we study in which the film thickness is 200 nm,there is only one FP resonant peak can be observed in the transmission spectrum.And this resonance should be named FP-1 resonance to reveal its resonant pattern since there is one node in the center of the cavity.In order to distinguish two different FP resonances,we refer to the resonance which changes withh1 as FP-1-1 resonance and the other which remains at 610 nm as FP-1-2 resonance.When the resonant condition is satisfied,two semi-circle-like charge oscillation paths are formed on two edges.This pair of paths,which do not go directly straight up or down along the edges,leads to the immunity to geometry change at the center area in the gap.This is the reason why FP-1-2 peak remains constant whenh1 increased beyond 40 nm in the symmetric case.Whenh1 is smaller than 40 nm,the remaining block of lengthh2 interferes with the resonance defined by the two paths and consequently modifies the resonance.This influence by the remaining block is manifested by the dependence of FP resonance onh1.This theory can also explain the phenomenon that there is a gradual energy transition between FP-1-1 and FP-1-2 peaks in the asymmetric case.With increasingh1,the remaining block changes its position from top to the central part the gap,reducing its influence on FP-1-2 resonance and consequently the intensity of FP-1-2 peaks steadily grows.

    Another point worth noting is that,as shown in figure 8 (b),the change of position of fundamental peak withh1 is gradual and smooth in the symmetric case.This is because the fundamental resonance is dominated by the remaining block on the right edge as well as part of the left edge.However,whenh2 turns 0 nm,there is no remaining block in the gap any more,the resonance is suddenly handed over to the new structure.This structure,withh2=0,is essentially different from the structure with remaining block on its right edge.Because the current density is uniformly distributed alongzdirection,which is why the fundamental resonance of this kind of structure is independent of film thickness.In the case whereh2 is not zero,since the current density is mainly concentrated in the area of the remaining block,the fundamental resonance is highly dependent onh2,as we have shown above.

    4 Conclusions

    We proposed two simple approaches to breaking the symmetry in order to manipulate both of BNA′s fundamental and Fabry-Perot resonant peaks for extraordinary optical transmission.Both approaches show interesting results.With displacing the gap of BNA,one can predictably change the fundamental peak based on the linear relation with aperture perimeter.Using cut-one-edge method,one has the great flexibility in changing the fundamental resonance in linear fashion and altering the FP resonance in a predictable way.Our research can be applied to help to design better optical filters and other applications to meet a large array of possible needs.

    [1] Ebbesen T W,Lezec H J,Ghaemi H F,etal.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature,1998,391:667-669.

    [2] Shao Weijia,Xu Xiaoliang,Wang Huijie.A manipulated extraordinary optical transmission filter composed with subwavelength hole complex arrays[J].Plasmonics,2014,9:1025-1030.

    [3] Ruan Zhichao,Qiu Min.Enhanced transmission through periodic arrays of subwavelength holes:the role of localized waveguide resonances[J].Phys Rev Lett,2006,96:233901.

    [4] Wang Yongkai,Qin Yan,Zhang Zhongyue.Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays[J].Plasmonics,2014,9:203-207.

    [5] Rodrigo S G,Mahboub O,Degiron A,etal.Holes with very acute angles:a new paradigm of extraordinary optical transmission through strongly localized modes[J].Opt Express,2010,18:23691-23697.

    [6] Lin L,Roberts A.Light transmission through nanostructured metallic films:coupling between surface waves and localized resonances[J].Opt Express,2011,19:2626-2633.

    [7] Degiron A,Ebbesen T W.The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J].J Opt A:Pure Appl Opt,2005,7:S90-S96.

    [8] Guo Hongcang,Meyrath T P,Zentgraf T,etal.Optical resonances of bowtie slot antennas and their geometry and material dependence[J].Opt Express,2008,16:7756-7766.

    [9] Ibrahim I A,Mivelle M,Grosjean T,etal.Bowtie-shaped nanoaperture:a modal study[J].Opt Lett,2010,35:2448-2450.

    [10] Kinzel E C,Xu Xianfan.Extraordinary infrared transmission through a periodic bowtie aperture array[J].Opt Lett,2010,35:992-994.

    [11] Yin Xiaogang,Huang Chengping,Shen Zhiqiang,etal.Splitting of transmission peak due to the hole symmetry breaking[J].Appl Phys Lett,2009,94:161904.

    [12] Carretero-Palacios S,Garcia-Vidal F J,Martin-Moreno L,etal.Effect of film thickness and dielectric environment on optical transmission through subwavelength holes[J].Phys Rev B,2012,85:035417.

    [13] Huang Chengping,Wang Qianjin,Zhu Yongyuan.Dual effect of surface plasmons in light transmission through perforated metal films[J].Phys Rev B,2007,75:245421.

    [14] Moreno E,Garcia-Vidal F J,Rodrigo S G,etal.Channel plasmon-polaritons:modal shape,dispersion,and losses[J].Opt Lett,2006,31:3447-3449.

    非對稱領(lǐng)結(jié)型納米孔陣列的光透射特性

    孫鑫,馮敏,王斌,曹學(xué)偉,王玉芳*

    (南開大學(xué)物理科學(xué)學(xué)院,天津 300071)

    本文利用數(shù)值模擬的方法研究了兩種不同的非對稱領(lǐng)結(jié)型納米孔結(jié)構(gòu)的光學(xué)特性。對于偏置間隙的領(lǐng)結(jié)型納米孔,其基模共振與孔的周長呈線性關(guān)系。并且,不同的間隙尺寸對間隙偏置的敏感度不同。對于間隙的一邊的結(jié)構(gòu)發(fā)生變化的領(lǐng)結(jié)型納米孔,基模共振可以通過改變單個幾何參量(剩余部分的高度h2)進(jìn)行線性調(diào)制。另外,研究中還觀察到了類Fabry-Perot共振的共振峰分裂。我們在這項工作中提出的這兩種打破領(lǐng)結(jié)型納米孔的對稱性的方法可以靈活地對領(lǐng)結(jié)型納米孔結(jié)構(gòu)的共振進(jìn)行操控。

    領(lǐng)結(jié)型納米孔;異常光透射;表面等離子體基元;光學(xué)共振

    2015-08-10; 修改稿日期:2015-09-20

    孫鑫(1990-),男,碩士,主要從事微納光學(xué)、光透射增強(qiáng)研究.E-mail:sunxin_mail213@126.com

    王玉芳.E-mail:yfwang@nankai.edu.cn

    1004-5929(2016)03-0285-08

    O43

    A

    10.13883/j.issn1004-5929.201603016

    猜你喜歡
    基模非對稱偏置
    基于40%正面偏置碰撞的某車型仿真及結(jié)構(gòu)優(yōu)化
    基于雙向線性插值的車道輔助系統(tǒng)障礙避讓研究
    中國信息化(2022年5期)2022-06-13 11:12:49
    非對稱Orlicz差體
    從基模理論談新媒體環(huán)境下網(wǎng)民媒介素養(yǎng)的提高
    采寫編(2017年2期)2017-06-29 11:28:36
    “基模導(dǎo)向”在初中數(shù)學(xué)教學(xué)中的應(yīng)用
    一級旋流偏置對雙旋流杯下游流場的影響
    點數(shù)不超過20的旗傳遞非對稱2-設(shè)計
    革新實驗室:一種新的工作場所學(xué)習(xí)方法的基模
    初創(chuàng)企業(yè)組織共享基模的形成機(jī)理研究
    非對稱負(fù)載下矩陣變換器改進(jìn)型PI重復(fù)控制
    電測與儀表(2015年4期)2015-04-12 00:43:04
    欧美成人精品欧美一级黄| av在线观看视频网站免费| 人体艺术视频欧美日本| 大香蕉久久网| 欧美激情国产日韩精品一区| 亚洲精华国产精华液的使用体验| 人妻 亚洲 视频| 高清在线视频一区二区三区| 麻豆乱淫一区二区| 久久午夜福利片| 精品久久久精品久久久| 精品久久久久久久末码| 美女内射精品一级片tv| 一本久久精品| 禁无遮挡网站| 日韩免费高清中文字幕av| 97热精品久久久久久| 超碰av人人做人人爽久久| 国产精品精品国产色婷婷| 亚洲av电影在线观看一区二区三区 | 内射极品少妇av片p| 欧美一级a爱片免费观看看| 亚洲图色成人| 在线亚洲精品国产二区图片欧美 | 99热这里只有是精品在线观看| 狂野欧美激情性bbbbbb| 久久久久精品性色| 国产黄片视频在线免费观看| 久久韩国三级中文字幕| 亚洲精品影视一区二区三区av| 亚洲精品影视一区二区三区av| 久久国内精品自在自线图片| 性插视频无遮挡在线免费观看| 在线观看美女被高潮喷水网站| 青青草视频在线视频观看| 少妇裸体淫交视频免费看高清| 黄色怎么调成土黄色| 校园人妻丝袜中文字幕| 青青草视频在线视频观看| 久久久久久久精品精品| 偷拍熟女少妇极品色| 有码 亚洲区| 一边亲一边摸免费视频| 在线观看国产h片| 国产精品爽爽va在线观看网站| 嫩草影院精品99| 亚洲欧洲日产国产| 亚洲欧美成人综合另类久久久| 午夜福利在线在线| 尾随美女入室| 熟女av电影| 欧美人与善性xxx| 国产午夜精品一二区理论片| 国产精品不卡视频一区二区| 国产一区二区三区综合在线观看 | 深爱激情五月婷婷| 日本av手机在线免费观看| 最近手机中文字幕大全| 亚洲精品成人av观看孕妇| 亚洲图色成人| 涩涩av久久男人的天堂| 日韩电影二区| 80岁老熟妇乱子伦牲交| 伦精品一区二区三区| 老司机影院毛片| 在线天堂最新版资源| 国产爱豆传媒在线观看| 婷婷色综合大香蕉| 国产精品一区二区性色av| 国产永久视频网站| 婷婷色麻豆天堂久久| 街头女战士在线观看网站| 91aial.com中文字幕在线观看| 在线观看一区二区三区| 国产91av在线免费观看| 中文在线观看免费www的网站| 国产免费又黄又爽又色| kizo精华| 亚洲欧美日韩东京热| 高清午夜精品一区二区三区| 欧美精品人与动牲交sv欧美| 亚洲av欧美aⅴ国产| 成人毛片60女人毛片免费| 亚洲激情五月婷婷啪啪| 国产精品成人在线| 婷婷色综合大香蕉| 亚洲av.av天堂| 国产精品爽爽va在线观看网站| 99九九线精品视频在线观看视频| 国产成人a∨麻豆精品| 久久久色成人| 国产 精品1| 简卡轻食公司| 成人亚洲精品av一区二区| 精品一区二区三卡| 人人妻人人爽人人添夜夜欢视频 | 国产精品国产三级国产av玫瑰| 亚洲国产欧美人成| 亚洲av一区综合| 王馨瑶露胸无遮挡在线观看| 简卡轻食公司| 午夜精品国产一区二区电影 | 在线a可以看的网站| 国内少妇人妻偷人精品xxx网站| av国产免费在线观看| 一级毛片 在线播放| 国产男女内射视频| 一区二区三区四区激情视频| 亚洲av免费高清在线观看| 国产乱来视频区| av黄色大香蕉| 可以在线观看毛片的网站| 伦精品一区二区三区| 人体艺术视频欧美日本| 欧美亚洲 丝袜 人妻 在线| eeuss影院久久| 97超视频在线观看视频| 99九九线精品视频在线观看视频| 91精品伊人久久大香线蕉| 亚洲av免费高清在线观看| 亚洲精品中文字幕在线视频 | 成人毛片a级毛片在线播放| 黄片无遮挡物在线观看| 精品国产乱码久久久久久小说| 18禁裸乳无遮挡动漫免费视频 | 国产一区有黄有色的免费视频| 精品久久久久久久人妻蜜臀av| 尾随美女入室| 色网站视频免费| 婷婷色麻豆天堂久久| 亚洲美女视频黄频| 亚洲国产欧美人成| 一个人观看的视频www高清免费观看| 一级毛片我不卡| 天堂俺去俺来也www色官网| 久久精品国产亚洲av天美| 一级爰片在线观看| 不卡视频在线观看欧美| 身体一侧抽搐| 久久久久精品久久久久真实原创| 亚洲美女视频黄频| 日本猛色少妇xxxxx猛交久久| 日本爱情动作片www.在线观看| av卡一久久| 国产69精品久久久久777片| 精品亚洲乱码少妇综合久久| 91精品一卡2卡3卡4卡| 亚洲av二区三区四区| 尾随美女入室| 欧美最新免费一区二区三区| 人妻一区二区av| 国产免费一级a男人的天堂| 中文欧美无线码| 亚洲av.av天堂| 超碰av人人做人人爽久久| 婷婷色综合www| 免费看av在线观看网站| 国产精品麻豆人妻色哟哟久久| 99re6热这里在线精品视频| av.在线天堂| 亚洲成人精品中文字幕电影| 中文精品一卡2卡3卡4更新| 日本av手机在线免费观看| 午夜爱爱视频在线播放| 直男gayav资源| 精品少妇黑人巨大在线播放| av福利片在线观看| 蜜臀久久99精品久久宅男| 国产成人91sexporn| 国产视频首页在线观看| 亚洲va在线va天堂va国产| 国产人妻一区二区三区在| 精品亚洲乱码少妇综合久久| 91精品一卡2卡3卡4卡| 欧美日韩综合久久久久久| 久久国产乱子免费精品| 2018国产大陆天天弄谢| 在线观看免费高清a一片| 亚洲欧美一区二区三区国产| 99视频精品全部免费 在线| 久久精品国产亚洲av涩爱| 永久免费av网站大全| eeuss影院久久| 中国国产av一级| 精品久久久精品久久久| a级毛色黄片| 午夜免费观看性视频| 日本黄大片高清| 亚洲精品视频女| 精品久久久久久电影网| 成人特级av手机在线观看| 在现免费观看毛片| 内地一区二区视频在线| 伊人久久精品亚洲午夜| 只有这里有精品99| 欧美少妇被猛烈插入视频| 国产高清有码在线观看视频| a级毛色黄片| 午夜免费观看性视频| 亚洲国产高清在线一区二区三| 国产成人免费观看mmmm| 免费大片18禁| 最近2019中文字幕mv第一页| 日日啪夜夜爽| 搞女人的毛片| 91午夜精品亚洲一区二区三区| xxx大片免费视频| 亚洲高清免费不卡视频| 嘟嘟电影网在线观看| 麻豆成人av视频| 蜜臀久久99精品久久宅男| 久久久久久久午夜电影| 欧美xxxx性猛交bbbb| 免费人成在线观看视频色| 欧美xxⅹ黑人| 国产伦精品一区二区三区视频9| 噜噜噜噜噜久久久久久91| 亚洲成人久久爱视频| 久久精品熟女亚洲av麻豆精品| 你懂的网址亚洲精品在线观看| 草草在线视频免费看| 午夜亚洲福利在线播放| 一级黄片播放器| 成人欧美大片| 亚洲电影在线观看av| 日韩精品有码人妻一区| 一个人观看的视频www高清免费观看| 亚洲精品456在线播放app| 欧美人与善性xxx| 国产午夜精品久久久久久一区二区三区| 一边亲一边摸免费视频| 一区二区三区乱码不卡18| 熟妇人妻不卡中文字幕| 欧美+日韩+精品| av在线观看视频网站免费| 中国国产av一级| 亚洲成人久久爱视频| 亚洲在线观看片| 国产精品一区二区性色av| 亚州av有码| 亚洲欧美清纯卡通| 免费黄频网站在线观看国产| 成人亚洲欧美一区二区av| 亚洲av成人精品一二三区| 卡戴珊不雅视频在线播放| 在线亚洲精品国产二区图片欧美 | 亚洲,欧美,日韩| 久久久亚洲精品成人影院| 777米奇影视久久| 好男人在线观看高清免费视频| 真实男女啪啪啪动态图| 高清午夜精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 91精品伊人久久大香线蕉| 国产精品蜜桃在线观看| 精品久久久久久久人妻蜜臀av| 中文天堂在线官网| 亚洲av福利一区| 亚洲成人久久爱视频| 美女被艹到高潮喷水动态| 亚洲av日韩在线播放| 爱豆传媒免费全集在线观看| 2021少妇久久久久久久久久久| 18禁动态无遮挡网站| 日韩国内少妇激情av| 在线观看一区二区三区| 日日摸夜夜添夜夜爱| 亚洲国产成人一精品久久久| 亚洲最大成人中文| 五月伊人婷婷丁香| 女人十人毛片免费观看3o分钟| 高清毛片免费看| 波野结衣二区三区在线| av免费在线看不卡| 国产精品嫩草影院av在线观看| 亚洲人成网站高清观看| 精品国产露脸久久av麻豆| 99久久中文字幕三级久久日本| 久久久色成人| 可以在线观看毛片的网站| 日韩av不卡免费在线播放| 久久ye,这里只有精品| 少妇熟女欧美另类| 欧美老熟妇乱子伦牲交| 午夜日本视频在线| 精品久久国产蜜桃| 黄色视频在线播放观看不卡| 赤兔流量卡办理| 国产精品成人在线| 欧美性感艳星| 晚上一个人看的免费电影| 亚洲av二区三区四区| 国产成人免费观看mmmm| 美女cb高潮喷水在线观看| 中文字幕久久专区| 男的添女的下面高潮视频| 国产精品三级大全| 国产黄色视频一区二区在线观看| 另类亚洲欧美激情| 亚洲精品久久久久久婷婷小说| 亚洲精品国产色婷婷电影| 国产亚洲一区二区精品| 高清视频免费观看一区二区| 欧美日韩视频精品一区| 日韩欧美精品免费久久| 亚洲人成网站高清观看| 交换朋友夫妻互换小说| 校园人妻丝袜中文字幕| 丝袜脚勾引网站| 亚洲人成网站在线观看播放| 自拍偷自拍亚洲精品老妇| 午夜亚洲福利在线播放| 亚洲精品乱码久久久v下载方式| 欧美三级亚洲精品| 2018国产大陆天天弄谢| 在线免费观看不下载黄p国产| 搞女人的毛片| 99久久精品热视频| 午夜福利视频1000在线观看| 国产高清三级在线| 熟女电影av网| 九色成人免费人妻av| 韩国av在线不卡| 亚洲欧美日韩东京热| av免费在线看不卡| 自拍欧美九色日韩亚洲蝌蚪91 | 看十八女毛片水多多多| 日韩不卡一区二区三区视频在线| av国产久精品久网站免费入址| 成人综合一区亚洲| 亚洲av中文av极速乱| 性插视频无遮挡在线免费观看| 可以在线观看毛片的网站| av播播在线观看一区| 欧美成人a在线观看| 欧美一级a爱片免费观看看| 一区二区三区精品91| 久久久久久久精品精品| 又爽又黄a免费视频| 男的添女的下面高潮视频| 久久精品久久精品一区二区三区| 高清在线视频一区二区三区| av在线蜜桃| 国产综合精华液| 新久久久久国产一级毛片| 国产乱人视频| 久久久精品欧美日韩精品| 亚洲美女搞黄在线观看| 亚洲欧美精品自产自拍| 久久久精品欧美日韩精品| 亚洲天堂国产精品一区在线| 亚洲精品视频女| 亚洲精品久久午夜乱码| 乱码一卡2卡4卡精品| av在线观看视频网站免费| 性色avwww在线观看| 91狼人影院| 日韩制服骚丝袜av| 国产 精品1| 久久鲁丝午夜福利片| 一级片'在线观看视频| 美女高潮的动态| 美女脱内裤让男人舔精品视频| 听说在线观看完整版免费高清| 99久久人妻综合| 日韩人妻高清精品专区| 成人漫画全彩无遮挡| 又爽又黄a免费视频| 亚洲真实伦在线观看| 六月丁香七月| 黄色欧美视频在线观看| 国产真实伦视频高清在线观看| 久久午夜福利片| 国产成人午夜福利电影在线观看| 又大又黄又爽视频免费| 男人爽女人下面视频在线观看| 99re6热这里在线精品视频| 亚洲精品色激情综合| 91精品国产九色| 精品熟女少妇av免费看| 嫩草影院精品99| 国产亚洲av片在线观看秒播厂| 国产午夜福利久久久久久| av在线天堂中文字幕| 丝袜喷水一区| 欧美日韩在线观看h| 国产老妇伦熟女老妇高清| 欧美人与善性xxx| 亚州av有码| 18禁动态无遮挡网站| av网站免费在线观看视频| 一个人观看的视频www高清免费观看| 人妻 亚洲 视频| 在线观看一区二区三区| 国产片特级美女逼逼视频| 国产精品.久久久| 国产精品三级大全| 亚洲精品乱码久久久v下载方式| 国产永久视频网站| 性插视频无遮挡在线免费观看| 国产精品不卡视频一区二区| av免费在线看不卡| 性色av一级| 亚洲av日韩在线播放| 日日摸夜夜添夜夜爱| 成人午夜精彩视频在线观看| 美女国产视频在线观看| 麻豆精品久久久久久蜜桃| 制服丝袜香蕉在线| 国产伦精品一区二区三区视频9| 欧美成人一区二区免费高清观看| av专区在线播放| 国产女主播在线喷水免费视频网站| 在线观看国产h片| 一级爰片在线观看| 亚洲精品视频女| 日韩亚洲欧美综合| 久久亚洲国产成人精品v| 日日撸夜夜添| 亚洲成人一二三区av| av在线蜜桃| 久久韩国三级中文字幕| 看黄色毛片网站| 久久99热这里只有精品18| 免费看av在线观看网站| 制服丝袜香蕉在线| 色播亚洲综合网| 久久久欧美国产精品| 亚洲av免费在线观看| 亚洲国产成人一精品久久久| 久久久午夜欧美精品| 午夜福利视频1000在线观看| 岛国毛片在线播放| 中国国产av一级| 成人一区二区视频在线观看| 亚洲美女视频黄频| 建设人人有责人人尽责人人享有的 | 免费大片18禁| 男人添女人高潮全过程视频| 久久久久精品久久久久真实原创| 日本黄色片子视频| 两个人的视频大全免费| 欧美成人a在线观看| 99re6热这里在线精品视频| 日韩av免费高清视频| 亚洲精品一区蜜桃| 久久99蜜桃精品久久| 熟女人妻精品中文字幕| 国产有黄有色有爽视频| 久久6这里有精品| 日韩成人伦理影院| 亚洲av欧美aⅴ国产| av在线播放精品| 久久亚洲国产成人精品v| 亚洲欧美日韩卡通动漫| 91精品伊人久久大香线蕉| 免费人成在线观看视频色| 国内揄拍国产精品人妻在线| 少妇熟女欧美另类| 免费观看在线日韩| 国产av国产精品国产| 人妻 亚洲 视频| av免费在线看不卡| 久热久热在线精品观看| 两个人的视频大全免费| 欧美成人一区二区免费高清观看| 日韩成人伦理影院| 大码成人一级视频| 国产欧美日韩一区二区三区在线 | 国产欧美亚洲国产| 亚洲国产欧美人成| av在线老鸭窝| 精品一区二区免费观看| 欧美成人精品欧美一级黄| 一区二区三区精品91| 国产黄色视频一区二区在线观看| av.在线天堂| 插阴视频在线观看视频| 国产精品.久久久| 国产av国产精品国产| 国产成人freesex在线| 青青草视频在线视频观看| 亚洲无线观看免费| 激情五月婷婷亚洲| 国产伦精品一区二区三区四那| 国产国拍精品亚洲av在线观看| av在线老鸭窝| 99久久精品热视频| 国产欧美日韩一区二区三区在线 | 日韩强制内射视频| 夜夜爽夜夜爽视频| 99久久中文字幕三级久久日本| 亚洲图色成人| 黄片wwwwww| 成人二区视频| 免费看a级黄色片| 秋霞在线观看毛片| 亚洲精品乱码久久久久久按摩| 简卡轻食公司| 日韩欧美 国产精品| 国产成人免费无遮挡视频| 日本熟妇午夜| av在线播放精品| 欧美人与善性xxx| 成人漫画全彩无遮挡| 老师上课跳d突然被开到最大视频| 搡女人真爽免费视频火全软件| 欧美3d第一页| 亚洲自拍偷在线| 欧美成人精品欧美一级黄| 国产真实伦视频高清在线观看| 久久人人爽人人片av| 国产高潮美女av| 亚洲国产精品成人久久小说| 麻豆久久精品国产亚洲av| 国产精品熟女久久久久浪| 午夜福利在线观看免费完整高清在| 插阴视频在线观看视频| 黄色日韩在线| 国产成人a∨麻豆精品| 久久久久久久久久久免费av| 亚洲aⅴ乱码一区二区在线播放| 尾随美女入室| 久久ye,这里只有精品| 日韩欧美一区视频在线观看 | 午夜免费男女啪啪视频观看| 国产亚洲午夜精品一区二区久久 | 免费播放大片免费观看视频在线观看| 国产精品久久久久久精品古装| 日韩欧美精品v在线| 性色av一级| 中文欧美无线码| 日本黄色片子视频| 国产午夜精品久久久久久一区二区三区| 少妇熟女欧美另类| 久久99精品国语久久久| 久久99热6这里只有精品| 蜜臀久久99精品久久宅男| 国产69精品久久久久777片| 少妇人妻一区二区三区视频| 国产一级毛片在线| 精华霜和精华液先用哪个| 亚洲精品中文字幕在线视频 | 亚洲av免费高清在线观看| av.在线天堂| 亚洲综合精品二区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av电影在线观看一区二区三区 | 1000部很黄的大片| 在线免费十八禁| 交换朋友夫妻互换小说| 国产精品嫩草影院av在线观看| av在线蜜桃| 国产精品99久久99久久久不卡 | 伦精品一区二区三区| 亚洲av一区综合| 久久久久久久久久成人| 久久综合国产亚洲精品| 国产精品99久久久久久久久| 校园人妻丝袜中文字幕| 国产白丝娇喘喷水9色精品| videossex国产| av.在线天堂| 国产精品久久久久久精品电影小说 | 在线观看一区二区三区激情| 国产精品人妻久久久影院| 成人综合一区亚洲| 欧美少妇被猛烈插入视频| 亚洲无线观看免费| 校园人妻丝袜中文字幕| 亚洲欧美日韩东京热| 六月丁香七月| 高清午夜精品一区二区三区| 国产精品嫩草影院av在线观看| 身体一侧抽搐| 国产片特级美女逼逼视频| 亚洲激情五月婷婷啪啪| 色视频www国产| 日本午夜av视频| 久久久久久久国产电影| 日韩制服骚丝袜av| 免费黄频网站在线观看国产| 国产一区亚洲一区在线观看| 成人欧美大片| 欧美性感艳星| 成年版毛片免费区| 一级毛片我不卡| 欧美三级亚洲精品| 国产亚洲av嫩草精品影院| 亚洲精品aⅴ在线观看| 97精品久久久久久久久久精品| 国产午夜精品久久久久久一区二区三区| 中文字幕亚洲精品专区| 26uuu在线亚洲综合色| 尤物成人国产欧美一区二区三区| 亚洲一级一片aⅴ在线观看| 秋霞伦理黄片| 视频中文字幕在线观看| 人人妻人人澡人人爽人人夜夜| 五月天丁香电影| 久久久午夜欧美精品| 在线亚洲精品国产二区图片欧美 | 一本色道久久久久久精品综合| 丝瓜视频免费看黄片| 婷婷色综合大香蕉| 乱码一卡2卡4卡精品| 日韩av免费高清视频| 国产精品不卡视频一区二区| 91久久精品国产一区二区成人| 91狼人影院| 99九九线精品视频在线观看视频| 中文字幕久久专区| 日日啪夜夜撸| 国模一区二区三区四区视频| 久久久精品免费免费高清|