• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed H2/H∞Filter Design for Discrete-Time Switched Systems

    2020-02-29 14:19:18NezarAlyazidiandMagdiMahmoud
    IEEE/CAA Journal of Automatica Sinica 2020年1期

    Nezar M. Alyazidi and Magdi S. Mahmoud

    Abstract—This paper addresses an infinite horizon distributed HHH2/HHH∞filtering for discrete-time systems under conditions of bounded power and white stochastic signals. The filter algorithm is designed by computing a pair of gains namely the estimator and the coupling. Herein, we implement a filter to estimate unknown parameters such that the closed-loop multi-sensor accomplishes the desired performances of the proposed HHH2 and H∞H∞H∞schemes over a finite horizon. A switched strategy is implemented to switch between the states once the operation conditions have changed due to disturbances. It is shown that the stability of the overall filtering-error system with HHH2/HHH∞performance can be established if a piecewise-quadratic Lyapunov function is properly constructed. A simulation example is given to show the effectiveness of the proposed approach.

    I. INTRODUCTION

    DISTRIBUTED estimation is an important problem and has received a considerable focus in academia and industrial. Distributed estimation/filtering schemes are being frequently utilized for distributed multi-sensors due to their remarkable characteristics,such as flexibility,robustness,easy maintenance and diagnosis. A sensor network architecture typically comprises of spatially distributed sensing nodes,in which each node is collaborating with neighborhoods to perform the main tasks [1]-[4]. In the multi-sensor network,several communication links are emerging to enhance the network performance employing reliable routing techniques.Each individual sensor/filter within the network can estimate the dynamic of states in terms of its observations and its neighboring nodes observations as well. In particular, the system dynamics are often subjected to any sort of uncertainties.These uncertainties may be stochastic white noise or boundedpower signals.DistributedH2filter is immensely implemented to tackle well-known stochastic white signals by minimizing the performance cost measure. However, with bounded-power signals, a distributedH∞filter/estimator can be designed to tackle such uncertainties. Also, a mixedH2/H∞controller provides a powerful tool that can sustain the robustness and optimality for the uncertain plant.

    A survey on distributed Kalman estimations was reported in[5], in which various sorts of distributed Kalman filters have been clearly evaluated. The features of these Kalman filters were excellently reviewed and compared. The uncertainties in the system dynamics were considered to be stochastic processes with well-known statistical features in [5]. Centralized Kalman filtering/estimation has been utilized in distributed multi-sensor structure to handle disturbances and to estimate unknown parameters. This structure can provide a desired performance for a wide range of applications. However, once the centralized control node drops out, the entire system fails.To avoid such situation, advanced estimation structures (distributed/decentralized) are beneficially performed by employing local filters/controllers[6]-[8].The proposed structure has an effective design that comprises of distributed filter units, in which the failure of a single unit can be technically avoided by reconfiguration of the system structure, such as in [9]-[11].

    In [12], the stability of the filtering/estimation problem is sustained by claiming that the communication topology was time-invariant local information structure [13]. Additionally,a distributed Kalman filtering has been immensely utilized to treat stochastic signals with the assumptions that the system parameters and their statistical natures are well-known.However,the system parameters are not exactly identified and the statistical nature may be unknown, where the modeling of identification errors has considerable impacts on the classical Kalman filtering as well as stochastic disturbance [14].

    Over years, optimal control schemes suchH2controllers and robust schemes mainlyH∞controllers have been immensely introduced by several researchers [15]-[16].H2controller was smoothly utilized to tackle impulse disturbances and to ensure linear quadratic controllers performance, but it can not sustain the robustness in terms of irregular systems and parametric perturbations [17]. Typically, theH2is an optimal control methodology that has capability to minimize the objective cost of tracking error and actuation signal.MixedH2/H∞scheme has a supremacy over optimal and robust schemes in engineering practice because it can sustain the optimality and robustness against disturbances [18].H∞controller is applied to reduce the influence of disturbances.The desired of designing a mixedH2/H∞architecture is that theH2controller sustains the optimality in the occurrence of the worst-case disturbance, and its influence must be reduced to a tolerance level. The mixedH2/H∞schemes can provide performance better than theH2andH∞schemes when they are implemented alone [18]-[19]. A mixedH2/H∞controller was studied for stochastic plants in the occurrence of dependent disturbances [18]-[19]. TheH2/H∞scheme was firstly investigated in[20]as multi-objective optimization,and it has been broadly implemented in variety of applications[18], [19], [21]. Also, anH2/H∞frame was investigated for a linear perturbed model with a suboptimal controller utilizing a reduced order technique.

    Authors in [22] have introduced a distributedH2/H∞filtering in continuous time domain in the presence of bounded and white disturbances. In our work, we are focusing on anH2/H∞filtering design for discrete-time switched systems in the presence of bounded and white disturbances.

    In general, the operation points of power systems are changing faster due to electronic elements such as in wind turbine, or the operation points may change slowly due to different disturbance and, herein, a switching methodology can be utilized to switch between filter algorithms to estimate the dynamic of the state subject to the current operation points to accomplish the prescribed performance.In this paper,a linearized small signal wind turbine model is tested, in which the mixed filtering algorithm is implemented to estimate the unknown parameters and to attenuate the impact of the disturbances [23].

    This paper builds on the foregoing literatures and extends them further to the distributedH∞filtering problem for discrete-time systems. The contribution of this paper is as follows:

    1) It provides complete results of the infinite horizon distributedH2/H∞filtering design problem for discrete-time systems with bounded power stochastic signals.

    2) It formulates the filtering design solution as a two-step procedure, which presents a convenient computational load.

    3) A switched strategy is developed to sustain the stability of the system by switching the state according to the change in the operation conditions.

    4) It demonstrates the performance evaluation of the filter under external disturbances.

    The paper is arranged as follows.Section II introduces some basic definitions.Section III states the problem description and provides the mathematical foundation of the filtering problem.In Section IV, the distributed filtering problem and related issues are developed. Section V shows the practicability of the proposed filter scheme via computer simulation.

    II. PRELIMINARIES

    In this section, we present definitions that are needed in further development.

    A. Definitions

    Definition 1:Letnbe an integer anduk ∈Rqbe a discretetime real stochastic vector sequence associated with

    as the auto-correlation function.

    Definition 2:The Fourier transform ofRuu(n),or the power spectral density ofuk, is given by

    Definition 3:The 2-norm||x||2used for vector sequencexk ∈Rnis defined as

    The setL2refers to the space of mean square summable infinite vector sequences with

    In the sequel, a stationary stochastic vector signal is said to have bounded power ifRuu(n)andSωexist and this imply that

    III. PROBLEM STATEMENT

    Consider a dynamical model of a linear plant for distributed nodes over a communication topology:

    wherexk ∈Rndenotes the state,vk ∈Rm,wk ∈Rpare a bounded-power stationary signal and white noise respectively. (A,B,B1w) are constant matrices, andCi ∈Rq×n,Ei ∈Rq×m,Ewi ∈Rq×pare measurements stationary signals with bounded-power and white noise signals, respectively.is the measurement of nodei. LetZkbe the measurement vector to be estimated. Whereσikrepresents the switching signal among the states.The system(5)is observed by a sensor(node), which is one of distributedNnodes. In this structure,we assume a proposed communication framework that enables two-direction of information to follow.

    In this work, estimation/filtering units are utilized to estimate observationsxkfor each sensor. For instance, sensori,may use its own observations and its neighbors observations to estimate its dynamic to make an action. We can get the estimator law for each nodei.

    Remark 1:The designedH2/H∞filtering sustains the robustness under the influence of worst bounded stochastic signals by means ofH∞filtering and sustains the optimality under the influence of white stochastic signals by minimizingH2measure of the performance. In this sense, the states and the neighborhood information are not available to the estimator unit. As result, this mixed filtering scheme comprises of two phases. In the first phase, the estimator algorithm is required to estimate the unknown terms and coupled gains can be determined by solving the candidate Riccati equations. In the second stage, The coupled gains can sustain the stability of the closed loop systems.

    The estimation error is defined byThen we can deduce the error dynamic as follows:

    whereA11, A12,toA1nrepresent a dynamic of each sensor,B11, B12,toB1nrepresent a control input of each sensor,B1w1, B1w2,toB1wnrepresent a input of each sensor, andG11, G12,toG1nare the coupling gains. Here, we can consider the difference of the estimates among neighbors as

    For the givenγ >0 andβ >0,we design the gain matricesKiandGisuch that:

    To study the performance ofH∞in the presence of external disturbancewk

    2) For anyif E[e(0)]=0

    It can be seen that, when the external disturbancewk ≡0,system (5) is stable. This corresponds to minimizing the following norm

    for the worst disturbancewk.

    To tackle the aforementioned problems, we consider the following standard assumptions:

    Assumption 1:All distributed sensors are connected through a network, in which communication constraints will not consider over the present work.

    Assumption 2:The pair (Ci,Ai) is detectable.

    Discrete-time algebraic Riccati equation (DARE) is in general utilized in optimal control and filtering issues when the model has full ranking matrices as [24].

    Assumption 3:

    has full row rank for allω ∈R

    Assumption 4:

    has full row rank for allω ∈R

    andare non-singular.

    IV. MAIN RESULTS

    The aim of this work is to develop a distributed filtering scheme such that the closed loop system is asymptotically stable and satisfies the prescribed necessary conditions.

    A. Filtering Design

    In this section, we consider a two-step procedure to the filtering design process:

    First, we calculate the expected of estimation error as.

    Using above (12), we deduce that:

    Lemma 1:Consider system (12). If E[e(0)]=0, then there exist positive-definite stabilizing solutionsandSi ≥0 to a discrete algebraic Riccati equation (DARE):

    The filter gain given by:

    is investigated such that the closed loop system is guaranteed asymptotically stable.

    Proof:The aim of localH∞filtering on each sensor is to tackle the impact of estimation error, and both disturbances.For analyzing theH∞performance, we consider a candidate cost function:

    whereγ >0, and the Lyapunov quadratic function is given by:

    Using (12), we arrive at:

    If there is no disturbance , i.e.,wik ≡0, we obtain:

    which means that the estimation error converges to zero for 0≤i ≤n. Hence, the closed loop systemis asymptotically stable. In this sense, it turns out that (10) is satisfied.

    whereS1kis the solution of the Lyapunov equation:

    To handle the distributed filtering problem by satisfying (10),we minimize the constrained systems (13) and (21) to obtain the estimator gainKi.To avoid the coupling problem by using(21), we consider the following equation

    The following result pertaining to the solution of the Lyapunov equation stands out:

    Lemma 2:If S1k andare the solutions of(21)and(22),respectively then tr

    To analyze the stability of the system, we examine the following state dynamics:

    By selecting a candidate Lyapunov function,

    It can be seen that the termsS1k+Sik ≥0,and.

    The previous lemma demonstrates thatis limited byS1k.By minimizing the constrained systems(13)and(22),

    Introduce the performance criterion:

    By figuring out the minimization issue minKi(tr(S1k)) for the constrained systems (13) and (26), the following result is established

    Proof:Doing a little algebra on (27) shows that

    Based on foregoing lemmas,we can establish the following theorem:

    Theorem 1:Consider the model(5)subject to the associated Assumptions 1-5. If there exist positive definite stabilizing solutionsPik,Si,to (13) and (26)-(29), respectively,then the distributed filters/estimators in (6) guarantee that the(10)is feasible.Moreover,we havewhere the estimator in (6) and gainsKi,Giare given in (14) and(30), respectively.

    Proof:By employing Lemma 2, the closed loop systemis asymptotically stable and the developed estimators ensure that (10) is feasible. By Lemmas

    In Theorem 1, the matricesandγsolving the coupled matrix (14)-(30) are readily obtained.

    Theorem 2:Consider the given model (5) subject to associated Assumptions 1-5, IfEi= 0 and there exist positive definite stabilizing solutionsPikandSi,andPiito (13)and (26)-(29), then the distributed estimators in (6) ensure thatis asymptotically stable, (10) is feasible, andwhere the estimator gainis defined in(6)and the controller gainKiis detailed as follows:

    We can observe that Theorem 2 has more relaxed conditions, and it considersandin which it simplifies the computing of the local observer and coupled gains, however, the disturbance is commonly presented in the observations.

    Consider reliable communications channels over the network where the information can be exchanged regularly.Thus Assumptions 1-5 are required. In what follows, we direct attention to the situation where Assumptions 1-5 can be relaxed. For sensori, we let the vectorbe a collection of the measurementyiand its neighbors measurementyiforcan be written in the following form

    Then relaxed assumptions are given as:

    Assumption 6:The pairis detectable.

    Assumption 7:

    Assumption 8:

    Assumption 9:is non-singular.

    In terms of the observations(32),we haveandWe assumeandUsing aforementioned assumptions,we deduce that:

    Theorem 3:Consider the model (5) subject to Assumptions 1 and 6-9. If there exist matrix solutionsPik >0 to (13)andSi ≥0, andto (26)-(29) respectively, then the distributed estimators in (6) guarantee that the closed-loop matrixis asymptotically stable, (10) is achieved.

    Theorem 4:Consider the model given in (5) subject to Assumptions 1 and 6-9. IfEi= 0 and there exist positive solutionsPik >0 to (13) andSi ≥0,andto(26)-(29)respectively,then the distributed estimators in(6)sustain that the closed loop matrixis asymptotically stable, (10) is achieved.

    B. Relaxed H2/H∞Filtering

    In this sense, Lemma 2 can be rephrased as:

    Lemma 4:For system (12), if E[e(0)]=0, then there exist positive-definite stabilizing solutionsandSi ≥0 to the DARE:

    We examine the gain of the form:

    The filter gain is selected so that the closed loop systemis asymptotically stable.

    Proof:Let= E(eik) andVik=We obtain

    Using above equations, we deduce:

    Ifwe deduce:

    Here, we study theH2performance (7). Since the closed loop matrixis Hurwitz, we can deduce that:

    LetSidenote the solution of the subsequent Lyapunov equation

    Lemma 5:IfSiis the solution of (38), thenwhereis the solution of

    Since the closed-loop systemis Hurwitz,Siis positive semi-definite. Sinceis a positive definite solution of (33), we assure thatAiis generally Hurwitz.Utilizing equations (38) and (39), we deduce:

    LetSirepresent the solution of the subsequent equation:

    Deploying the consequence from (33) and (42), we have:

    Lemma 6:Consider system(12).If E[ei(0)]=0,then there exists a positive-definite stabilizing solutionandSi ≥0 to a discrete-time Algebraic Riccati equation (DARE):

    It follows from Lemma 6 that we can minimize cost function under (43). The Lyapunov function is given by:

    Simple computation yields:

    By minimizingtrSi, we setand deduce the gain matrix:

    To fulfill the previous outcomes,we introduce the following theorem:

    Theorem 5:Consider system(5).Given Assumptions(1-5),if

    wherewith2i=has a positive definite stabilizing solution,the distributed filter(6)with the estimator gain designed by (47) and the coupling gain:

    Then the closed-loop systemis Hurwitz, (10) is satisfied, and

    Proof:The gainKiis given by (47), the equation in (48)can be rearranged as (43). Subsequently from the proof of Lemma 4, it can be clearly noted thatis Hurwitz.This means that(10)is satisfied.The(50)has been developed in Lemma 4. ■

    Remark 2:From Theorem 5,it can be seen that the estimator gainKirelies on the solution of the DARE (43). Theorem 5 can provide overcomes easier than Theorem 1. Additionally,theH2performance in Theorem 5 is smaller than Theorem 1. In these sense, the former theorem can provide handy computing forH2performance and gain matrices.

    If own and neighbor measurements are available for filtering/estimation unit, we deduce:

    Theorem 6:For the given system (5), subject to associated Assumptions (1-9), if

    V. NUMERICAL SIMULATION

    In this section,we give a simulation example to illustrate the effectiveness of the developed methods. Consider the model(5) described as follows. In this example, we applied the proposed scheme for a discretized wind turbine mode. The original wind turbine model is given in [25], as:

    The measurements of distributed sensors are :

    And the disturbance is given as:

    In this framework, each sensor (node) has access to information from different neighbors. Furthermore, it can be substantiated that Assumptions(1-5)are achieved.The developed distributedH2/H∞filters are successfully implemented to tackle the relaxedH2/H∞in the presence of external disturbances.

    By selectingand, and carrying out DARE(48), we deduce

    The estimator gains are given:

    While the coupling gains:

    Figs.1-3 show the efficiency of the proposed filtering scheme against the bounded disturbance. It is noticed from Fig.3 that the error system is asymptotically stable when,and the filtering scheme has the capability to attenuate the bounded disturbance impacts. Figs.1 and 2 represent the actual and estimated states for one sensor. It can also be confirmed that the closed-loop matrixis Hurwitz.TheH2performance is bounded by

    Fig.1. Dynamic response of actual states.

    VI. CONCLUSION

    AnH2/H∞filtering technique is proposed to estimate states and to attenuate the influence of external disturbances of discrete-time systems. Under the condition of stochastic and bounded power signals, the filtering strategyH2/H∞is selected based on the two step computing procedure to determine the estimator and coupling gains. A switched strategy is implemented to switch the states once the operation conditions have changed. Then, the stability of the overall system in terms ofH2/H∞performance is established using candidate switched Lyapunov functions.Simulation example is given to show the effectiveness of the proposed approach. The proposed filtering structure showed robustness against the stochastic and bounded power signals.

    Fig.2. Dynamic response of estimation states.

    Fig.3. Dynamic response of estimation error.

    亚洲av日韩在线播放| 亚洲精品一区蜜桃| 国产av国产精品国产| av一本久久久久| 国产国拍精品亚洲av在线观看| 亚洲美女视频黄频| 亚洲欧美成人综合另类久久久| 亚洲av.av天堂| 一级毛片 在线播放| 亚洲国产av新网站| 婷婷色综合大香蕉| 色网站视频免费| 国产熟女欧美一区二区| 成人免费观看视频高清| 国产成人精品福利久久| 夫妻性生交免费视频一级片| 九九在线视频观看精品| 永久网站在线| 天天躁夜夜躁狠狠久久av| 男的添女的下面高潮视频| 寂寞人妻少妇视频99o| 身体一侧抽搐| 制服丝袜香蕉在线| 一级毛片黄色毛片免费观看视频| 亚洲欧美精品自产自拍| 国产精品一区二区性色av| 身体一侧抽搐| 交换朋友夫妻互换小说| 亚洲av中文av极速乱| 午夜福利在线在线| 亚洲欧美日韩无卡精品| 少妇丰满av| 一级毛片 在线播放| 国产精品欧美亚洲77777| 亚洲精品国产色婷婷电影| 18禁在线播放成人免费| 91精品国产国语对白视频| 亚洲国产色片| 国产精品嫩草影院av在线观看| 99热6这里只有精品| 国产精品伦人一区二区| 99热这里只有精品一区| 国产 一区 欧美 日韩| 亚洲av成人精品一区久久| 成人一区二区视频在线观看| 日韩av在线免费看完整版不卡| 99热全是精品| 超碰97精品在线观看| 免费黄频网站在线观看国产| kizo精华| 成人亚洲精品一区在线观看 | 精品亚洲乱码少妇综合久久| av在线app专区| 高清在线视频一区二区三区| 国产日韩欧美在线精品| 国产伦精品一区二区三区四那| 国产在线视频一区二区| 亚洲欧美精品自产自拍| 国产爱豆传媒在线观看| 国产伦精品一区二区三区视频9| 中国三级夫妇交换| 国产国拍精品亚洲av在线观看| 天堂8中文在线网| 一本久久精品| 国产精品熟女久久久久浪| 久久99热6这里只有精品| 乱码一卡2卡4卡精品| 成人综合一区亚洲| 日韩电影二区| 欧美激情国产日韩精品一区| 大陆偷拍与自拍| 肉色欧美久久久久久久蜜桃| 国产高潮美女av| 欧美日韩在线观看h| 日韩大片免费观看网站| 国产高清国产精品国产三级 | 精品视频人人做人人爽| 欧美激情极品国产一区二区三区 | 欧美亚洲 丝袜 人妻 在线| 只有这里有精品99| 日本午夜av视频| 成人国产麻豆网| 最近最新中文字幕免费大全7| 色婷婷av一区二区三区视频| 国产一区亚洲一区在线观看| 中文精品一卡2卡3卡4更新| 精品久久国产蜜桃| 少妇裸体淫交视频免费看高清| 久久久久久久精品精品| 午夜福利影视在线免费观看| 99热全是精品| 观看免费一级毛片| 日本欧美视频一区| 蜜桃在线观看..| 夫妻性生交免费视频一级片| 亚洲av日韩在线播放| 国内少妇人妻偷人精品xxx网站| 国产精品福利在线免费观看| 亚洲精品乱久久久久久| 伦理电影免费视频| 国产精品一区二区在线不卡| 国模一区二区三区四区视频| 五月天丁香电影| 久久久久精品性色| 婷婷色av中文字幕| 在线观看免费视频网站a站| 99国产精品免费福利视频| 熟女电影av网| 亚洲精品视频女| www.色视频.com| a级毛片免费高清观看在线播放| 免费大片18禁| 日韩免费高清中文字幕av| 亚洲色图综合在线观看| 搡老乐熟女国产| 十分钟在线观看高清视频www | 国产熟女欧美一区二区| 日韩一本色道免费dvd| 成人国产麻豆网| 国产精品免费大片| 少妇裸体淫交视频免费看高清| 国语对白做爰xxxⅹ性视频网站| av女优亚洲男人天堂| 九九爱精品视频在线观看| 秋霞伦理黄片| 一级毛片黄色毛片免费观看视频| 亚洲熟女精品中文字幕| 欧美少妇被猛烈插入视频| 久久青草综合色| 日韩亚洲欧美综合| 国产乱来视频区| 99久久人妻综合| 精品一区二区三卡| 久久精品国产亚洲av涩爱| 全区人妻精品视频| 日日啪夜夜撸| 一本—道久久a久久精品蜜桃钙片| 欧美一区二区亚洲| 99久久精品国产国产毛片| 亚洲av综合色区一区| 欧美老熟妇乱子伦牲交| 国产精品一区二区性色av| 欧美日韩精品成人综合77777| 精品久久久久久久久av| 亚洲aⅴ乱码一区二区在线播放| 久久久久国产精品人妻一区二区| 国产一区有黄有色的免费视频| 欧美日韩视频高清一区二区三区二| 爱豆传媒免费全集在线观看| 麻豆国产97在线/欧美| 美女内射精品一级片tv| 久久久久久久国产电影| 97超碰精品成人国产| 插逼视频在线观看| 久久99蜜桃精品久久| 最近最新中文字幕免费大全7| 观看美女的网站| 婷婷色综合www| 午夜精品国产一区二区电影| 人妻 亚洲 视频| 久久久久久久久久成人| 国产精品一区二区性色av| 99热网站在线观看| 91久久精品国产一区二区三区| 最后的刺客免费高清国语| 最近的中文字幕免费完整| 免费黄频网站在线观看国产| 欧美+日韩+精品| 交换朋友夫妻互换小说| 最近最新中文字幕免费大全7| 日韩成人av中文字幕在线观看| 国产精品嫩草影院av在线观看| 中文字幕亚洲精品专区| 精品一区二区三卡| av.在线天堂| 精华霜和精华液先用哪个| 国产精品精品国产色婷婷| 久久午夜福利片| 狂野欧美激情性bbbbbb| 青春草视频在线免费观看| 亚洲第一区二区三区不卡| 自拍欧美九色日韩亚洲蝌蚪91 | 91精品伊人久久大香线蕉| 欧美日韩亚洲高清精品| 黄色一级大片看看| 久久精品久久久久久噜噜老黄| 高清av免费在线| 国产亚洲午夜精品一区二区久久| 亚洲av电影在线观看一区二区三区| a 毛片基地| 成人一区二区视频在线观看| 在线精品无人区一区二区三 | 免费观看无遮挡的男女| 丝袜脚勾引网站| 熟妇人妻不卡中文字幕| 亚洲无线观看免费| 人妻夜夜爽99麻豆av| 精品久久久久久久久亚洲| 一级片'在线观看视频| 亚洲成人手机| 美女视频免费永久观看网站| 国产 一区 欧美 日韩| 国产在线免费精品| 亚洲精品自拍成人| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久精品94久久精品| 亚洲四区av| 亚洲精品一区蜜桃| 免费看不卡的av| av在线蜜桃| 少妇人妻 视频| 啦啦啦中文免费视频观看日本| 黄色视频在线播放观看不卡| 亚洲av在线观看美女高潮| 久久鲁丝午夜福利片| av在线观看视频网站免费| 丰满乱子伦码专区| 丝袜脚勾引网站| h视频一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻 视频| 久久精品久久精品一区二区三区| 狠狠精品人妻久久久久久综合| 免费av不卡在线播放| 国内揄拍国产精品人妻在线| 亚洲精品久久午夜乱码| 韩国av在线不卡| 成人综合一区亚洲| 天堂中文最新版在线下载| 久久久久久伊人网av| 亚洲高清免费不卡视频| 成年av动漫网址| 免费av不卡在线播放| 亚洲国产av新网站| 最近中文字幕高清免费大全6| 国产无遮挡羞羞视频在线观看| 熟女av电影| 国产真实伦视频高清在线观看| 欧美日韩视频高清一区二区三区二| 97精品久久久久久久久久精品| 欧美一级a爱片免费观看看| 精品国产露脸久久av麻豆| 国产一区二区在线观看日韩| 亚洲欧美日韩卡通动漫| 亚洲成人一二三区av| 91狼人影院| 黄片无遮挡物在线观看| 18禁在线播放成人免费| 狂野欧美激情性bbbbbb| 国产免费又黄又爽又色| 成人免费观看视频高清| 日韩精品有码人妻一区| 在线观看美女被高潮喷水网站| 建设人人有责人人尽责人人享有的 | 啦啦啦中文免费视频观看日本| 成年免费大片在线观看| av视频免费观看在线观看| 久久精品人妻少妇| 成人特级av手机在线观看| 国产中年淑女户外野战色| 新久久久久国产一级毛片| 欧美日韩综合久久久久久| 一级毛片 在线播放| 美女cb高潮喷水在线观看| av黄色大香蕉| 国产精品久久久久久久电影| 日韩视频在线欧美| 国产有黄有色有爽视频| 国产精品国产三级国产av玫瑰| 日韩欧美精品免费久久| 涩涩av久久男人的天堂| 女性生殖器流出的白浆| 日韩制服骚丝袜av| av国产久精品久网站免费入址| 乱码一卡2卡4卡精品| av在线蜜桃| 亚洲欧洲日产国产| 国产黄色视频一区二区在线观看| 成人一区二区视频在线观看| 男人舔奶头视频| 成人特级av手机在线观看| 秋霞在线观看毛片| 成人午夜精彩视频在线观看| 日本av免费视频播放| 天美传媒精品一区二区| 蜜桃久久精品国产亚洲av| 精品国产露脸久久av麻豆| 国产高清国产精品国产三级 | 在线观看av片永久免费下载| 日本猛色少妇xxxxx猛交久久| 日韩一区二区三区影片| 97超碰精品成人国产| 日本色播在线视频| 美女福利国产在线 | 插逼视频在线观看| 久久久久视频综合| 久久99热这里只频精品6学生| 亚洲美女搞黄在线观看| 最近中文字幕2019免费版| 大片电影免费在线观看免费| 麻豆成人午夜福利视频| 亚洲三级黄色毛片| 男人舔奶头视频| 精品少妇久久久久久888优播| 嘟嘟电影网在线观看| 国产精品一区二区三区四区免费观看| 国产成人91sexporn| 国内精品宾馆在线| 成人一区二区视频在线观看| 国产乱人视频| 偷拍熟女少妇极品色| 嘟嘟电影网在线观看| av天堂中文字幕网| xxx大片免费视频| 日韩一区二区三区影片| 岛国毛片在线播放| 国产精品一及| 久久精品夜色国产| 人妻制服诱惑在线中文字幕| 日日撸夜夜添| av不卡在线播放| 成人午夜精彩视频在线观看| 免费人妻精品一区二区三区视频| 久久精品久久精品一区二区三区| 中文字幕亚洲精品专区| 99视频精品全部免费 在线| 有码 亚洲区| 嘟嘟电影网在线观看| 夫妻性生交免费视频一级片| 亚洲国产欧美在线一区| 日韩一区二区三区影片| 人妻制服诱惑在线中文字幕| 高清日韩中文字幕在线| 成年人午夜在线观看视频| kizo精华| 3wmmmm亚洲av在线观看| 大片免费播放器 马上看| 免费黄频网站在线观看国产| 男人舔奶头视频| 一二三四中文在线观看免费高清| 少妇精品久久久久久久| 2022亚洲国产成人精品| 国产av国产精品国产| 国产 一区 欧美 日韩| 2022亚洲国产成人精品| 日日摸夜夜添夜夜爱| 亚洲三级黄色毛片| 少妇人妻一区二区三区视频| 一级毛片我不卡| 尾随美女入室| 国产成人免费观看mmmm| 欧美精品亚洲一区二区| 黄色一级大片看看| 高清av免费在线| 欧美成人精品欧美一级黄| 国产熟女欧美一区二区| 激情 狠狠 欧美| av黄色大香蕉| 身体一侧抽搐| 多毛熟女@视频| 男人爽女人下面视频在线观看| 久久精品国产亚洲av涩爱| 免费不卡的大黄色大毛片视频在线观看| 最近的中文字幕免费完整| 国产黄片美女视频| 日本猛色少妇xxxxx猛交久久| 亚洲精品中文字幕在线视频 | 欧美97在线视频| 亚洲精品久久久久久婷婷小说| 美女福利国产在线 | freevideosex欧美| 久久韩国三级中文字幕| 亚洲av中文字字幕乱码综合| 最新中文字幕久久久久| 男人和女人高潮做爰伦理| 久久精品国产亚洲av涩爱| 丰满人妻一区二区三区视频av| 人妻系列 视频| 人体艺术视频欧美日本| 国国产精品蜜臀av免费| 18禁动态无遮挡网站| 在线观看av片永久免费下载| 一区二区三区四区激情视频| 久久久a久久爽久久v久久| 街头女战士在线观看网站| videossex国产| 国产成人午夜福利电影在线观看| 美女国产视频在线观看| 国产成人aa在线观看| 欧美最新免费一区二区三区| a级毛片免费高清观看在线播放| 99久久人妻综合| 亚洲精品自拍成人| 插阴视频在线观看视频| 日本黄色日本黄色录像| 97在线视频观看| 伊人久久国产一区二区| 黄片无遮挡物在线观看| 国产老妇伦熟女老妇高清| 精品酒店卫生间| 国产亚洲午夜精品一区二区久久| 国产久久久一区二区三区| 这个男人来自地球电影免费观看 | 国产色爽女视频免费观看| 精品一区二区免费观看| 国产精品嫩草影院av在线观看| 一个人看的www免费观看视频| 一级a做视频免费观看| 国产爽快片一区二区三区| 亚洲精品视频女| av不卡在线播放| 最近中文字幕2019免费版| 观看美女的网站| 亚洲丝袜综合中文字幕| 亚洲av成人精品一二三区| 久久精品国产亚洲网站| 日本黄大片高清| 美女内射精品一级片tv| 日日摸夜夜添夜夜添av毛片| 在线观看一区二区三区| 麻豆乱淫一区二区| 永久网站在线| 大片免费播放器 马上看| 欧美激情国产日韩精品一区| 久久久国产一区二区| 亚洲国产精品国产精品| 久久久午夜欧美精品| 王馨瑶露胸无遮挡在线观看| 亚洲丝袜综合中文字幕| 日韩制服骚丝袜av| 青春草国产在线视频| 欧美日韩一区二区视频在线观看视频在线| 青青草视频在线视频观看| 成人综合一区亚洲| 国产伦精品一区二区三区视频9| 人妻系列 视频| 成年美女黄网站色视频大全免费 | 黑丝袜美女国产一区| 久久97久久精品| 小蜜桃在线观看免费完整版高清| 视频区图区小说| 免费在线观看成人毛片| .国产精品久久| 97在线视频观看| 国产成人a区在线观看| 成人国产麻豆网| 免费看av在线观看网站| 两个人的视频大全免费| 91精品国产国语对白视频| 在线播放无遮挡| 777米奇影视久久| 成年av动漫网址| 欧美精品人与动牲交sv欧美| 国产在视频线精品| 免费看光身美女| 一级片'在线观看视频| 99久久人妻综合| 婷婷色综合大香蕉| 国产人妻一区二区三区在| 波野结衣二区三区在线| 国产精品女同一区二区软件| 国产亚洲av片在线观看秒播厂| 亚洲美女黄色视频免费看| 国产精品一区www在线观看| av天堂中文字幕网| av在线app专区| 肉色欧美久久久久久久蜜桃| 91精品伊人久久大香线蕉| 一个人看视频在线观看www免费| 国产欧美另类精品又又久久亚洲欧美| 九九爱精品视频在线观看| 91aial.com中文字幕在线观看| 午夜激情福利司机影院| 日本黄大片高清| 日韩欧美精品免费久久| 性高湖久久久久久久久免费观看| 欧美日韩视频高清一区二区三区二| 国产av一区二区精品久久 | 国产免费一区二区三区四区乱码| www.av在线官网国产| 一级二级三级毛片免费看| 亚洲人成网站高清观看| 国产精品av视频在线免费观看| 91精品国产九色| 欧美亚洲 丝袜 人妻 在线| 精品一区二区三区视频在线| 免费观看av网站的网址| 久久久久久久精品精品| 日韩视频在线欧美| 观看av在线不卡| 99久久综合免费| a级一级毛片免费在线观看| 亚洲美女黄色视频免费看| 久久精品久久精品一区二区三区| 中文字幕免费在线视频6| 亚洲经典国产精华液单| 深夜a级毛片| 天天躁日日操中文字幕| 高清在线视频一区二区三区| 三级经典国产精品| 欧美精品国产亚洲| 国产v大片淫在线免费观看| 汤姆久久久久久久影院中文字幕| av女优亚洲男人天堂| 人妻夜夜爽99麻豆av| 性色avwww在线观看| 一个人看视频在线观看www免费| 男女国产视频网站| 青春草视频在线免费观看| 九九久久精品国产亚洲av麻豆| 一级黄片播放器| 亚洲精品亚洲一区二区| av女优亚洲男人天堂| 亚洲精品aⅴ在线观看| 国产精品久久久久成人av| 99视频精品全部免费 在线| videossex国产| 国产男女超爽视频在线观看| 97热精品久久久久久| 伦理电影大哥的女人| 久久97久久精品| 国产精品一区二区三区四区免费观看| 精品一区在线观看国产| 日韩欧美一区视频在线观看 | xxx大片免费视频| 亚洲第一av免费看| 少妇人妻久久综合中文| 老师上课跳d突然被开到最大视频| 日韩不卡一区二区三区视频在线| 国产91av在线免费观看| 视频区图区小说| 精品99又大又爽又粗少妇毛片| 国产真实伦视频高清在线观看| 极品教师在线视频| 日韩中字成人| 欧美极品一区二区三区四区| 亚洲天堂av无毛| 国产欧美日韩一区二区三区在线 | 亚洲三级黄色毛片| 高清av免费在线| 午夜视频国产福利| 成人特级av手机在线观看| 国产成人午夜福利电影在线观看| 精品一区在线观看国产| 久久毛片免费看一区二区三区| 97在线视频观看| 久热这里只有精品99| 国产精品欧美亚洲77777| 国产伦精品一区二区三区四那| 色哟哟·www| 亚洲三级黄色毛片| 有码 亚洲区| 成人一区二区视频在线观看| 黑人猛操日本美女一级片| 国产精品人妻久久久久久| 久久久精品94久久精品| 男人爽女人下面视频在线观看| 日本黄大片高清| 亚洲欧美中文字幕日韩二区| 欧美精品一区二区大全| 男人和女人高潮做爰伦理| 免费观看av网站的网址| 夜夜骑夜夜射夜夜干| 在线天堂最新版资源| 日韩亚洲欧美综合| 欧美日韩综合久久久久久| 毛片女人毛片| 91久久精品电影网| 狂野欧美白嫩少妇大欣赏| 亚洲真实伦在线观看| 久久精品久久久久久久性| 国产 一区精品| 亚洲不卡免费看| 亚洲av.av天堂| 观看免费一级毛片| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久亚洲中文字幕| 欧美bdsm另类| 精品人妻一区二区三区麻豆| 久久人人爽人人爽人人片va| 国产欧美日韩精品一区二区| 精品一区在线观看国产| 91狼人影院| 久久6这里有精品| 国产熟女欧美一区二区| 亚洲精品国产av成人精品| 亚洲av日韩在线播放| 国产视频内射| 精华霜和精华液先用哪个| 欧美成人午夜免费资源| 久久99热这里只有精品18| 欧美97在线视频| 亚洲精品国产色婷婷电影| 久久亚洲国产成人精品v| 色视频在线一区二区三区| 伦精品一区二区三区| 久久韩国三级中文字幕| 欧美区成人在线视频| 色婷婷久久久亚洲欧美| 国产精品成人在线| 国产91av在线免费观看| 最近最新中文字幕免费大全7| av专区在线播放| 国产精品精品国产色婷婷| 欧美+日韩+精品| 王馨瑶露胸无遮挡在线观看| 大话2 男鬼变身卡| 亚洲精品成人av观看孕妇| av国产免费在线观看| 国产精品久久久久久久久免| 日韩不卡一区二区三区视频在线| 国产大屁股一区二区在线视频| 夫妻午夜视频| 久久久久国产网址| 亚洲精品国产av成人精品|